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Funetlonal Represenidon 
and Reasonin About fie 
F/A=T8 A h  Fuel sysmm 
Mahmoud Pegah, University of Northern Iowa 
Jon Sticklen, Michigan State University 
William Bond, McDonnell Douglas Aerospace 

1990s is to develop engineering methodol- 
ogies that robustly address design for man- 
ufacturability, design to requirements, and 
conceptual design. For several years we  
have explored how functional reasoning, a 
subfield of model-based reasoning, can 
address such issues. In general, model- 
based reasoning circumvents the brittle- 
ness of reasoning systems built solely on 
associational knowledge.  Model-based 
reasoning is attractive because it captures 
an intuition that is especially cogent in 
engineering: to troubleshoot a device, re- 
design one to new specifications, and so 
on, it is useful to represent and reason with 
a model of the device - to know how the 
device “works.” 

There are two variations on model-based 
reasoning: One focuses on how models of 
behavior are derived,’-‘ while the other 
focuses on how models of behavior are 
u ~ e d . ~ - ~  The latter includes functional rea- 

EX 

THIS WORK TESTS HOW WELL FUNCTIONAL 
MODELING CAN SCALE UP TO MEET A 

FORMIDABLE REAL- WORLD PROBLEM, AND 
E M I S  THE FUNCTZONAL MODELING APPROACH 

TO INCLUDE A LIBRARY OF STANDARD PARTS. 

strategy: We first decompose the complex 
causal knowledge of a device along func- 
tional lines, then we compose a causal story 
of how the device will operate in a partic- 
ular situation given stated boundary condi- 
tions. That is, we  use both representational 
decomposition for managing complexity 
and situation-specific composition for sim- 
ulation. (A sidebar describes the basics of 
functional modeling in more detail.) 

Our long-term goal is to demonstrate 
that the functional approach can capture 

soning, which assumes that when we know causal understanding about complex de- 
what a device will be used for (its purpose), 
we can better organize our causal knowledge 
of the device. This approach uses abstrac- 
tions of a device’s purpose to index behav- 
iors that achieve that purpose. Our varia- 
tion on this method - functional modeling 
-also uses simulation as a core reasoning 
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vices across diverse domains: we  focus 
here on a realistically sized aerospace ap- 
plication: the fuel system of the F/A- 18 
aircraft, manufactured by McDonnell Dou- 
glas for the US Navy. In this research, we 
did not want to implement and field an 
“industrial strength” computer system for 

the engineering mainstream. Rather, we  
hoped to demonstrate that the functional 
approach could scale to some real-world 
aerospace problems, and to extend the rep- 
resentational power of functional model- 
ing to include libraries of standard parts. 

Many model-based reasoning approach- 
es have been difficult to scale up from 
demonstration-sized problems. This is es- 
pecially evident in research aimed at digital 
electronic circuit diagnosis. We use the term 
“scalability” here in two senses. It refers 
both to a knowledge-based system’s ability 
to adapt to larger domains and to a system’s 
ability to apply to more domains. Our initial 
work using functional modeling was in a 
small, well circumscribeddomain with about 
20components: the human complement sys- 
tem (part of the immune system). W e  have 
argued that the inherent modularity of our 
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make it easier to build device models, we  
expected the addition of alibrary facility to 
functional modeling to excite little theoret- 
ical interest. However, our work in this 
area pointed the way to another level of 
device organization that we  had not antic- 

Basics of functional modeling 

Functional modeling largely adopts an 
existing formalism for functional repre- 
sentation that centers on the organization 
of causal device knowledge.’ To represent 
a device functionally, we first describe 
“what it is” by recursively decomposing it 
into its constituent subdevices, which are 
related by a ComponentOf relation. I n  en- 
gineered devices. this decomposition typi- 
cally parallels major structural systems. 
We then describe “how i t  works” by enu- 
merating the functions of each subdevice 
and describing the behaviors that accom- 
plish those functions. A function has three 
elements: a Provided clause stating the 
conditions under which the function is ap- 
plicable (a precondition): a ToMake 
clause stating the function’s result ( a  post- 
condition): and a By clause pointing to 
the causal description of how the function 
is implemented. (The “functional role” we 
mentioned earlier is actually a fourth ele- 
ment of a function description; we de- 
scribe i t  in the article.) 

In functional modeling, behaviors imple- 
ment abstractly stated functions. Behaviors 
are directed graph structures in which the 
start nodes test the device’s state variables, 
and the other nodes describe changes in 
state variables. Behaviors resemble frag- 
ments of causal nets: Each fragment carries 
( i n  its start nodes) predicates that indicate 
when the fragment is applicable, but the 
edges of the directed graph.are annotated 
and point to an elaboration of why each 
node transition takes place. These annota- 
tions are either pointers to “world knowl- 
edge” or to other parts of the functional de- 
scription itself (lower level functions or 
behaviors). 

Once we have constructed a functional 
representation, we can understand a device’s 
functionality by following a chain through 
lower and lower levels of subdevices: 

device=> function => behavior 
=> wbdevice => function => behavior ... 

However, we might not have to follow this 
path to the very lowest levels if we find a 
level where a particular functionality of 
some underlying subdevice can be “as- 
sumed true.” This ability to probe only as 
far as needed follows directly from the 
modularity of representation. (Functional 
descriptions are naturally modular: A suh- 

approach would let it scale to larger do- 
mains with few changes to the device repre- 
sentation or reasoning techniques, but we 
needed to tect that claim empirically We 
have also argued that the basic issues of 
device representation and reasoning cut 
across various types of domains, but we 
again needed a practical test to substantiate 
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device can be replaced by a totally different 
subdevice that accomplishes the same func- 
tions.) Put another way, there is a implicit 
natural “layering of understanding” from 
the most abstract levels of device descrip- 
tion to the most detailed. 

Overall, functional modeling compre- 
hends complex devices using a twofold di- 
vide-and-conquer strategy: It decomposes 
devices into subdevices, and causal knowl- 
edge into behaviors that are indexed by ab- 
stractly stated functions. The representa- 
tional aspects of functional modeling 
parallel those of the work of Sembugamoor- 
thy and Chandrasekaran,’ but the computa- 
tional goals differ. We use our representa- 
tions to find the consequences of a 
particular set of boundary conditions. This 
amounts to building a full state-change dia- 
gram (a specialized causal net) from the 
fragments that exist in the behaviors of the 
functional representation. There is symme- 
try between the foundation of our represen- 
tational viewpoint (decomposition to handle 
complexity) and the core of our computa- 
tional process (composition tailored to a 
particular context). 

works as follows: 
The algorithm for finding consequences 

( 1 ) Speorc!fv the inirial condirions. The device 
variables have “default values,” so only 
variable bindings that are not the de- 
vice’s normal state need to be set. Like- 
wise, only missing functions or altered 
functions need to be explicitly input. 

hnviors. Once the initial conditions are 
specified, they can be used to index be- 
haviors and functions that would be ap- 
plicable under those conditions. Redun- 
dant functions/behaviors are first 
“filtered” out; for example, if functions 
F,, and F ,  have the same Provided 
clause (the same precondition), and F,, 
contains a knowledge pointer to Fh, 
then we should filter out F),. The filter- 
ing leaves us with the “invocable func- 
tions/behaviors.” If there are no invo- 
cable functions/behaviors, the 
functional reasoner halts. 

( 3 )  Starring with the imvccrhle funcrions/ 
hehcniors, comtrucr U new state- 
chtrnge gruph .structiire,for the current 
sirunrion. Each node in this structure - 
which is called a ptrrricularixd State 

( 2 )  Determine the srarting .functions/be- 

the claim. Our representation of the F/A-l8 
fuel system currently includes 89 compo- 
nent devices, 92 functions, I18 behaviors, 
and 181 state variables. Although still not 
overwhelmingly large, the system is an or- 
der of magnitude more complex than any 
system yet represented functionally. 

Although a library of standard parts can 

diagram (PSD) - is a partial state de- 
scription that points to a variable of the 
device and a statement about how that 
variable is altered. The PSD is con- 
structed by traversing each applicable 
behavior: 

When at a partial state, put a corre- 
sponding node into the PSD to 
mark a partial state change, and up- 
date the associated state variable 
database accordingly. 
When at an annotation that cannot 
be decomposed, remember that suc- 
ceeding partial states assume what- 
ever the annotation points to but 
make no changes in the PSD that is 
being built. 
When at a decomposable annotation 
(that is, another function or behav- 
ior), remember that succeeding partial 
states assume the functionhehavior 
pointed to, and expand the function/ 
behavior pointed to whenever possi- 
ble, Todetermine whetheragiven 
functionhehavior can be expanded, 
checkits starting predicates. 

(4) Conrinue e-rpanding rhe annotation 
l inks until there are no more decom- 
posable l inks.  

In other words, a PSD is built by follow- 
ing all decomposable annotations that were 
in the starting behaviors and expanding 
them recursively until what is left is a PSD 
with only partial state transitions. Each 
node in the PSD contains knowledge of the 
state variable it alters and the nature of the 
alteration, In addition, each node contains a 
listing of the assumptions under which this 
state change takes place. Once the PSD has 
been constructed, i t  is easy to determine 
what the effect on the device will be by tra- 
versing the PSD and noting cumulative 
changes in  the device’s state description 
variables. 

Reference 
I ,  V. Sembugamoorthy and B. Chandrasek- 

arm, “Functional Representation of De- 
vices andCompilationof Diagnostic Prob- 
lem-Solving Systems,” in Experience, 
Memory, and Lenrning, J .  Kolodner and 
C. Reisbeck, eds., Lawrence Erlbaum 
Associates, Hillsdale, N.J., 1986. 



of the functional repertoire. Also, our ex- 
perience acquiring knowledge for this model 
(by reverse engineering from a technical 
manual) indicates that a functional approach 
provides a strong backbone for reverse 
engineering. 

Knowledge acquisition 

W e  obtained most of the project’s de- 
tailed knowledge from a technical manual 
of the F/A- 18 fuel system, containing sche- 
matics of the fuel system and information 
about the operation of components. How- 
ever, the manual included no direct infor- 
mation about the intended engineering use 
of the various components or  subsystems. 
W e  gathered this information in three 
phases. We first obtained a top-level under- 
standing of the fuel system in several inter- 
views with McDonnell Douglas engineers. 
This phase was relatively short (about three 
weeks). We then used this understanding 
of the system’s intended purpose as a start- 
ing place for reverse engineering a full 
functional model from the technical manu- 
al. Our top-level understanding of the en- 
tire system helped us organize our causal 
understanding of the components at the 
next lower level, which in turn guided the 
development of deeper and deeper levels 
of understanding. This recursive process 
continued until we  reached the system’s 
most detailed level. This part of the project 
took about two years, far more than any 
other (the researcher responsible for this 
task was a graduate student at the time: 
less time would likely be needed in an 
industrial setting). 

Finally, we  informally tested the com- 
pleted model to see if the model properly 
captured system redundancies that are in- 
herent in the actual fuel system and to see 
if McDonnell Douglas engineers found the 
functional approach promising for engi- 
neering modeling. W e  obtained positive 
results on both counts, and we based our 
final changes in the model on feedback 
from the engineers. 

The difficulty of the reverse engineering 
phase illustrates why a description of a 
device’s purpose or goal is an important 
part of its representation. Design engineers 
usually design physical artifacts to accom- 
plish a specified set of requirements. Re- 
verse engineering, on  the other  hand, 
involves developing a sufficient understand- 
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I 
Figure 1. Top-level components of the F/A-18 fuel system. 

7 9  Right engine 

Tank 3 

Left wing 

flow p u m p  

Left engine 

Figure 2. The F/A-18 fuel system. 

ing of how an existing artifact “works” to, selecting from those possible behaviors ’ 
for example, redesign it to altered specifi- 
cations. The central goal is to determine 
how the original engineer intended the de- 
vice to function. 

But most artifact descriptions are simi- 
lar to blueprints, which represent the arti- 
fact’s physical structure but not the func- 
tion or  purpose of its subsystems. In 
principle, such blueprint representations 
contain all the knowledge necessary to 
understand how the artifact works, but as- 
similating that knowledge typically involves 
assigning purpose to the subsystems based - _ _  - 
on their structure. This very formidable 

the small subset of behaviors intended by 
the original design engineer. W e  can avoid 
this task, though, if we  include a descrip- 
tion of purposes or  goals from the start. 
Thus, it should not be surprising that func- 
tional techniques form a natural template 
for reverse engineering. 

1 
1 ’ 
1 
~ 

I 

The F/A-l8 fuel system 
, 
I 

We decomposed the FIA-18 fuel system 
into the 13 major subsystems shown in 
Figure 1 ,  concentrating on two that contain i 

task requires determining large-scale be- 
havior from structure and small-scale com- 
ponent behavior (qualitative physics), and ’ the motive-flow system. 

about 70 percent of the system’s compo- 
nents: the internal fuel-transfer system and 

1 

I 
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f rom-Tan kl 

f rom-left-wing 
Internal fuel-transfer system - TransferfuelToFeedTanks twm-Tank4 1 -€ from-right-wing 

to-Tank2 -c to-Tank3 I 
1 Fuselage fuel-transfer system - TransferWiaTransferLines 

Figure 3. Device-function-behavior for a portion of the fuel system. 

The internal fuel-transfer system includes 
a fuselage fuel-transfer system and a wing 
fuel-transfer system. Its top-level goal is to 
deliver fuel from four transfer tanks (the 
two wing tanks and Tanks 1 a n d 4  in Figure 
2 )  to two engine feed tanks (Tanks 2 and 3). 
The fuselage fuel-transfer system punips 
enough fuel from either transfer tank to 
either feed tank to ensure that the feed 
tanks are always full. The wing fuel-trans- 
fer system pumps fuel from the right wing 
tank to Tank 3. and from the left wing to 
Tank 2 .  

An engine fuel-supply system then moves 
the fuel from the feed tanks to the engines. 
This system is powered by two motive- 
f l o w h o s t  pumps, which basically use the 
fuel as a hydraulic fluid. Tank 2 and the left 

1 -  - - -. - --  

Using behavior: , 
control motive flow 
pressure to Tank3 
transfer shutoff 1 valve 

_ - - I - -  

motive flow pressure at inlet side of 
Tank3 shutoff valve produced 

- r -  - - - -  

I Using behavior 
’ enable fuel transfer , to Tank3 transfer 

shutoff valve 

~ - T a n k Y t r a i s f e r  shutoff 71 
valve opened I 

i - ~ _ _ ~  r--d 
By definition of: ’ 
transfer shutoff 
valve I 

I ’ -Fueltransfer t z e d t a n k  enabled- I 
I i __ - -~ -~ 

I 2 

Figure 5. A behavior: to-Tank3. 

moti\.e-flou pump supplj, fuel to the left 
engine: Tank 3 and the right pump supply 
fuel to the right engine. The motive-flow 
pumps also power the engine fuel turbine 
pumps. the fuel dump system. and internal 
fue 1 trans fer. 

Let‘s look at part of the representation of 
the internal fuel-transfer system. Figure 3 
indicates its function (expanded in Figure 
1) and the behaviors that implement it,  plus 
the function and beha\ i o n  for the fuselage 
fuel-tran\fer system. Figure S shows the 
to-Tank3 beha\ ior that enables fuel tranq- 
fer to Tank 3: the annotation on the first 
link points to another behavior (shown i n  
Figure 61 that we  can examine i f  we want 
more information about this link. 

Figure 6 show\ how ;I functional repre- 

to-Tank3 

4. A high-level function. 

sentation can “bottom out” when a causal 
transition need not be explained further for 
the reasoning task. The annotations all point 
to world knowledge about incompressible 
fluids rather than to deeper parts of the 
representation. The behavior basically states 
that four points in the fuel system are con- 
nected. We could have used more detail to 
explain the causality (fuel can be treated as 
an incompressible fluid, so when an up- 
stream point has pressure, connected down- 
stream points also have pressure), but for 
our purposes it was sufficient to refer to our 
store of world knowledge. 

Reasoning about the internal fuel- 
transfer system. Now let’s step through 
the algorithm we outlined in the sidebar. 

1 __-. ----/ L__----____- 1 
motive flow pressure at Tank3 1 motive flow pressure at inlet 1 ’ 

I fuel level sensor transducer 
~ ~ ~-~~ ~ ~ ~ - 

L 
F w e  6. A behavior: control motive flow press= Tank3 transfer shutoff valve. 
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1 Tank3 transfer shutoff valve opened i 

I I right motive flow at tube restrictor 
side of Tank3 wash filter present? 

Fuel transfer to feed tank enabled 1 

Figure 7. Coarse grain view of a 
particularized state diagram. 

right motive flow at tube restrictor 
side of Tank3 wash filter present? 

motive flow pressure at inlet side 
of Tank3 shutoff valve produced 1 

I L--- I 

Figure 8. The particularized state diagram 
after one round of expansion. 

First, we’ll specify the initial condition a s  
the presence of right motive-flow fuel at 
the tube restrictor side of the Tank 3 wash 
filter. Then we determine the applicable 
functions or behaviors based on this condi- 
tion; in this case the function in Figure 4 
applies. 

Next, we  build a particularized state di- 
agram: Starting from the high-level func- 
tions (or behaviors) just identified, we  use 
the link annotations to index lower level 
functions and behaviors whose precondi- 
tions are met. Those functions and behav- 
iors whose predicates are true are expand- 
ed and “spliced” into the place originally 
held by their links in a process similar to 
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nk3 transfer shutoff v 

1 Fuel transfer to feed tank enabled 
/.___.___-- - 

Figure 9. The most detailed view of the particularized state diagram. 

macro expansion techniques in software 
languages. The process is recursively ap- 
plied until no more decomposable links 
remain (until there are no more links point- 
ing to behaviors or functions). 

At the highest level, we would see a 
simple causal net-like structure, as in Fig- 
ure 7. After the first iteration, the behavior 
in Figure 5 would be “spliced’ into the 
diagram (see Figure 8). After another round, 
the behavior in Figure 6 would be added, 
yielding the final, detailed diagram in Fig- 
ure 9. (The behavior in Figure 5 had two 
other annotations that we  did not discuss: 
the fact that they would also add to this 
diagram is acknowledged by the dots near 
the bottom of Figure 9 acknowledge that.) 

Once we have produced a complete par- 
ticularized state diagram, it is straightfor- 
ward to determine the cumulative effects 
(the consequences) of the initial conditions 
by traversing the graph structure and keep- 
ing a running tally of all changes made to 
state variables. The cumulative effects are 
then read from this “tally sheet.” 

The standard library 

One of the most tedious and error-prone 
aspects of design is the need to copy the 
same type of component many times. W e  
have developed a device library for the F/ 
A- 18 fuel system, similar to the standard 
parts libraries in most CAD systems. The  
library uses a type hierarchy that supports 
inheritance for modeling lower level ob- 
jects (see Figure IO) .  For example, the fuel 
system has more than 90 different valves, 
each of which inherits functions for en- 
abling and disabling flow from the device 
Valve. But for each type of valve we can 
specify behaviors that determine how those 
functions are carried out. 

The library is straightforward to imple- 
ment, but properly “connecting” a stan- 
dard part with the rest of the model is not so 
straightforward. There are two types of 

1 connections in a functional model: The 
1 standard part’s state variables must be 

mapped into the overall model, and any 

.~ 
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esting than the previous two. W e  have so ’ Model selection is the most interesting 
far thought of devices as being made up of ’ of the three issues and the hardest to pin 
components. functions, and behaviors. In- i down, partly because it is a multidimen- 
dividual functions are context dependent , sional task. Along one dimension, we  must 

I 1 because of their preconditions. W e  have select the level at which we want to repre- 

1 recently developed the notion 0f the“func-  sent our model. As Davis points out, no 

1 ’ tional role.” which lets us group multiple 1 model is complete. But functional model- 
functions within a device and determine a ing lets us point to “world knowledge” as 
group’s applicability depending on the ’ the reason for a given state-variable transi- 
context. So. for example, if a hydraulic ~ tion (in a behavior), thereby letting us con- 
system has a thermal ballast, we could I struct models that “bottom out” at whatev- 
represent i t  as having one set of functions i er level is appropriate. W e  determine the 
that stabilize the system temperature, while ~ appropriate level by evaluating whether 

physical connections (pipes. in our case) a second set stores hydraulic fluid. The ~ the world knowledge can be treated a s  a 
must be properly attached from the stan- I functional role is a natural extension of ~ monolithic entity for purposes of the cur- 
dard part to the overall model. Our initial , functional modeling that provides an addi- l rent model. 
solution to both problems relies on the tional and higher level indexing capability We shoulddetermine whichtypeofmodel 
system’s user to make the necessary con- to causal understanding of a device. ~ to construct based on whether its represen- 
nections. W e  rely on the computer system We plan to fully elaborate the standard 1 tational primitives can express ou r  device 
only for bookkeeping functions. library facility to implement functional I knowledge and whether the output of its 

W e  initially developed the library fa- roles. W e  have experimented with func- ~ reasoning matches our needs. This might 
cility to help developers build functional tional roles as a CAD aid for building seem self-evident, but for the most part, 
models more quickly. However,  we  have functional models and as a constraint on ~ model-based reasoning has not dealt ex- 
since noted a strong potential synergism the choice of particular types of devices. 1 plicitly with these issues in these terms. 
between our  library utility and research However, wehave  yet todevelop function- , One of the strongest arguments for the 
reported by Nayak, Addanki,  and Jos- a1 roles as a way of organizing alternative functional approach is the relative clarity 
cowicz.’” They suggest representing the groups of behaviors in a device and select- I of statement of its representational primi- 
primitive behaviors of high-level models ing among these groups at runtime. We I tives and reasoning methods. 
in a context-dependent manner as a way intend to accomplish both as a final exten- 
to automatically select appropriate mod- sion toour  work on theF/A-I  8 fuel system. 
els. Our  functional-modeling framework. We have also started to examine how a 
especially the standard library, extends functional representation could directly 
this notion by allowing selection of func- support troubleshooting, specifically in the ’ 
t ional  components  based on  context-  external thermal control system of Space 1 
dependent information. Station Freedom. I 

A modeler could use the standard library 
as a static repository of parts. For example. 
when describing a portion of the fuel sys- 

tiate a “relief value.” This approach does 
not require a hierarchical organization ex- 
cept to help the user to find the appropriate 
subdevice more quickly. A user could also 
use the library to automatically choose the 
appropriate device based on constraints 
imposed by the functional requirements. 
This situation would use a hierarchical 
organization but would not require any 
new epistemic analysis; the objects under 
the subdevice Valve are simply types of 

Finally. a user could select Valve with- 
out thecurrent functional constraints being 
strong enough to force the selection of a 
single type of valve. During simulation, 
however, the need for a given group of 
functions might become strong enough to 
force achoice.  This situation is more inter- 

Figure lo* A portion Of the standard parts 
library for the F/A-18 fuel system. 

tem model, the user could directly instan- I Acknowledgments 
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