
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1990

HIGHLAND: A Graph-Based Parallel Processing Environment for HIGHLAND: A Graph-Based Parallel Processing Environment for

Heterogeneous Local Area Networks Heterogeneous Local Area Networks

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Douglas E. Meyer

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
R. W. Wilkerson and D. E. Meyer, "HIGHLAND: A Graph-Based Parallel Processing Environment for
Heterogeneous Local Area Networks," Proceedings of the Fifth Distributed Memory Computing
Conference, 1990, Institute of Electrical and Electronics Engineers (IEEE), Jan 1990.
The definitive version is available at https://doi.org/10.1109/DMCC.1990.556277

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229137418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/DMCC.1990.556277
mailto:scholarsmine@mst.edu

HIGHLAND: A Graph-based Parallel Processing Environment
for Heterogeneous Local Area Networks

Douglas E. Meyer
Ralph W. Wilkerson

Department of Computer Science
University of Missouri - Rolla

Rolla, MO 65401

Abstract
HIGHLAND, a distributed-memory parallel

processing environment for heterogeneous local area
networks, has been designed and implemented. De-
signed as both a teaching and a research tool, its pur-
pose is to provide an effective mechanism by which a
number of networked UNIX* workstations, dissimi-
lar in both vendor and performance, can be directly
manipulated as a single, unified, multiprocessing sys-
tem. Utilizing the MIT X-Windows environment,
HIGHLAND supports a highly interactive graphical
interface through which a programmer can create,
modify, and control complex systems of communi-
cating processes. The speed and simplicity of this in-
terface promotes both rapid prototyping and
experimentation with the structure of the concur-
rent applications.

1. Introduction
Before the potential of parallel processing sys-

tems can be effectively utilized by the general pro-
gramming community, a substantial retraining
effort must first be undertaken. Considering the de-
gree to which sequential architectures have become
imbedded in our programming mindset, the task is
not one which will be accomplished easily or over-
night. The only hope of success is through a suuc-
tured educational program which stresses the ideas,
constructs, and theoretical foundations of parallel
processing.

Studies have shown that the degree of success ob-
tained in teaching programming is greatly influenced
by the amount of hands-on exposure granted to the
student. Unfortunately, such readily available expo-
sure to parallel processing facilities is currently non-
existent. In an attempt to address this problem, the
HIGHLAND system has been developed. Its purpose
is to provide an accessible mechanism with which in-
dividuals who do not have convenient access to more
orthodox systems can be introduced to the field of
parallel processing. It accomplishes this goal by al-
lowing a number of networked UNIX workstations,
dissimilar in both vendor and performance, to be di-

* UNaC is a registered trademark of AT&T.

rectly manipulated as a single, unified, multiprocess-
ing environment. Its use of common communication
paradigms and a graphical interface make it easy to
use, highly interactive, and an ideal learning tool.

2. Previous Works
Due to editorial restrictions, a complete discus-

sion of the previous works upon which HIGHLAND
is based is not possible. A listing of the more perti-
nent papers, however, is provided in the bibliogra-

3. Svstem Structure
HIGHLAND is modeled after the distributed

memory parallel processing model. The user is pre-
sented with a number of processing elements which
are interconnected and consequently have the ability
to exchange information via a set of system-supplied
YO functions. As one would expect in such an envi-
ronment, parallel applications are constructed as a
set of concurrently executable modules and down-
loaded onto some number of processing elements.
Communication requirements between the processes
are subsequently identified and established prior to
the actual execution of the system. From this point
of view, HIGHLAND appears to offer nothing new
or unique, and indeed, at this level of abstraction
that is exactiy what was desired: a functionally ge-
neric distributed memory parallel processing envi-
ronment. What makes this particular system unique
is the way in which this environment is implement-
ed and the style of interaction it offers the user.

HIGHLAND simulates both the components
and the functionality of a generic distributed memo-
ry multiprocessing system using only the computa-
tional resources of a local area network. Processing
elements, which are allocated and used to execute
the component processes of a given application, are
in fact a set of UNIX workstations. Due to the abil-
ity of the system’s communication software to
shield the user from various machine incompatibili-
ties, these workstations are allowed to vary in both
vendor and capability, In its current release, HIGH-
LAND supports a wide range of hardware plat-
forms, including systems from such vendors as Sun

phy.

Microsystems, Hewlett-Packard, Digital Equipment
Corporation, Apollo, and IBM. For implementation
of the interprocessor communication facility, the
standard UNIX socket interface was chosen. Sup-
ported by the T C P P suite of network protocols
and running over a standard 10 MB/second Ethernet,
this transport mechanism not only offers a high de-
gree of availability, but has also shown itself to be
adequate to support larger-grain parallelism.

4. InterDrocess Communication
At the program level, each user-written process

is supplied by HIGHLAND with a single input port
and a single output port to act as the endpoints for
communication between itself and the other modules
of a given application. From the module’s perspec-
tive, these ports exhibit several noteworthy charac-
teristics. First, they are strictly serial in nature,
supporting no type of direct or look-ahead access.
The ports are also directional, with only read opera-
tions being permitted on the standard input and only
write operations being permitted on the standard
output. Perhaps the most restrictive of the ports’
characteristics, however, is that fact that they repre-
sent the sole mechanism by which data can enter or
leave the associated process. For those who have
grown accustomed to utilizing multiple input and
output sources when constructing an application,
this may appear to severely limit the utility of
HIGHLAND’S communication facilities, but such is
not the case. As will be shown in a later section,
this restriction is eliminated through the use of dedi-
cated system utility processes for the implementa-
tion of more complicated data routing schemes.

The simple observations and characteristics speci-
fied above encompass the extent of a module’s im-
plicit knowledge of its 1/0 ports. No information is
given regarding the source of the data the process is
reading from its standard input, nor is any given
specifying the destination of the data being written
onto the standard output. Within HIGHLAND, the
binding between the application’s component mod-
ules, which is necessary in order to make such a de-
termination, does not take place until the time of
execution. The major advantage to this separation of
process code and system configuration details is that
it allows the information to be specified instead in a
format more convenient than conventional text. As
will be seen, this method is via the system’s interac-
tive graphical display.

5. Svstem I/O Functions
In conjunction with the standard input and out-

put ports, HIGHLAND also supplies a pair of sys-
tem-supported communication routines through
which processes can interact with them. These rou-
tines are the hread function, which allows a process
to gather data from its standard input, and the

User Process

hread / hwrite

hwrite function, which is used for writing data onto
the standard output. Unlike some message-passing
environments which supply only untyped byte trans-
fer functions, HIGHLAND’S VO functions require
messages to be both strongly and fully typed. Com-
mon scalar data types such as character, short and
long integer values, as well as single and double pre-
cision floating point numbers are all supported and
valid for use in the construction of interprocess mes-
sages.

In addition to supporting the transfer of messag-
es containing one or more occurrences of a single da-
ta type, such as a string of integers or an array of
floating point values, HIGHLAND also allows the
construction of messages containing a composition
of several distinct types. In much that same way
that the C language’s “struct” construct allows the
collection of a set of disjoint variables for subse-
quent manipulation as a unit, HIGHLAND’S system
VO routines offer a similar capability for message
specification. By implementing its own type of
structure data type, a straightforward method is of-
fered by which any number of fields can be specified
within a message while maintaining the strongly
typed nature of messages of a simpler, singular type.

6. Data Translation Facilities
Since HIGHLAND was intended to operate by

default in a heterogeneous workstation environment,
a major concem in the design of the system’s commu-
nications facilities was the automatic conversion of
the various data types between machines. To accom-
plish this, the system-supported I/O facilities were
augmented with an integrated set of data conversion
routines. On output operations these routines auto-
matically take care of interpreting the type of each
value passed, a straightforward task thanks to the
strongly typed nature of the message structures, and
converting the data into a system independent or net-
work data format prior to transmission. On the re-
ceiving end, corresponding utilities handle the
conversion from the network format back into the
local, host-specific form. The logical relationship
between these elements is depicted in Figure 1.

Host-Spaific

4
Format

X3J11/80-090 X3J11/80-090 I I E E T 1 Folat I IEEE-754 , I Translation Network D~~ Translahon

I I
Network Transport Facilities

~~ ~~

Figure 1. Integrated data translation facilities

743

Since the data translation routines would inflict
additional overhead onto the communication process,
it was strongly desirable to choose a network data
format that closely reflected the most common of
the various system-dependent data formats. By doing
so, the effort expended in the data conversion pro-
cess would be minimized for a majority of the sys-
tems used. Basing the final decision on the particular
set of systems used for HIGHLAND’S development,
a data specification was established which in actuali-
ty is a combination of a pair of existing format stan-
dards. For the encoding of integer values, the Sun
Microsystem’s data representation was selected.
This standard, which is formally based off of the
ANSI X3J1 l/SO-OW, C language implementation
standard, supports the representation of both 16-
and 32-bit, signed and unsigned integer values. For
representing floating point values, the IEEE-754
standard was chosen. This format provides a normal-
ized structure for both 32-bit single precision and
64-bit double precision real values. When combined,
these two standards form a comprehensive, well-es-
tablished format for each HIGHLAND-supported
data type.

7. Svstem Utilities
By providing each component user process of an

application with but a single input and output port,
the degree of parallelism which can be achieved by
the system as a whole is severely limited. At best
these simple tools would allow the creation of a
pipeline or a loop of concurrently-executing process-
es. While being extremely useful in their own right
and providing sufficient process interaction to solve
a number of different types of problems, these two
constructs are just not applicable to all situations.
In spite of the simplified interface which the scheme
offers, it is obvious that a more sophisticated mecha-
nism must be supplied and supported by HIGH-
LAND for the interconnection of processes and the
routing of data between them. With no desire to in-

crease the complexity of the program-level commu-
nication interface while doing so, it was decided that
the best way of offering this increased functionality
was to remove the more complex communication
tasks from the application processes altogether and
assign them instead to a set of external, system-sup-
plied utility processes.

HIGHLAND’S system utilities are not to be
confused with the user processes discussed up to this
point. User processes are those which are written by
the programmer and comprised mainly of applica-
tion-specific code. System utilities on the other hand
are supplied in a ready-to-execute form and are avail-
able for use with little or no coding effort on the
part of the programmer. Each utility is designed to
support a specific type of routing function ranging
from the very simple, such as replication and merg-
ing of data streams, to more complex functions such
as automatic and program-controlled data routing.
In addition, depending on the particular function im-
plemented, each utility can maintain several input
and output ports. This allows not only the off-load-
ing of the routing logic from the user processes, but
also permits the creation of communication net-
works of arbitrary branching factors, both fan-in
and fan-out.

In addition to the savings in programmer effort
gained by the centralization of these functions, an-
other benefit is obtained. By removing these tasks
both logically and physically from the component
processes, the user is able to modify the data routing
scheme of a parallel system at run time by merely
replacing individual data routing nodes. Moreover,
due to the absence of configuration information
within the user code, these modifications can take
place without modifying or recompiling the attached
component processes.

In attempting to give a general description of
the various system utilities, it would be useful to

Utility Name I Inputs I Outputs I Description
~~

Dumps the incoming message stream into a specified file.

I I Buffer I 1 I 1 I FIFO message queue.

Figure 2. Autonomous utilities.

744

Utility Name

Multiplexor

Demultiplexor

Inputs Outputs Control Description

2 or 4 1 Downstream Process-controlled selection of multiple inputs.

1 2 or 4 Upstream Process-controlled selection of multiple oumuts.

be able to group them based on some discerning char-
acteristic or function. Perhaps the most useful
scheme for such a categorization is by the level of
autonomy they exhibit over their own execution.
When segregated in this way, two distinct classes of
utilities can be identified. The first group, the sim-
pler of the two, are known as autonomous utilities.
A brief synopsis of the members of this category is
given in Figure 2. As implied by the name, these
utilities perform functions which are sufficiently
specific and self-contained so as to require no con-
trolling intervention by the attached processes. Once
execution begins, the only operational requirement
is a set of one or more locations from which the
utility can retrieve its data, and a set of one or more
destinations to which the data can subsequently be
sent.

The second category of utilities are termed exrer-
nally-controlled utilities. Members of this class, de-
scriptions of which are given in Figure 3, are not
nearly as self-sufficient as those of the previous
group. Their functions are such that they require
some degree of control be exercised over them by an
immediately connected user process. Depending upon
the nature of the utility, the controlling process
may be situated either upstream or downstream
from the utility. Since no direct, code-level link ex-
ists between them, any necessary controls are enact-
ed by the transmission of special message types. To
lessen the impact on the code of the user process,
these special messages are created indirectly through
calls made to built-in system functions dedicated to
each type of extemally-controlled utility.

8. Run-Time Environment
As shown in Figure 4, the run-time environ-

ment provided by HIGHLAND for the specification
and execution of parallel applications is comprised
of two distinct components. First, on each of the
UNIX systems which will be utilized as a compute
node, an HServer daemon must exist. These process-
es play the role of minions, permitting a certain
amount of control to be exercised remotely over
their respective host systems. While such facilities
could constitute a source of potential security prob-
lems, care has been taken to ensure that the function-
ality of these processes is limited to only that
required for the support of HIGHLAND. In addi-

I Ask-for

tion, the operation of each HServer takes place using
only normal user authorizations and permissions; no
system or "root" level privileges are necessary.
While not providing complete security, these two
simple measufes sufficiently limit the degree of po-
tential damage which could be maliciously inflicted
on a system.

Acting not only as the controller for the dis-
tributed HServer daemons, but as the primary user
interface as well, HIGHLAND'S graphical control
environment constitutes the second major component
of the run-time system. This process executes on the
user's local machine and acts as the driving force be-
hind a HIGHLAND session. From the user's perspec-
tive, it is this controller that creates and maintains
the system's graphical display. It manages all perti-
nent aspects of man-machine interaction and ensures
that the information shown is an accurate depiction
of the current state of the application. From an over-
all system perspective, it is the controller that sup-
ports the illusion of a unified computing
environment. It and it alone holds the knowledge of
the machine dependent aspects of the underlying
hardware. With this knowledge, it exercises the nec-
essary controls over all the utilized workstations to
create the illusion of a single, homogeneous multi-
processing system.

I

1 2 or 4 Upstream Demand-driven routing of outgoing messages.

Graphical
Control

Control Host

I Slave Host

daemon

I

1-1
Slave Host

I
Figure 4. HIGHLAND run-time structure.

745

Figure 5. HIGHLAND’S graphical control environment

9. ADDliCatiOn SDecification and Execution
Once an application has been designed and coded

using a combination of user-written programs, sys-
tem utilities, and system-supplied I/O and control
functions, its formal specification to the HIGH-
LAND run-time environment can begin. Using the
system’s graphical interface (depicted in Figure 5)
and guided by a series of pull-down menus, the user
progresses through four distinct steps leading up to
the application’s execution.

SteD 1: Process Load
In step one, the individual utility and user pro-

cesses which will comprise the application are select-
ed for execution. Since they exist as an integral part
of the system, the selection of utility processes is
straightforward. Providing the user with a complete
listing of all such available processes, the menuing
system allows any desired utility to be specified us-
ing only the mouse. Once selected, an iconic represen-
tation of the utility is created on HIGHLAND’S
graphical display through which all subsequent inter-
action will take place.

Due to the potential heterogeneity of the under-
lying hardware, user processes are introduced to
HIGHLAND in source code form. In the current im-
plementation, due mainly to the high degree of stan-
dardization it offers, only programs written in the
C programming language are supported. Using the
provided menu options which allow the traversal of
the UNIX directory structure, the user is presented
with listings of files eligible for loading into the
system. From these lists, he or she may select de-

sired processes with a click of the mouse. Once speci-
fication is complete, the process is placed onto
HIGHLAND’S display in icon form. All subsequent
interaction with the user process will take place
only through this icon.

Step 2: Link Ssecification
In step two, the user is requested to specify the

data communication links he or she wishes HIGH-
LAND to establish between the currently loaded
processes. Keeping in line with the desire to make
the user interface as friendly and interactive as possi-
ble, this information is specified using only the
mouse and the iconic representation of the compo-
nent processes. The user repetitively selects pairs of
process icons, in source process/destination process
order, whenever a communication link is to be estab-
lished between them. Then, referencing its own in-
&mal database, the system determines the validity
of each requested link and provides instant feedback
as to the outcome of the check. If the link was not a
valid one, such as trying to connect a process which
has no available ports, text windows are displayed
explaining the cause of the request’s rejection. If the
requested link was valid, HIGHLAND immediately
updates the display to reflect the instantiation of
the new link.

SteD 3: Parallel ComDilation
In the third step the user processes, which have

been loaded into HIGHLAND in source form, are
readied for execution. For each, the associated source
files are downloaded to the HServer daemons of
their assigned hosts for remote compilation. The

746

compilations take place in parallel, with the compi-
lation of all individual source files being initiated
prior to any attempt being made to retrieve the exe-
cutables. By doing so, the time required for the com-
pilation of the entire parallel system is only
contingent upon the longest compile time of any
component user process. At the end of these parallel
compiles, as is the case in any compilation, there are
two possible outcomes. If either syntactic or linkage
errors are discovered, a log of the errors is returned
for use in subsequent debugging. If the compilation
completes successfully, the executable version of
the process is retumed to the controlling host where
it is stored until the time of execution.

Step 4: Execution and Control
In the fourth and final step, the parallel applica-

tion is initiated. In what, from the system level, is
by far the most complicated of the four steps,
HIGHLAND downloads the now executable process-
es to their target systems, automatically establishes
the specified communication links over the network
socket interface, and starts the execution of the sys-
tem. The details of this process, however, are hidden
entirely. From the user's perspective, outside of a
simple text window which describes the current
state of the start-up process, this phase appear no
more or less complex that those previously dis-
cussed.

Once execution of the parallel program has be-
gun, HIGHLAND'S graphical interface ceases being
a mechanism for constructing applications and be-
comes instead a means of controlling them. From
within the display, a number of powerful capabili-
ties are provided which allow the user to exercise
complete authority over the executing parallel sys-
tem. A real time display of remote workstation uti-
lizations is supplied, providing a method of gauging
the effective parallelism of the application over
time. At a more microscopic level, tools also exist
which allow individual link traffic to be measured
and monitored. Through their use it is possible to
pinpoint potential bottlenecks in the system's over-
all dataflow. When problems or inefficiencies such
as these are encountered, it is possible to abort indi-
vidual processes as well as cancel the execution of
the application entirely. This, however, is not to be
considered a loss of all work done up until this
point.

Due to the independence of the component pro-
cesses and the ability of the HIGHLAND system to
control them, it is possible to reconfigure around po-
tential problems without the need of starting the en-
tire construction process from scratch. Nodes can be
added, deleted, or reassigned to different host proces-
sors. Likewise, additional communication links can
be requested and existing links can be removed or re-

arranged. Upon the completion of any reconfigura-
tion, HIGHLAND ensures that only the minimal
amount of work is performed to get the overall sys-
tem back to an executable status. With such minimi-
zation, the overall cycle time between successive
configuration attempts is very small: a fact which
encourages experimentation with the structure of
the parallel application.

10. Conclusion
HIGHLAND has been successfully ported and

used across several types of workstations. Utilizing
these systems, a number of applications have been de-
veloped and several more are currently in progress.
Based on experiences gathered to date, commonly
available LAN resources have proven themselves sur-
ficient for the support of larger-grained parallel pro-
cessing applications. The future of the HIGHLAND
system looks very promising.

Bibliography
[ll Baily, M.L., Socha, D., and Notkin D.,

"Debugging Parallel Programs using Graphical
Views", Proceedings of the 1988 International
Conference on Parallel Processing, 1988, Vol.

[2] Boarder, J.C., "Graphical Programming for
Parallel Processing Systems", Proceedings of
the Second International Conference on
Distributed Computing Systems, 198 1, pp. 467-
475

[3] Geigel, T., and Pagan, M., "A Distributed
Application of the PHARROS Project",
Proceedings of the 1988 International
Conference on Parallel Processing, 1988, Vol.

[4] LeBlanc, R.J., and Robbins, A.D., "Event-
Driven Monitor of Distributed Programs",
Proceedings of the Sth International Conference
on Distributed Computing Systems, 1985, pp.

[5] Nadas, T., and Foumier, A., "GRAPE: An
Environment to Build Display Processes",
Computer Graphics, July 1987, Vol. 21, No. 4,

[6] Nichols, K.M., and Edmark, J.T., "Modeling
Multicomputer Systems with PARET", ZEEE
Computer, May 1988, Vol. 21, No. 5, pp. 39-48

[7] Snyder, L., "Parallel Programming and the
Poker Programming Environment", IEEE
Computer, July, 1984, Vol. 17, No. 7, pp. 27-36

[8] Stotts, P.D., "The PFG Language: Visual
Programming for Concurrent Computation",
Proceedings of the 1988 International
Conference on Parallel Processing, 1988, Vol.

2, pp. 46-49

2, pp. 110-113

515-522

pp. 75-83

2, pp. 72-79

747

	HIGHLAND: A Graph-Based Parallel Processing Environment for Heterogeneous Local Area Networks
	Recommended Citation

	HIGHLAND: A graph-based parallel processing environment for heterogeneous local area networks

