
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1997

User Defined Prewrites for Increasing Concurrency in Design User Defined Prewrites for Increasing Concurrency in Design

Databases Databases

Sanjay Kumar Madria
Missouri University of Science and Technology, madrias@mst.edu

A. Embong

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
S. K. Madria and A. Embong, "User Defined Prewrites for Increasing Concurrency in Design Databases,"
Proceedings of 1997 International Conference on Information, Communications and Signal Processing,
1997, Institute of Electrical and Electronics Engineers (IEEE), Jan 1997.
The definitive version is available at https://doi.org/10.1109/ICICS.1997.652091

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229137323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICICS.1997.652091
mailto:scholarsmine@mst.edu

International Conference on
Information, Communications and Signal Processing
ICICS '97
Singapore, 9-12 September 1997

261.4

User Defined Prewrites for Increasing Concurrency in Design
Databases

Sanjay Kumar Madria and Abdullah Embonig

School of Computer Sciences
University Sains Malaiysia

11800 Minden, Penang, Malaysia
skm@cs.usm.my, ae@cs.rusm.my

Abstract

In t h s paper, we introduce a prewrite operation
before a write operation is performed on design
databases, a database that consists of objects as
engmeering designs. A prewrite operation does
not actually make a design but it only makes
available the model of the design that the
transaction will produce in future. Once the
prewrite design by a transaction is announced,
the transaction executes a pre-commit operation.
After the pre-commit, read operations can access
the prewrite design even before the pre-
committed transaction has finally made the
design and committed. Therefore, our algorithm
increases the potential concurrency as compared
to the algorithms that permit only read and write
operations on the design objects. In our
algorithm, a user explicitly makes available a
prewrite model of the design to be finally
produced. Similarly, a read transaction also
mentions whether it wants to read a prewrite
version or the final version of the design.
Locking protocols using two phase locking are
given to control concurrent operations.

Keywords : Prewrite, design database, PIC-
commit, concurrency.

1. Introduction

In a database system, users make access to
database by executing read and write operations.
A read operation on a database object does not
conflict with another read operation since neither
of them modifies the data object. A write
operation on the otherhand conflicts with both
read and write operations. A concurrency control
algorithm [1,2,3,4] is needed to control
interleaving of conflicting operations that
otherwise violate the consistency of the database.

Many concunrency control protocols a~
based am the notion of locks [1,2,5,6,7] where a
data object in the database can be accessed only
after a llock on that object has been acquired for
the ducation of the read or writes. That is, a m d
(write) operation can be executed only after a
read(write)-lock is obtained. After acquiring the
locks, the transaction executes its operations and
then may release the locks. Since read operations
do not conflict, many read transactions may share
the read-lock on an object but sharing is not
permiteed if one of the lock is a write-lock. The
above model is more suitable for database
managc:"ent systems that support shortduration
transacitions that read a n d write data objects for a
short period of time. However, the longdudon
transactions [8,9,10,1 I] which mainly occurs in
engineering design [l l] or large sofhvare
development applicalions [lo], access large
volume of data objects. Therefore, in such cases,
the tmditional concwxncy control algorithms
based on above protocols suffer from performance
degradation. Due to isolation requirements cf
these pirotocols, the designs can not be released
for viewing until the transaction commits.
Therefore, once the transaction acquires a write-
lock on the design, the other transactions have to
wait. Thus, if a short-duration transaction wants
to access the design objects held by a long
transaction, it will end up waiting for the long-
lived transaction to commit. Also, if a
transaction is considered as a unit .of work, a
significant amount of work may be lost in case cf
a failwe. A read trans;action should not wait for
very long in order to access the database designs.
Therefore, it is desirable to make the response cf
a system fast for read-only transactions.
Furthermore, the system should not delay short-
duration transactions due to the presence of long
transacltions.

The transact~on models developed for
early database applicalions fall short of meeting

0-7803-3676-3/97/$10.00 Q 1997 IEEE

810

the requirements of these new transactions has
also been shown in [12,13]. Also, some of the
proposed algorithms [14,15] to manage long-
duration transactions do not rely on
serializability [1,2] and therefore, uses M e m t
correctness criterion.

In this paper, we present a new
transaction model using prewrite operations
[16,17,18] to increase co~hcurrency during
transaction processing in design databases.

2. Overview of Our Transaction
Model

We use a prewrite operation [16,17,18] before an
actual write operation is executed on design
objects to increase the potential concurrency. A
prewrite operation makes available the model cf
the design that the ob-ject will have after the
design is finally produced. A prewrite operation
does not make the design but only provides the
model or the picture of the design (including its
dimensions, colour combination etc.) a
transaction intends to make in future. Once the
prewrite design of a transaction is announced, the
associated transaction executes a pre-commit
operation. After the transaction has finally
produced the design (for which the prewrite
design has been announced), it commits. A read
transaction can read the prewrite design before the
pre-committed transaction has produced that
design. The prewrite design is made available for
reads after the associated transaction has executed
a pre-commit but before it has been committed.
Hence, prewrites increase concurrency as
compared to the environment where only read
and write operations are allowed on design
objects.

Once a transaction has announced a pre-
commit, it is not allowed to abort. This is due
to the following reasons. First, it will help in
avoiding cascading aborts [l] since the prewrite
design has been made available before the
transaction has finally produced the design and
committed. Second, it is desirable for a long-
duration transaction so that it does not lose all
the design work at finishing stage in case there is
an abort or a system failure. To accomplish this,
a pre-commit operation is executed only after all
the prewrite log records are stored on stable
storage. Once write operations start, each write
log is also stored on stable storage. Thus, in
case of a failure after pre-commit, there is no need
of executing rollback (undo) operations. The
recovery algorithm has to at the most redo those
operations (using the prewrite logs and the write
logs) whose effects are not there on stable

storage [1,16,17]. The failed transaction then
can restart from the state as exists at the time cf
failure [16]. If a transaction aborts before
executing all prewrite operations and a pre-
commit, it is rolled back by discarding all the
announced prewrites.

In engineering design applications
[8,19], by introducing prewrite designs, short-
duration transactions can access the model or
picture or the working copy of the design held by
a long transaction. Reads are allowed to access
the sketches once they are prewritten but before
they are actually made. Therefore, using
prewrites, one can have a system consisting cf
short and long transactions without causing
delay for short-duration transactions. Thus,
prewrites help in increasing the throughput of the
system by making the response of the system
faster for read-only operations. For read-only
transactions, the picture or the model of the
design to be produced is important rather then
the finally completed design. In the f d
production, the dimension or certain colour
combinations of the design may vary from the
prewrite version of the design, however, the read-
only transactions are not affected.

In our algorithm, the user transactions
explicitly mention a prewrite operation before an
actual write. Also, user transactions explicitly
mention whether it wants to access the prewrite
design (we call it pre-read operation) or the final
design (we call it read operation). That is, the
existence of a prewrite is visible to the
scheduler, data manager (DM) and to user
transactions. The user transaction submits
prewrite, pre-read, write and read for the design
objects it wants to access. Once a transaction is
submitted to the Data Manager (DM), the DM
analyses the received transaction. If the
transaction has a prewrite operation, the DM
will store the announced design for the object in
the prewrite-buffer. If the transaction has a pre-
read operation, the DM will return the
corresponrling prewrite design from the prewrite-
buffer. If the operation is a read, it returns the
final produced design from the write-buffer.

In our algorithm, two versions of the
same design may be available for reading. The
first version is the final design released for
manufacturing or the last design checked for
correctness. The other is the most recent working
copy of the design (prewrite design). However,
after the final version of the design is produced,
prewnte version of the design will be no longer
available. That is, after the final design is
released, a read transaction can not access its
prewrite design. Also, the independent writing
on these two different versions of design are also

811

not allowed. Therefore, our algorithm is different
from the multiversion algorithm [l]. In the
multi-version algorithm, versions are not visible
to users and versions can be read and written
independently.

We have used two phase locking
algorithm to control concurrent operations.

3. A nead and prewrite do not conflict as they
operate on different buffers; read operates on
write-biuffer whereas prewrite operates on the
pnwrite-buffer.

The folllowing is the conflict detection matrix :

3. Concurrency Control
Algorithm

In our concurrency control algorithm, we
assume that the users explicitly mention prewrite
designs in their transactions. Also, a read
transaction explicitly specifies whether it wants
to access the prewrite design or the final design.
That is, whether the read transaction wants to
access the working copy of the design to be
completed and produced later or it only wants to
access the final design to be released for
production. After the prewrite design is made, a
transaction executes a pre-commit operation.
After the correspondmg design is finally
produced, a transaction commits.

In order to design a concurrency control
protocol, we first analyse the conflicting and non-
conflicting operations in our model. The
following operations on the same design object
conflict :
1. Two prewrites conflict since two prewrite
design for the same object can not be announced
at the same time in the same prewrite-buffer. It
produces a prewrite-prewrite type of the conflict.
2. A prewrite operation conflicts with a pre-read
operation since pre-read returns the value from
the prewrite-buffer whereas prewrite changes the
contents of the prewrite-buffer. Therefore, it will
generate a conflict of the type pre-read and
prewrite.
3. Two writes conflict since both of them will
modify the same design object at the same time.
This will generate a write-write type of the
conflict.
4. A write operation conflicts with a read
operation since the read retums the value from
the write-buffer. and a write changes its contents.
Therefore, it will generate a conflict of the type
read and write.
The following operations, in general, do not
conflict :
1. A pre-read operation (to read a prewrite
design) and a write operation do not conflict. A
write operation operates on the writehEer
whereas a pre-read operates on the prewrite-buffer.
2. A prewrite and write conflict do not conflict as
prewrite and writes operate on their respective
buffers.

read
eo no

no

4. Labcking Protocols

Our concurrency control protocols are based on
two phase locking [1,2]. The protocols based on
locking delay the execution of conflicting
Operations by using read-locks for read and pre-
read operations, prewrite-lacks and write-locks
for prewrite and write operations, respectively.
Two plhase locking requires a transaction to
acquire all locks before releasing any locks. We
have the following locking rules in order to
control the concurrent operations such that two
conflicting operations should not get their locks
at the same time.
1. If a lprewrite-lock is held by a transaction, no
other tiransaction can acquire a prewrite-lock or
read-lock for pre-read (to read the p red te
value).
2. If a transaction acquired a write-lock, no other
transaction can acquine a write-lock, or a read-
lock for a read operation (to read the fitlal
design).
3. When a transaction holding a read-lock (either
to read a prewrite or write value), other
transadions can hold read-locks.
4. Once a transaction announces a preammit,
all its prewrite-locks are converted to write-locks.
5. If a transaction is holding a prewrite-lock,
other tiansaction can hold a write-lock as they
operates on different buffers. However, since a
prewrite-lock is never released but it is converted
to a write-lock. Thewfore, it may result in a
write-write conflict. If we have used a prewrite-
lock and write-lock separately, we can not =lease
a prewrite-lock before acquiring a write-lock
because: of two phase locking condition.

To deal with such a situation, we
propose: two solutions.
0 A prewrite-lock is; updated to a write-lock

prolvided no ConfHicting locks are held by
other trannsactioris on the comspnding
data objects. Otheiwise, transactions have to

8 12

wait in an ordered queue to convert their
prewrite-locks to write-locks.

e To use ordered-shared locking [20] with
some modifications. We allow prewrite a d
write operations of the two transactions TI
and TZ to operate concurrently by acquiring
respective locks in an ordered fashion. That
is, if a write-lock is acquired by a transaction
TI then a prewrite-lock can be acquired by
transaction Tz. We allow the prewrite
operation to execute before the write
operation. This is an improvement over
ordered-shared locking [20] where the
operations must execute in the order the
ordered-shared locks are acquired. Once the
prewrite-lock of T2 is converted to the write-
lock, the two write operations of the
transactions are executed in the order their
write-locks are acquired. Another
improvement over [20] is that transaction Tz
can commit before T I . In [20], the
transactions with ordered-shared locking are
allowed to commit in the order they
obtained their locks.

6. When a transaction is committed or aborted,
all its locks are released.

5. Conclusion
In this paper, we have presented a transaction
model using prewrite operations to increase
concurrency in design database environment. Our
transaction model provides more concurrency as
model of the designs are made available to d-
only transactions before the designs ~ I C finally
produced. We have designed the locking
protocol for controlling the concurrent conflicting
operations in our model. Our model provides no
undo type of recovery [16] in case of transaction
aborts. We are studying this model in mobile
database and work-flow environments.

References

[l] P.A. Bemstein, V. Hadzilacose and N.
Goodman, “Concurrency Control and Recovery
in Database Systems”, Addison-Wesley,
Reading, MA,1987.
[2] C.H. Papadimitriou, “The Theory cf
Database Concurrency Control”, Computer
Science Press, Rockville, MD, 1986.
[3] W.E. Weihl, “Commutativity-based
Concurrency Control for Abstract Data Types”,
IEEE Transactions on Computers”, 37, No.12,
pp. 1488-1505, Dec.1988.

[4] H.T. Kung and J.T. Robinson, “On
Optimistic Methods for Concurrency Control”,
ACM Transactions on Database Systems, 6,

[5] M. Yannakakis, “Serializability by
Locking”, Journal of ACM, 31, No.2, pp. 227-
244, 1984.
[6] K.P. Eswaran, J.N.Gray, R.A. Lorie and I.L.
Traiger, “The Notion of Consistency and
Predicate Locks in Database Systems”,
Communication of ACM, 19, No.11, pp. 624-
633, 1976.
[7] H.F. Korth, “Locking Primitives in Database
Systems”,Journal of ACM, 30, No.11, pp. 55-
79, 1983.
[SI F. Bancilhon, W. Kim, and H.F. Korth, “ A
Model of CAD Transactions”, in Proceedings cf
the 11th International conference on Very Large
Databases, VLDB Endowment, pp. 25-33, 1985.
191 V. Dayal, M. Hsu, and R. Ladin,
“Organizing Long-running Activities with
Triggers and Transactions”, in Proceedings cf
the ACM SIGMOD international Conference on
Management of Data, ACM, New York, pp. 204-
214, 1990.
[lo] H.F. Korth and G. Speegle, “Long
Duration Transactions in Software Design
Projects”, in 6th International Conference on
Data Engineering, IEEE, New York, pp. 568-
674, 1990.
[l l] H.F. Korth, W. Kim, and F. Bancilhon,
“On Long-Duration CAD Transactions”,
Information Science, 46, pp. 73-107, Oct. 1990..
[12] C. Been, P.A. Bernstein, and N. Goodman,
“A Model for Concurrency in Nested
Transaction System”, Journal of ACM, Vo1.36,

[131 G. Weikum, “Principles and Realization
Strategies of Multi-level Transaction
Management, ACM Transaction on Database
Systems”, Vo1.16, No.1, pp.132-180, 1991.
[14] H.F. Korth, and G. Speegle, “Formal
Model of Correctness without Serializability”, In
SIGMOD International Conference on
Management of Data, ACM, NewYork, pp.379-
386,1988.
[15] H. F., Korth, G. Speegle, “ Formal Aspects
of Concurrency Control in Long-duration
Transaction Systems using NTPV Model”,
ACM Transactions on Database Systems,
Vo1.19, No.3, pp.492-535, Sept.1994.
[16] S.K. Madria, “Concurrency Control and
Recovery Algorithms in Nested Transaction
Environment”, Ph.D. Thesis, Indian Institute cf
Technology, Delhi, India, 1995.
[17] S.K. Madria, S.N. Maheshwari, B.
Chandra, B. Bhargava, “Crash RecoveIy
Algorithm in an Open and Safe Nested

N0.2, pp. 213-226, 1981.

No.2, pp.230-269, 1989.

813

Transaction Model’’, 8th International Conference
on Database and Expert System Applications
(DEXA’97), France, Sept.97, Lecture Notes in
Computer Science, Springer Verlag, 1997.
[18] S. K. Madria, and B. Bhargava, “System
Defined Prewrites to Increase Concurrency in
Databases”, First East-Europian Symposium on
Advances in Databases and Information Systems
(in coqeration with ACM-SIGMOD), St.-
Petersburg (Russia), Sept.97.

[19]. W. Kim, R. Lone, D. Mcnabb, and W.
Plouffe, “A Transaction Mechanism for
Engineering Design I>atabases”, in Proceedmgs
of the 10th International Conference on VeIy
Large Databases, VLIDB Endowment, pp. 355-
362, 1’984.
[20] A.grawal, D., and Abbadi, A., “A Non-
restrictive Concurrency Control Protocol for
Object Oriented Databases”, Distributed and
parallel Databases: ,4n International Joumal,
V01.2, No. 1, pp. 7-31, Jan.1994.

8 14

	User Defined Prewrites for Increasing Concurrency in Design Databases
	Recommended Citation

	User defined prewrites for increasing concurrency in design databases

