
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1996

A User Interface for the Visualization and Manipulation of Arrays A User Interface for the Visualization and Manipulation of Arrays

Jennifer Leopold
Missouri University of Science and Technology, leopoldj@mst.edu

A. Ambler

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
J. Leopold and A. Ambler, "A User Interface for the Visualization and Manipulation of Arrays," Proceedings
of the IEEE Symposium on Visual Languages, 1996, Institute of Electrical and Electronics Engineers
(IEEE), Jan 1996.
The definitive version is available at https://doi.org/10.1109/VL.1996.545267

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229137299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/VL.1996.545267
mailto:scholarsmine@mst.edu

A User Interface for the Visualization and Manipulation of Arrays

Jennifer L. Leopold and Allen L. Ambler
Department of Electrical Engineering and Computer Science

The University of Kansas
Lawrence, KS 66045

Abstract

The success of spreadsheets has shown that a visual
representation of a two-dimensional array greatly
facilitates solving certain problems. However,
spreadsheets are not a general-purpose programming
environment and are not suited to many problems that
might naturally be solved using multi-dimensional arrays.
Furthermore, spreadsheets employ a textual notation for
cell references in formulas. This notation, which adds to
the programmer's burden by distinguishing relative and
absolute addressing, can be diflcult to understand and is
error-prone even for the most experienced users.

In this paper we present a user-interface for multi-
dimensional arrays within Formulate, a form-based
visual programming language. This implementation
avoids textual array notation and supports the application
of formulas to logical regions of an array, rather than just
to individual elements.

1. Introduction

An alternative to textual languages and spreadsheets
is Formulate, a form-based visual programming
language that supports arrays and the application of
formulas to logical parts of an array, called regions. In
this paper we discuss in more detail the Formulate user-
interface for multi-dimensional matrices and its
effectiveness in the creation and manipulation of
regions, as well as referencing them within expressions.

2. Array Representation in Formulate

An array cell in Formulate can be of any number of
dimensions of arbitrary size. Array elements can be of
any simple data type or can be the composition of
primitive graphical objects (i.e., ovals, lines, etc.).
Array elements do not have to be homogeneous in type.
To facilitate the manipulation of the two-dimensional
display, the user has the option of displaying scroll bars
to scroll horizontally and vertically through the

elements, and dimension selectors in the lower left and
upper right corners to choose which dimensions are
displayed horizontally as "rows" and vertically as
"columns." Figure 1 shows an array of two dimensions.

Figure 2. Array of two dimensions

3. Region Representation and Manipulation

An array can be divided into logical parts, called
regions. Regions can be used both to describe the
construction of other arrays and to describe the region's
use in subsequent computations [l]. A region is visually
represented in Formulate by dark lines outliniing the
rectangular area that encloses the elements o f the
region. When an array is created, it initially has only a
single region which contains all the elements of the
array. New regions are formed by splitting other
regions; this guarantees that an array is always
completely covered by its regions and that regions do
not overlap. To create a new region, the user clicks on
a region boundary line and drags it.

An existing region can be resized in a similar
manner. The user holds down the shift key and clicks on
a region boundary line, then drags the line. Boundary
lines along the first or last rows or columns (of the
matrix cannot be dragged for resizing as that would
leave elements not belonging to any region. Therefore,
the user will always be resizing at least two regions at
a time. To resize or split regions of more than two
dimensions, the user must use the dimension selectors
to display two of the dimensions and drag the iregion
boundary lines within those dimensions. Another
dimension can then be selected and the procedure
repeated as necessary.

Common functions like + and *, as well as user-
defined functions, can be applied to array regions. A
reference to a region can be inserted into the expression

54
0-8186-7469496 $05.00 0 1996 IEEE

for another region by clicking on the region to be
referenced and selecting the desired attribute (such as
the size of one of the dimensions) from a pop-up menu.
An important distinction from spreadsheets is that an
expression for a region is associated with the region as
a whole and not individual cells. Thus the expression is
never copied altering internal references and the user
never has to understand the distinction between relative
and absolute addressing.

Keeping expressions associated with regions, avoids
the relative-absolute referencing problem of
spreadsheets. However, there is an analogous problem
created. If we wish to increment a region by the value
of a single cell, then we are applying "+" to a region
and a single cell. On the surface this would appear to
be a type mismatch, yet the user's intention is pretty
clear. To handle these cases, and many more complex
ones, expressions involving regions are checked for
consistency and applicability by an intelligent
assistance system within Formulate [2 , 3, 41.

It is possible that an array may need to be
subdivided differently for subsequent computations. The
various subdivisions of an array are called partitions. An
array can have any number of partitions, one of which,
the base, actually defines the array. The others are
called views and are only used to access it [l]. At any
tirne after an array has been created, the user can
create a view by selecting the array and then clicking
on a "create view" icon. An array view cell will be
created with the same display characteristics (size,
font, color, etc.) as the array cell. Regions can be
created and resized by dragging region boundary lines
within the view just as for the original base partition.
Array view cells are distinguished by a double-line,
rather than single-line, border. An array cell and its
view cells are associated by having the same (system-
generated) color for the cell border. Figure 2 shows an
array cell and one of its view cells.

Figure 2. An array and a view

4,, User-Defined Functions for Arrays

Formulate allows the user to define functions
(themselves forms). Consider the problem of
multiplying a single row by a single column. A
function for this can easily be created in Formulate as
in Figure 3 where the expression for the output cell
(with the criss-cross pattern on its arrow) is specified as
the sum of the product of the two input vectors.
Particularly important is that (1) this solution does not
require any knowledge of referencing representations for

individual cells, (2) there is no relative-absolute
referencing concept to confuse the user, (3) the number
and sequence of steps required to create the solution is
independent of the size of the arrays involved, and (4)
the resulting function is applicable to arbitrary sized
arrays.

RDWHCOI i...h HD:R Formul

I
(+ (* T ; i l E a) 1

Figure 3. RowXCol function in Formulate

5. Discussion and Conclusions

An advantage to Formulate is its ability to specify
arrays of arbitrary size that can be used in user-defined
functions. In an imperative language like C, the array
size must be known at compile-time or else the user
must develop a pointer-based implementation that
dynamically allocates memory for the array data. This
may be rather difficult for a novice programmer to do.
Spreadsheets, as well, must specify the maximum
dimensions for cell blocks used in formulas. In
Formulate, the user can drag lines to define regions or
can specify an expression for each dimension of a
region. Such expressions can reference the dimension
expressions for other regions and will be computed
dynamically.

6. References

[I] Gerhard Viehstaedt and Allen Ambler, "Visual
Representation and Manipulation of Matrices", in Journal
&Visual Languages and Comouting, Volume 3, 1992,

[2] Guijun Wang and Allen Ambler, "Applicability Checking
in Visual Programming Languages", in Proceedings of
IEEE 10th Symposium on Visual Languages, 1994, pp.

[3] Guijun Wang and Allen Ambler, "Invocation
Polymorphism", in Proceedings of IEEE 1 lth Symposium
on Visual Languages, 1995, pp. 83-90.

[4] Guijun Wang and Allen Ambler, "Solving Display-Based
Problems", in Proceedings of IEEE 12th Symposium on

pp. 273-298.

31-38.

Visual Languages, 1996.

55

	A User Interface for the Visualization and Manipulation of Arrays
	Recommended Citation

	A user interface for the visualization and manipulation of arrays

