
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2006

Practical Experiences in using Model-Driven Engineering to Practical Experiences in using Model-Driven Engineering to

Develop Trustworthy Computing Systems Develop Trustworthy Computing Systems

Thomas Weigert
Missouri University of Science and Technology

Frank Weil

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
T. Weigert and F. Weil, "Practical Experiences in using Model-Driven Engineering to Develop Trustworthy
Computing Systems," Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC'06) (2006, Taichung), Institute of Electrical and Electronics Engineers
(IEEE), Jan 2006.
The definitive version is available at https://doi.org/10.1109/SUTC.2006.1636178

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229137235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SUTC.2006.1636178
mailto:scholarsmine@mst.edu

Practical Experiences in Using Model-Driven Engineering to Develop
Trustworthy Computing Systems

Thomas Weigert and Frank Weil
Motorola

Schaumburg, Illinois, USA
{thomas.weigert, frank.weil}@motorola.com

Abstract

In this paper, we describe how Motorola has deployed
model-driven engineering in product development, in par-
ticular for the development of trustworthy and highly reli-
able telecommunications systems, and outline the benefits
obtained. Model-driven engineering has dramatically in-
creased both the quality and the reliability of software de-
veloped in our organization, as well as the productivity of
our software engineers. Our experience demonstrates that
model-driven engineering significantly improves the devel-
opment process for trustworthy computing systems.

1. Introduction

Motorola has more than 15 years of history deploying
model-driven engineering techniques to develop highly re-
liable network elements for large-scale telecommunication
systems. Model-driven engineering has dramatically in-
creased the quality and reliability of the developed software
as well as the productivity of the software engineers.

This paper describes the model-driven engineering ap-
proach Motorola has been deploying. Model-driven engi-
neering relies on capturing an application design in domain-
specific languages (in Motorola, specifications are ex-
pressed using UML profiles). The specifications are for-
mally verified for consistency (that is, the system behavior
is deterministic) and completeness (at each system state that
is not a terminal state further system behavior is defined).
The specifications are also subject to validation by opera-
tionally interpreting the specification and through executing
formally defined test cases (written at the level of the design
model in a test-specific notation, say TTCN) against this
specification. Domain-specific programming knowledge is
captured in code generators that transform these high-level
designs into optimized product software targeted to the cho-
sen platform.

We will summarize the productivity and quality gains
observed and estimate how widely these techniques are ap-
plicable to the development of telecommunications appli-
cations. We then relate this general discussion to trustwor-
thy computing systems. This information should enable the
readers to decide if model-driven engineering will be bene-
ficial to their respective organizations.

2. Conventional Software Development

The conventional software development process begins
with capturing product requirements in design models,
characterized by informal diagrams and pseudo-code. Even
if modern specification languages, such as UML, are being
used to capture the designs, these languages are typically
used to develop informal diagrams with unclear or impre-
cise semantics. These diagrams are then hand-translated by
a team of software developers into product code in the tar-
get language. The hand-written code undergoes inspection
and testing and is finally deployed at the target.

A workflow following these lines (often packaged in
process frameworks such as waterfall, spiral, incremental,
or rapid prototyping) is still the norm in most software de-
velopment organizations. Unfortunately, this workflow is
subject to several problems that contribute to the often-
tainted reputation of software engineering.

Firstly, the informality and imprecision of the notations
used to capture product designs tends to lead to misunder-
standings between developers, in particular, when develop-
ment is conducted in a globally distributed manner. More
often than not, it is more luck than planning when the design
diagrams are interpreted consistently across geographically
dispersed organizations. What one usually observes instead
is that when separately developed components are assem-
bled into the final product, they do not work fully together.
In particular, misunderstandings due to the informality of
the designs in error situations or exception scenarios lead to
the introduction of defects that cause product failures.

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

Secondly, the translation of design documents into code
by hand is error-prone and slow. The resultant artifacts are
difficult to reuse in similar applications since much of the
implementation detail of the product is intertwined with the
code derived from the designs.

Finally, defects are repaired at the level of the hand-
written code resulting in design documents that become
hopelessly out of synch with the code and become incom-
plete or, worse, misleading. If testing reveals serious mis-
understandings of requirements, it may be more efficient to
abandon the outdated design model and the current version
of the hand code than it is to try to patch the hand code in
place, even given the accompanying loss of productivity.

3. Model-Driven Engineering

Model-driven engineering proposes a software develop-
ment process that starting from product requirements aims
to capture designs in standardized high-level notations with
well-defined semantics. A precisely defined semantics of
the design model allows verification techniques to be ap-
plied to the model. For example, state-space exploration can
reveal concurrency pathologies or other hard-to-find defects
in the design. If, in addition, one is able to operationally in-
terpret the product designs, the correctness of these designs
can be established through simulation. Ideally, test cases are
derived from the requirements and the designs are verified
against these test cases. The designs are then translated into
product code by a code generator. Finally, the resultant code
is subjected to tests (again derived from the requirements)
and is deployed on the target platform.

The model-driven engineering process does not make
any assumptions regarding the life cycle model deployed,
short of starting with an understanding of the requirements
and resulting in the delivery of a software product.

Neither does model-driven engineering presuppose any
particular software design methodology. This framework
works best if the notation chosen to capture a software de-
sign offers concepts that are close to its application domain
as this will ease stating and verifying the software designs.
This process, however, does require that the chosen soft-
ware design notation has clearly defined semantics in or-
der for the designs to have well-defined meaning which can
form the starting point of code generation.

Another assumption built into the model-driven engi-
neering process is that it is desirable that a complete design
of a product can be verified and that code can be generated
for the complete design, not just for header files and stubs,
as is the case with most development tools in use today.

Viewed in more detail, we divide model-driven engi-
neering into two sets of activities: In application engineer-
ing, we execute the model-driven engineering process to de-
velop products based on their software requirements. In ad-

dition, model-driven engineering supplements application
development with the development of domain-specific ca-
pabilities.

In domain engineering, we first try to find a notation that
is as close to the application domain as possible. The closer
the concepts of the design notation are to the concepts of
the application domain, the easier it will be to capture the
designs, and the more likely it will be that the designs are
correct.

Secondly, we need to identify techniques to verify that
the design documents are correct, that is, that they reflect
the application that we intend to build. This may involve the
development of simulation tools or of mathematical tech-
niques such as model checking.

Finally, we need tools to translate the design documents
into product code executing on the chosen target platforms.

Domain engineering generates a set of assets that can
be drawn upon in application development. Rather than
code, following a model-driven engineering process, the as-
sets are the capabilities to produce software in a selected
application domain. In application engineering, these capa-
bilities are then deployed to produce a particular product.

3.1. Model-Driven Engineering Example

The following example shows how this development
framework is leveraged in practice. It is widely used
throughout Motorola and has led to large development sav-
ings.

Every communication system sends information be-
tween devices. The units of information that are communi-
cated between devices are referred to as protocol data units
(or PDU for short). A PDU is typically represented in an
application-internal form that is geared towards ease of ac-
cess during computation. When a PDU is sent from one
device to another, it has to be transformed into a stream
of bits subject to the rules of the communication protocol.
Every communication device, therefore, must have a soft-
ware layer that will encode a PDU into a stream of bits on
the sender side, and reconstruct this PDU from the incom-
ing stream of bits on the receiver side.

Due to the low-level nature and the bit manipulations re-
quired, this data marshaling code is very tedious and error-
prone to produce. This code is subject to stringent perfor-
mance constraints as it is applied to every piece of infor-
mation passed between devices, but these constraints are
quite different between infrastructure and subscriber de-
vices (time criticality being the primary issue for the former,
space limitations for the latter). Together with differences
in computing platforms, middleware layers, and error han-
dling strategies, the difference in performance constraints
results in two separate marshaling routines typically being
produced, one for each type of hardware.

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

To support the development of data marshaling code,
when following a model-driven engineering process, the
first question to be addressed is how to capture the designs
for these routines.

L
en

g
th

T
yp

e

a. Present if TX party type Id is SSI or TSI
b. Present if TX party type Id is TSI

Elements

Pdu Type 1 5
Call Id 1 14
TX grant 1 2
TX req permission 1 1
Encryption control 1 1
S peech service 1 1
Notification Id 2 6
TX party type Id 2 2
TX party address S S I 2 24 Ca

TX party extension 2 24 Cb

Proprietary 3 R

L
en

g
th

T
yp

e

a. Present if TX party type Id is SSI or TSI
b. Present if TX party type Id is TSI

Elements

Pdu Type 1 5
Call Id 1 14
TX grant 1 2
TX req permission 1 1
Encryption control 1 1
S peech service 1 1
Notification Id 2 6
TX party type Id 2 2
TX party address S S I 2 24 Ca

TX party extension 2 24 Cb

Proprietary 3 R

Figure 1. Tetra PDU definition: Downlink-
transmit-granted (ETS 300-392-2, Table 74)

Figure 1 shows an excerpt from the TETRA standard that
shows the definition of the downlink-transmit-granted PDU.
As shown, the standard describes this PDU as consisting of
a number of fields, each of a given type (which determines
how that field is encoded as a stream of bits) and a given
length. This table is already a good description of the design
because the task is to produce a program that takes the in-
formation that comprises this PDU and turns it into a stream
of bits that obeys the rules laid out by this table and vice
versa. Verification becomes a simple comparison between
the printed tables and a machine-readable representation of
these tables. What is then needed is a code generator that
produces this program. The program must translate the in-
formation carried in each field of the PDU into a stream
of bits, segment it into chunks matching the appropriate
word size, and place it at the right place within the overall
stream, potentially prefixing it with any additional encoding
required by the protocol. The resultant stream of bits for a
simple example PDU is shown in Figure 2 (the bits added
due to the encoding rules of the protocol are cross-hatched).

We applied this idea first to the development of TETRA
radio handsets. The engineering team had originally esti-
mated that it would take 18 months to develop the marshal-
ing code for this product family. Using the model-driven
engineering approach, it took only four months to develop
not only the code that was shipped in the product but also

the code generators that performed this task.
Once this process is in place, the assets are the language

used to describe the protocols as well as the encoding rules
as captured in the code generators. Consequentially, today
the development of a data-marshaling layer for a new pro-
tocol takes much less time, typically less than a month. The
productivity benefits are large, as often these routines are
being developed concurrently with the development of the
protocol standards. It is common for the length of a field
to change or for modifications to be made to the encoding
rules. These changes would lead to a total rewrite of the
code had it been written by hand, as any bit-level optimiza-
tion (such as the typical power-of-2 shortcuts) would have
been voided by the insertion of additional bits.

PDU marshalling code developed following the de-
scribed model-driven engineering process has been shipped
in a number of Motorola infrastructure network element
and subscriber device products, capturing different proto-
cols (such as GSM 4.08, Abis, XBL, TETRA, and 3GPP).
Internal tools for the development of PDU marshalling code
have been refined to a level of maturity such that generated
code consistently is superior to hand-written code in its per-
formance and quality.

D-TX-Granted PDU
» Call Id = 2174
» TX grant = true
» Notification Id = 7

0 0 1 0

0 1 1 1

0 0 0

1
1

1

0 0 1

0 0 0 0 1 1 1 1

1 1 0

0 1 0 1 1 0 0 1
0 0 0 0 1 1 1 1
1 1 0 0 1 0 0 0
1 1 0 0 0 1 1 1
0 0 0

D-TX-Granted PDU
» Call Id = 2174
» TX grant = true
» Notification Id = 7

0 0 1 0

0 1 1 1

0 0 0

1
1

1

0 0 1

0 0 0 0 1 1 1 1

1 1 0

0 1 0 1 1 0 0 1
0 0 0 0 1 1 1 1
1 1 0 0 1 0 0 0
1 1 0 0 0 1 1 1
0 0 0

Figure 2. Encoding of Downlink-transmit-
granted

3.2. Model-Driven Engineering Rollout

The model-driven engineering vision has been realized
in a number of Motorola business units in small steps: In

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

1989, a design simulation environment for a proprietary de-
sign notation was developed and piloted in development
projects. When later, in 1991, the first commercial sim-
ulation tools became available for a standardized notation
(SDL), development teams began migrating to this stan-
dard. In 1992, for the first time the complete software for a
real-time embedded Motorola product (a pager) was gener-
ated from high-level designs, without relying on any hand-
written code. It was not until 1994 that the first commer-
cial code generation tools with similar capabilities became
available. Subsequently, several Motorola business units
adopted design simulation as a new development paradigm.
In 1998, the first shipping Motorola products were automat-
ically derived from high-level design specifications (a base
station for the TETRA radio communication system and a
base site controller for a telecommunications network). The
subsequent years saw a steady increase in penetration of
model-driven engineering, as legacy products were gradu-
ally replaced by newly developed network elements.

This experience also revealed that the standard notations
deployed had shortcomings that limited the applicability of
code generation. As a response, in 1999, an enhanced ver-
sion of SDL was adopted supporting language elements re-
quired by engineering teams. In 2003, the latest release
of UML was adopted, integrating the lessons learned from
SDL deployment.

4. Benefits

The benefits afforded by model-driven engineering are
productivity and quality improvements. These benefits
come from various sources:

• Design models are easier and faster to produce and test

• Labor-intensive and error-prone development tasks are
automated

• Design effort is focused on applications, not on plat-
form details

• Reuse of designs and tests between platforms or re-
leases is enabled

• Design models can be verified through simulation and
testing

• Design models are more stable, complete, and testable

• Standardized common notations avoid retraining of en-
gineers

• The learning curve for new engineers is shortened

0.00

0.25

0.50

0.75

1.00

1.25

K
A

E
L

O
C

/S
M

F1 F
2

F
3

F
4

F
5

Autocoded
Handwritten

Figure 3. Productivity improvement for net-
work element applications

4.1. Productivity

Pushing much of the development detail into the code
generator allows designs to be more abstract, which results
in designs that are easier to produce and easier to show cor-
rect.

There are fewer inspections required to ensure the qual-
ity of the developed code than using conventional devel-
opment. On average, developers rely on three inspection
cycles instead of four cycles when compared to following
the conventional process. In addition, inspection rates are
higher and have increased from 100 source lines per hour to
in between 300 and 1000 source lines per hour. Thus, not
only are fewer inspections required, but also the remaining
inspections are much more efficient.

Code automation on average results in a five-fold in-
crease in the number of source lines of code produced per
staff months over the development life cycle. The effort
spent in the design phase increases, but this is more than
made up by the dramatic reduction in coding effort.

Code generators have reached a level of maturity that ef-
fectively no errors are being introduced into the resultant
code. For example, over the last three years, only one de-
fect was detected in our marshalling code generator. Sub-
sequently, no effort has to be expended to correct coding
defects.

Figure 3 shows the productivity improvements (as mea-
sured in assembly equivalent lines of code produced per
staff month) in the development of several features on a base
site controller (a core network element). The chart com-
pares the productivity rates achieved using the conventional
life cycle with those using model-driven engineering. Fig-
ure 4 shows effort reduction (in terms of staff days) during

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

0

2

4

6

8

10

12
Autocoded (test)
Handwritten (test)
Autocoded
Handwritten

Figure 4. Productivity improvement for data
marshaling

the development of a typical protocol data marshaling gen-
erator (the lighter shaded areas indicate the testing effort).

Automation of labor-intensive and error-prone develop-
ment tasks results in additional productivity improvements.
We have seen a dramatic reduction in the turn-around time
for fixes during process test execution. A process test cycle
involves: (i) fixing the defect in the model (rather than the
code), (ii) writing a test case, (iii) generating the corrected
code, and (iv) automatically executing the complete regres-
sion test suite (which in this particular example consisted
of over 10,000 tests). As shown in Figure 5, the test cycle
across four releases of network features has been reduced
from 25-70 days to 24 hours.

Similar results can be observed in box and system tests.
In many systems, over 90% of the tests are automated using
TTCN scripts, which has led to a 30% reduction in box-test
cycle time.

0

25

50

75

P
T

X
 D

ay
s

F1 F2

R1 R2 R3 R4 (autocoded)

Figure 5. Productivity improvement in
process test cycle

4.2. Platform Targeting

Model-driven engineering removes the need for embed-
ding platform characteristics and domain detail into the de-
signs (again impacting productivity and quality). Following
the conventional process, much irrelevant information—
irrelevant from the point of view of system functionality—
had to be kept in the design document to ensure that it
be considered during coding. This extraneous information
negatively affects productivity and quality.

For example, an important feature of a high-availability
middleware layer developed by Motorola is the ability to
journal ongoing transactions, allowing a computing node
to recover from failure and continue execution at the point
where a run-time fault occurs. The code necessary to per-
form the journaling should not be captured in the design
(as it is not part of the functional requirements of the appli-
cation) but should instead be added by the code generator.
Such an approach not only keeps the designs abstract and
easier to produce and verify, but also allows experimenta-
tion with different levels of journaling granularity to find
the right balance between availability and performance.

Avoiding embedding implementation detail into design
enables rapid retargeting of applications to different plat-
forms. A given design can be moved from one platform
to another without affecting the design. As an example,
we moved a base site controller application from a rack
of MC6809 cards with distributed memory to a shared-
memory computer. All changes required to the software ar-
chitecture were performed by the code generator. In another
example, an application was migrated to a lower-cost plat-
form, where the code generator had to provide SysV mes-
sage queues transparently to the application and generate
code in a manner so as to avoid deadlock problems (on the
cheaper system, the same thread could not acquire the same
mutex repeatedly). The effort was 10 staff days to capture
these differences in the code generator as compared to an
estimated 80 days for hand porting the code.

Incorporating platform specifics into the code through
a code generator also enables engineers to experiment at
a low cost with alternative implementation strategies, soft-
ware architectures, or hardware choices.

Finally, the separation between platform-specific infor-
mation and application information supports more efficient
team structures. Platform experts capture their knowledge
in code generators, and the application development teams
can focus exclusively on the design and testing of new ap-
plications.

4.3. Quality

The models required as input for code generation are
more complete and can be verified through simulation (or

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

0.00

2.00

4.00

6.00

8.00

D
ef

ec
t d

en
si

ty

F1 F2 F3 F
4

F
5

Autocoded
Handwritten

Figure 6. Quality improvement for network el-
ement application

other techniques), resulting in significant quality improve-
ments. The quality impact of model-driven engineering is
dramatic and almost guaranteed. It is largely a consequence
of the increased phase containment effectiveness enabled by
semantically precise and operationally interpretable specifi-
cations.

Motorola data shows that simulation is about 30% more
effective in catching defects than the most rigorous Fagan
inspections. This is true for both overall faults and seri-
ous faults. Based on this fact alone (assuming that the code
generator does not introduce additional defects), we can ex-
pect a 3X reduction in defects, which is also borne out by
the data: In Figure 6, from the development of features on
a network element, we see defect reduction rates well be-
yond that number. Applications have recently been devel-
oped with zero design defects.

Approximately 50% of defects are requirements errors.
These are typically the hardest errors to find, and thus also
the costliest. Working with models of requirements en-
ables mathematical techniques to be applied to these mod-
els, which enables detection of these hard-to-find defects. In
the telecommunications domain, many such errors are due
to concurrency pathologies, i.e., they result from unfore-
seen interactions of concurrently executing system compo-
nents. We have developed techniques based on theorem
proving and realized these in tools that detect such situ-
ations. Each project that has leveraged these techniques
has demonstrated that a substantial number of requirements
defects that had previously escaped to later development

phases can be discovered early.
Figure 7, which shows percentage of total defects found

over time, illustrates that faults are found much earlier
following model-driven engineering than with the conven-
tional process. Finding defects sooner is significant, since it
is much cheaper to fix defects earlier. Boehm has reported
an exponential increase in the cost of fixing defects with the
distance between where a defect is sourced and where it is
discovered. Finding double the errors in the design phases
as shown in Figure 7 translates into large cost savings.

The availability of tools operating on design nota-
tions encourages convergence on standard common nota-
tions with the associated benefits of sharing expertise and
projects between different development teams. The learning
curve for new engineers to get familiar with a product has
been substantially shortened. When a new engineer stud-
ies the application models, domain knowledge is exposed
rather than obfuscated in the product code. Consequentially,
the time required for a new developer to acquire sufficient
domain knowledge to become productive has been short-
ened by 2-3X.

20%

40%

60%

80%

100%

Legacy Baseline

Average SDL

Design Code Test

20%

40%

60%

80%

100%

Legacy Baseline

Average SDL

Legacy Baseline

Average SDL

Design Code Test

Figure 7. Fault discovery rate across the de-
velopment life cycle

5. Penetration and Applicability

Deployment of model-driven engineering varies substan-
tially between product teams. Figure 8 shows the penetra-
tion across a the components of a release of a telecommuni-
cations system, as of 2002. The size of each chart indicates
the relative amount of effort that went into producing the
corresponding component. The bars, from left to right, in-
dicate the percentage of software that has been developed
leveraging model-driven engineering in design, design veri-
fication, code generation, and box test, respectively. For ex-

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

ample, the base site controller development team has used
design modeling and code generation for more than 70% of
their application code, but has not used simulation to verify
the designs. The team developing the surveillance gateway
used design modeling, simulation, and code generation for
more than 80% of their application code, and the develop-
ers were able to drive their box tests from design models
as well. On some system components, the code generation
rates are still lower due to the large amount of legacy code
present.

DACSDACS

PSTN

BSC

DAP

BRC

ACG

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

SG

PD

IP

0

20

40

60

80

100

0

20

40

60

80

100

MPSMPS

DACSDACS

PSTNPSTN

BSC

DAP

BRC

ACG

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

SG

PD

IPIP

0

20

40

60

80

100

0

20

40

60

80

100

MPSMPS

Figure 8. Deployment of model-driven en-
gineering across network element develop-
ment

We have analyzed the source code for each of the system
components of a release of a telecommunications system,
categorized the modules of source code by the design ele-
ments from which they are typically derived, and grouped
the code into four buckets, as shown in Figure 9:

• Code that is specified by state machines or simi-
lar mechanisms (such as decision tables or activity
graphs)

• Code that is highly algorithmic in nature or expresses
data manipulations

• Code that is low level and often not captured in detail
in designs

• Code that is described by other means, such as GUI
layout or database design tools.

The size of each pie reflects the relative effort that went into
developing the particular network element. For example,
56% of the code on the base site controller (BSC) can be
characterized by state machines. This software is the main
control logic of the application, routing calls between base

stations (similar to cells in a mobile telephony system) and
the mobile switching system. About 39% of the code is
characterized by computation, comprising the packing and
unpacking of protocol data units and the evaluation of signal
quality to determine whether a call should be handed over
between base stations. About 5% concerns the interface to
the transcoders and is usually stubbed out in the designs.

The distribution of the four categories varies between
network elements. Our experience is that all of the state-
machine oriented code can be derived from designs as can
most or all of the algorithmic code, depending on the avail-
ability of a suitable action language in the design notation
or domain-specific notations such as those described earlier
for PDU marshaling code. The low-level code is unlikely
to be generated automatically. Mileage in the “other” cat-
egories varies, but this code comprises a relatively small
percentage of the overall application.

Rolling up the data for various telecommunication sys-
tems reveals that the potential for model-driven engineering
is at least 73%, but may go as high as 96%. The individual
percentages are less important than the message: a signifi-
cant portion of a telecommunication system is amenable to
code generation from high-level designs.

PSTN

BSC

DAP

BRC

ACG

SG

PD

IP

MPS
DACS

State machines Algorithm, dataLow level Other methods

PSTNPSTN

BSC

DAP

BRC

ACG

SG

PD

IPIP

MPS
DACS

State machines Algorithm, dataLow level Other methods

Figure 9. Automation potential across net-
work element development

6. Trustworthy Computing Systems

There are several areas of model-driven engineering that
have direct applicability to trustworthy computing systems.

First, coding practices that are deemed insecure or unre-
liable can be categorically eliminated. That is, coding de-
fects that are prevalent in hand-written code do not exist

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

in automatically generated code. This means that inadver-
tent changes to the functionality represented in the models
will not be introduced. Early detection of model defects or
pathologies is only as useful as the reliability of the down-
stream steps in the development process, so elimination of
a large source of human errors is of immediate benefit.

Second, coding policies related to trustworthiness, relia-
bility and security can be systematically added to the gener-
ated code. For example, special error handling for memory-
allocation failures can automatically be added to all mem-
ory allocation requests, and the prevention of buffer over-
flow during the decoding of an inbound PDU can be applied
to all decoding functions. If a policy changes, that change
can be applied to all such situations across all of the gen-
erated code without the fear of having missed some cases.
These policies also do not lead to the models becoming clut-
tered. Such crosscutting concerns can be uniformly applied
during the transformation of the models into code.

Third, typical problems that lead to trustworthiness con-
cerns can be detected early during model analysis and sim-
ulation. This capability is enabled by the precise semantics
of the modeling language. Model analysis can detect gener-
ally insecure situations such as the presence of race condi-
tions or nondeterministic behavior in the model, assignment
of one variable to another when the variables have overlap-
ping but non-equivalent ranges, decision statements where
not all of the possible values are covered by branches, etc.
It is also much easier to prove properties about a model than
it is to prove them about the derived implementation.

Forth, trust issues related to the underlying platform do
not have to be captured in the model itself. This separation
of concerns has three distinct advantages: (i) the functional-
ity expressed in the model is not tied to a specific platform,
allowing ease of moving the application to lesser or more
secure platforms, (ii) the models themselves are not com-
plicated by the addition of the trust concerns not related to
the application, and (iii) the expertise associated with the
application can and should be separate from the expertise
related to the trustworthiness of the underlying platform.

Finally, the development effort saved by using model-
driven engineering can be applied to the issues that gener-
ally are left to the end, if ever (e.g., failure-mode detection
and recovery). That is, the productivity improvements re-
alized through the use of model-driven engineering mean
that more time can be spent on the “rainy day” scenarios
than would usually be available during conventional devel-
opment. Development organizations typically leave such
efforts to whatever time is left after the “sunny day” func-
tionality is accounted for. This often leads to failure modes
related to exception cases, which is one of the largest areas
vulnerability in software systems.

7. Summary

In this paper, we have summarized the benefits that Mo-
torola has obtained from the deployment of model-driven
engineering in the development of trustworthy computing
systems, in particular, network elements for telecommuni-
cations systems. The benefits afforded by model-driven en-
gineering result in both quality improvements and produc-
tivity improvements. In the development of telecommuni-
cation systems, a large portion of developed software, in
our estimate at least three quarters of the total software,
is amenable to leveraging model-driven engineering tech-
niques.

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

	Practical Experiences in using Model-Driven Engineering to Develop Trustworthy Computing Systems
	Recommended Citation

	mde.dvi

