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BIUP
3
: Boundary Topological Invariant of 3D Objects Through Front Propagation at a Constant 

Speed

Franck Xia 

Department of Computer Science; University of Missouri-Rolla 

Rolla, MO 65409, USA; E-mail: xiaf@umr.edu

Abstract: Topological features constitute the highest

abstraction in object representation. Euler characteristic is one

of the most widely used topological invariants. The

computation of the Euler characteristic is mainly based on three

well-known mathematical formulae, which calculate either on 

the boundary of object or on the whole object. However, as

digital objects are often non-manifolds, none of the known

formulae can correctly compute the genus of digital surfaces. In 

this paper, we show that a new topological surface invariant of

3D digital objects, called BIUP3, can be obtained through a

special homeomorphic transform: front propagation at a 

constant speed. BIUP3 overcomes the theoretic weakness of the

Euler characteristic and it applies to both manifolds and non-

manifolds. The computation of BIUP3 can be done efficiently

through a virtual front propagation, leaving the images

unaffected.

Keywords: Topological invariant, digital topology, boundary,

front propagation, topological boundary invariant. 

1. Introduction

One of the key issues in computer imagery is to find an

appropriate representation of objects to be processed.

Mathematically, the objects are fully determined by their

boundaries, and topological features of boundaries

constitute the highest abstraction of the objects [1]. Euler

characteristic is one of the most frequently used

topological invariants in various fields involving

computer images. Although the Euler characteristic has

been widely used for decades, it has its own limitations:

None of known mathematical theorems about the Euler

characteristic could provide a satisfactory solution for

describing topological features, i.e. genus, of digital

surfaces. The reason is that digital images are often non-

manifolds and there is no known mathematical theorem 

that can determine the topological invariants, such as

genus, of boundaries of non-manifolds. So it would be

interesting to discover new and better topological

invariants of boundaries.

However, new topological invariants are very difficult to

come by. The Euler characteristic has been known for

centuries. Fortunately, there is a good point to start: In

[2], a 2D topological invariant called perimeter

increment under dilation has been proven. By this

invariant, the contours of closed objects have a

topological property under dilation with the unit disc: the

external contours increase and internal contours

decrease, and the increment in both cases is the perimeter

of the unit disc. This result can be generalized to R2 via a

continuous front propagation and a topological invariant,

called boundary invariant under propagation (BIUP2),

can be obtained. In this paper, we show that BIUP2 can

further be generalized to 3D. The obtained new 3D

invariant, called BIUP3, characterizes the topological

property of surfaces of digital objects and overcomes the

weakness of the Euler characteristic. In the sequel, we

first discuss the limitations of known formulae about the

Euler characteristic. The notion and properties of BIUP3

are introduced in section 3. Section 4 briefly describes an

algorithm for computing BIUP3. We present in the end

our result with a brief analysis on the strength of BIUP3.

2. Limitations of the Euler Characteristic

For any connected component S, the Euler characteristic

can be defined either on the whole component S (denoted

by (S)) or over its boundary S ( ( S)). When defining

(S) over the whole component via v – e + f - t, where v

is the number of vertices, e the number of edges, f of 

faces and t of tetrahedrals, by Euler-Poincaré formula

(S) = (no. of connected components) ) + (no. of

cavities) – (no. of handles) [1]. When S contains cavities,

the boundary of S has one external surface and one or

more internal surfaces. In the Euler-Poincaré formula,

handles are on the boundary and hence could be on either

the external surface or on the internal surfaces of the

cavities. As (S) is intrinsically defined on the whole

component, it cannot tell where a handle locates, i.e. on

the external or an internal surface. Thus (A) cannot

fully differentiate topologically distinct objects.

Alternatively, the Euler characteristic can also be defined

over S, i.e. ( S) = v – e + f. For any manifold S, when

calculating over its surface, it is well-known that ( S) = 

2(1 – g), g being the genus of the surface [3]. However,

this formula does not hold when S is non-manifold§. In

Fig. 1.a, the object has no handle and hence g = 0.

However, as v = 14, e = 23, and f =  12, ( S) = 3  2(1

– g). It is easy to verify that the same problem exists with

all the other non-manifold objects in Fig. 1. Obviously,

( S) calculated in this way is no longer a topological

invariant. It is worth mentioning that non-manifolds

contain topological singularities and they are very

difficult to analyze mathematically. Yet non-manifolds

are everywhere in computer images [4]. 

§ An object C is a manifold if x C, there exists a neighborhood N(x)

of x such that N(x) is homeomorphic to the unit ball.
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(a)               (b)                 (c)               (d) 

Figure 1: Non-manifold digital objects 

Gauss-Bonnet Theorem in differential geometry connects

the total Gaussian curvature G with the Euler

Characteristic:
S

G d).( = 2 . ( S) [5]. As G is 

defined on regular surfaces whereas digital surfaces are

intrinsically discrete and irregular, it is impossible to

accurately calculate G based on its analytical form in

digital images [6], let alone the total Gaussian curvature

S
G d).( . It has been suggested that when defining

angle deficit of vertex vi of S (denoted by ad(vi)) to be

2  minus the sum of face angles incident to vi, then

(1/2 ) iad(vi) = 2(1-g) [7]. However, one can verify that

this formula is again invalid when objects are non-

manifolds (Fig. 1.c or 1.d). 

So there is no theoretically valid method for calculating

the topological feature, i.e. genus, of surfaces. Thus there

is a theoretic and practical interest for us to explore new

and better invariants that can topologically distinguish

the surfaces of digital objects. 

3. BIUP: Boundary Invariant under Propagation in

R
3

3.1 Definition of BIUP
2

The boundary topological invariant we propose is a 

generalization of our previous work on 2D global

boundary invariant [2]. The mathematical idea of our 

approach has something in common with the level set

methods which investigate the properties of boundaries or

fronts under propagation in the normal direction [8]. In

order to obtain topological invariant, we choose a

constant propagation velocity v and focus on the integral

property of the propagating front. For any connected

component S in R2 with a regular boundary/front B(S),

we consider the first order derivative of the total curve

length of B(S) in the normal direction. Let x be

(x1(s),x2(s)), the front of the connected component at time

t be B(x,t), the perimeter of the front at t be P(t) = 

ds)()(
)t(B
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define boundary invariant under propagation in R2

(BIUP2) as
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and discover that BIUP2

= 2 , + for external and – for internal boundary.
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3.2 Definition of BIUP
3

For the 3D case, let us denote A(t), A(t+ t), and

A(t+2 t) the area of propagating boundary B at t,  t+ t,

and t+2 t (Fig. 2). For various shapes, our experiments

show that
2)(

)]()([)]()2([

tv

tAttAttAttA

0t
limhas the same invariant property as 

tv

tPttP )()(

in R2.

Definition:
2)(
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tAttAttAttA

is called boundary invariant under propagation in R3

(BIUP
3).

Figure 2: Front propagation in R3

3.3 Computing BIUP
3
 in Z

3

3.3.1 Localization of Propagation

For digital images in Z3, we choose to work with the

cellular or cubic representation [1] with which each

voxel is represented by the unit cube. An explicit

simulation of front propagation can then be done based

on a discrete version of Huygens’ principle that we

propose here: placing the center of a small cube on the 

surface and rolling it over the surface. The envelope of

the rolling cubes forms A(t+ t).

We propose an efficient way for computing BIUP3 which

does not need any front propagation. In fact, the front

propagation can be done locally and virtually: First

divide the whole boundary into elementary boundary

patches. For each patch, we virtually propagate the patch

and calculate the second order increment of the patch.

Accumulate then the increments patch by patch to obtain

[A(t+2 t) – A(t+ t)] – [A(t+ t) – A(t)], and finally

compute the derivative by definition.

Definition: Let each boundary surfel (surface of the unit

cube) of B(x,t) be divided into four equal area squares

called ¼ boundary surfels. The elementary boundary

patch around vertex vi on B(x,t) (denoted as B(vi,t)) is 

the set of all the ¼ boundary surfels adjacent to vi.
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The white regions in Fig. 3 illustrate three elementary

boundary patches around the central vertices.

Figure 3: Elementary boundary patches 

Proposition: i B(vi,t) = B(x,t). 

Denote I(A) as the interior of set A. 

Proposition: i j, I( B(vi,t))  I( B(vj,t)) = .

The above two propositions ensure that the whole

boundary can be covered by all the elementary boundary

patches without any redundancy. Denote the area of 

B(vi,t) by A(vi,t) and A(vi,t+2 t) + A(vi,t) - 

2 A(vi,t+ t) by 2 A(vi,t).

Proposition: i A(vi,t) = A(t). 

Proposition: i
2 A(vi,t) = [A(t+2 t) - A(t+ t)] – 

[A(t+ t) - A(t)].

Fig. 4 illustrates all the possible B(vi,t) under 6-, 18-,

and 26-connectedness [1], all the others can be obtained

by symmetry or rotation. The black dot in each pattern

represents the vertex vi.

3.3.2 Virtual Front Propagation

Let the distance of propagation be  = v t. The key for

computing 2 A(vi,t) is to determine A(vi,t+ t) which

depends not only on B(vi,t) but also on . Once

A(vi,t+ t) in known, substituting any  in A(vi,t+ t)

by 2 , we get A(vi,t+2 t).

(a) (b) (c) (d)

(e) (f) (g) (h)

(l)(k)(j)(i)

Figure 4: Shapes of B(vi,t) under various connectedness 

In Fig. 5, dark areas represent B(vi,t)s and the white

ones the corresponding propagated boundary patches

B(vi,t+ t)s obtained by propagation from B(vi,t)s in 

the direction of normal depicted by the arrows.

(a)                                  (b) 

Figure 5: Computing propagation locally

Table 1 provides the value of 2 A(vi,t) for each patch in 

Fig. 4. For example, the value of the patch centered at the

black dot in Fig.4.a is 6 2in column #2 of the Table.

B(vi,t) a b c d e f g h i j k l
2 A(vi,t) 6 2 0 -12 2 -36 2 -6 2 -18 2 -12 2 -12 2 0 -6 2 0 6 2

Table 1: The Values of 2 A(vi,t) for all the possible B(vi,t)s.

3.3.3 Property of BIUP
3

Proposition: Any digital object homeomorphic to a solid

ball can be deformed homeomorphically and repeatedly

to a unit cube (Fig. 6.a) by removing/adding one cube at

a time.

Proposition: Any digital object homeomorphic to a torus 

can be deformed homeomorphically and repeatedly to a

digital ring (Fig. 6.b) by removing/adding one cube at a

time.

(a)                  (b) 

Figure 6: Basic patterns 

Let BIUP3( 1) be the BIUP3 on the surface of the unit

cube.

Theorem: BIUP3( S) = BIUP3( 1).(1-g)§.

Due to page limitation, we provide only a sketch of our

proof done by induction. We illustrate only two cases:

objects homeomorphic to a solid ball and a torus using 6-

connectedness [1]. Figure 6 depicts the basic shapes of

these two object types. For the basic step, it is easy to

verify that for Fig.6.a, i
2 A(vi,t) = 8 6 2, hence

BIUP3( 1) =
0t

lim i
2 A(vi,t)/

2 = 48. For Fig.6.b

BIUP3( S) = 0 = BIUP3( 1).(1-1). The induction step of

the proof is combinatorial. Any object S homeomorphic

to a solid ball can be deformed homeomorphically and 

repeatedly to the unit cube by removing one cube at a

time. Based all the patterns shown in Fig. 4, and for any

fixed propagation distance , each time when we remove

§ Here S should be understood as one surface of S.
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any cube from any of the patterns in Fig. 4, the sum of all

the elementary boundary patches i
2 A(vi,t) around the

cube remains unchanged before and after removing the

cube. As the rest of B(S) is not affected by the removed

cube, [A(t+2 t) – A(t+ t)] – [A(t+ t) – A(t)] remains

constant when the size of S is reduced by one. Since

BIUP3( 1) = 48 for Fig. 6.a, BIUP3( S) = 48 for any 6-

connected object homeomorphic to the solid ball.

4. Algorithm for Computing BIUP
3

For computing BIUP3, our algorithm reads 3D raster

images and traces the boundary of any connected

components in the images using an existing algorithm

[9]. During the boundary tracing, we save for each vertex

the information about its own elementary boundary patch

such as the number of surfels and the number of

neighboring cubes. The computation of 2 A(vi,t) is

done through a look-up table implemented in the

algorithm. Currently, the algorithm works for both 6 and

18 connectedness. Part of our algorithm for computing

BIUP3 is shown below (not including the standard

surface tracing) 

5. Result and Analysis

We have implemented our algorithm with Matlab and

tests of our method with various 3D images have

confirmed the theorem. For instance, the object S in Fig.

7 has 33 holes. BIUP3( S) = -1536 = 48(1-33) =

BIUP3( 1).(1-g).

In terms of computation effort, as the algorithm works

only on the surfaces of object S, its complexity is O(N), 

N being the number of surface points on S. In 

comparison, the computation of (S) requires O(|S|), |S|

being the number of points in S. Obviously, N < |S|

significantly.

Figure 7: BIUP3 = -1536 

BIUP3 correctly works on any kind of images, including

non-manifolds for which ( S) is no longer a topological

invariant. BIUP3 also enables us to compute the genus of

surfaces, one by one, hence a topological representation

of objects based on surfaces can be obtained. This is not

possible with the Euler characteristic (S).

6. Conclusion

From the history of mathematics, we know that

discovering global topological invariants is not an easy

task. The one we use frequently in computer science,

Euler characteristic, has been with us for centuries. In 

this paper, we show how the basic concept of level set

methods, i.e. successive propagation of front, can be

combined with the fundamental notion of homeomorphic

transform in topology for discovering a new topological

invariant, i.e. BIUP3, which can distinguish different

types of surfaces: It determines the number of handles on

surfaces, and it works for either manifolds or non-

manifolds. We are currently working on how to 

efficiently build a topological representation of 3D

objects. Our investigation indicates that a generalization

of BIUP to higher dimensions could lead to similar

topological invariants.

Procedure BIUP3( input ) 
  while (input is not empty)
    remove face f from input; 
    for each vertex vx on f 
     V(vx) = V(vx) + 1 
    end of for 
  end of while 

  for each vx in V 
    switch V(vx) 

 case 12 
       V(vx) = 24 
     case 9 
       if no of cubes shared by vx == 3 
         V(vx) = -6 
       else V(vx) = 18 
     case 8 
       V(vx) = 0 
     case 7 
       if no of cubes shared by vx == 3 
         V(vx) = -18 
       else V(vx) = 6 
     case 6 
       if no of cubes shared by vx == 3 
         V(vx) = 12 
       else V(vx) = -12 
     otherwise
       V(vx) = 6 * (4 - mv(x, y, z)) 
    end of switch 
end of for 
return sum(V(vx)) 

end of Procedure BIUP3 
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