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Abstract—Using partitioning in wireless sensor networks to
create clusters for routing, data management, and other protocols
has been proven as a way to ensure scalability and to deal
with sensor network shortcomings such as limited communication
ranges and energy. Choosing a cluster head within each cluster
is important because cluster heads use additional energy for
their responsibilities and that burden needs to be carefully
passed around. Many existing protocols either choose cluster
heads randomly or use nodes with the highest remaining energy.
We introduce the energy constrained minimum dominating set
(ECDS) to model the problem of optimally choosing cluster heads
with energy constraints. We propose a distributed algorithm for
the constrained dominating set which runs in O(log n log Δ)
rounds with high probability. We experimentally show that the
distributed algorithm performs well in terms of energy usage,
node lifetime, and clustering time and, thus, is very suitable for
wireless sensor networks.

I. INTRODUCTION

A wireless sensor network consists of a large number of

small sensors with low-power transceivers. These sensors are

an effective tool for gathering data for a variety of purposes,

such as border protection, surveillance of forests for fire, and

tracking of animal movements. The data collected by each

sensor is communicated via a multi-hop path in the network

to a single processing center, the base station. The base station

uses all reported data to determine the characteristics of the

environment or detect an event.
Communication via the on-board radio is the most expensive

operation of the sensor nodes [1]. In radio communications,

the signal strength decreases proportional to the square of the

propagation distance [2]. In other words, to have the same

signal strength reach twice the distance, four times the amount

of energy is required. Protocols such as LEACH [3], and

those described in [4] and [5] reduce energy consumption

and increase the lifetime of the network. The basic idea

in these protocols is to cluster sensors into groups and to

choose a cluster head such that sensors communicate only

to their cluster head. The cluster heads then communicate the

aggregated information to the processing center. Clustering has

been shown to greatly reduce power consumption, is easily

scalable, and is robust in face of node failures [3]. A good

clustering scheme takes into account one or more of the

following: communication range, number and type of sensors,

geographical location, and remaining energy [6]. Clustering

and proper cluster head selection in order to maximize the

lifetime of the network are important considerations when

designing protocols and algorithms for sensor networks [7].

A sensor network can be expressed as a graph G = (V,E),
where each of the vertices represents a sensor node and

there is an edge between two vertices if their corresponding

sensor nodes are within each other’s communication range. A

dominating set of a graph G = (V,E) is a subset V ′ ⊆ V
such that each x ∈ V − V ′ has a neighbor in V ′. The

assignment of nodes to cluster heads is often modeled as a

dominating set (DS) problem [8]. The minimum dominating

set problem is NP-complete for general graphs [9] and remains

NP-complete for planar graphs, unit disk graphs, bi-partite

graphs, and chordal graphs, but it does admit a Polynomial

Time Approximation Scheme (PTAS) for planar graphs and

unit disk graphs [10]. The dominating set problem models

the optimization problem of finding a small number of cluster

heads.

Clustering in sensor networks and in Mobile Ad-Hoc Net-

works (MANET) benefits from using a dominating set ap-

proach. The dominating set approach leads to better clustering

because dominating set based clustering can be executed in a

constant number of rounds [11]. A DS based approach works

because every node in the network is either a dominating node

or is only one hop from a dominating node [12]. Single-hop

communications within clusters is appropriate because most

nodes will be close to their cluster head and their links are of

good quality [13].

Cluster heads spend additional energy on message trans-

mission, so a small set of cluster heads might not be optimal

from a network survivability standpoint. For instance, using a

dominating set as the set q of cluster heads comes with the

disadvantage that the network might lose a few cluster heads

and become fragmented fairly soon. Consider the graph shown

in Figure 1. Each node starts with the same amount of energy

(7 units) (Figure 1(a)) and let’s assume that one unit is used

for each receive or send and the nodes in the dominating set

combine all received data into one outgoing message. The

optimal dominating set is one node (Figure 1(b)), but the

network becomes disconnected after only one time step. On

the other hand a slightly non-optimal dominating set using the

heuristic “Don’t give a cluster head more than three nodes”
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results in a network that survives two time steps as shown in

Figures 1(c) and 1(d) (the shaded nodes represent the cluster

heads).
A wireless sensor has many constraints, energy being one

of the important ones. Other constraints include bandwidth,

storage and computational abilities. A wireless sensor network

needs to consider these and other constraints when choosing

cluster heads and assigning nodes to clusters. For example,

each node sends one packet per round to its cluster head. The

length of a round is limited, this limits the number of nodes

a cluster head can support. Additionally, a cluster head has to

store received messages until they are combined at the end of

each round, this also limits how many nodes a cluster head

can support. For this work, we have chosen to concentrate

on the limited energy available to each sensor and the natural

limitations that puts on the size of each cluster.
Motivated by the above examples, we introduce the energy

constrained minimum dominating set of a graph in order to

achieve these objectives. The contributions of this paper are

summarized as follows:

• We introduce and define the Energy Constrained Domi-

nating Set (ECDS) Problem in Section II.

• We describe the problem of developing clusters so that

the energy consumption during each round of processing

is minimized without exhausting the available resources

of any given node. In the energy constrained DS problem,

we are given integer constraints on each node that denote

the maximum number of relay links a node can handle if

it is chosen as a cluster head. The objective is to minimize

the size of the cluster head set subject to the constraint

that no node has more work than it can handle and that

every node is either in the constrained DS or one hop

from such a node. Since the clustering algorithm typically

runs repeatedly (for example, when nodes move or cluster

heads die), we give a practical distributed algorithm in

Section IV.

• We prove that the distributed algorithm runs in

O(log n log Δ) rounds with high probability, where Δ is

the maximum degree of a node in the graph. We provide

the proof in Section V.

• We support our theoretical analysis with extensive sim-

ulations using TOSSIM. We compared the performance

of the distributed ECDS algorithm to the HEED algo-

rithm [14]. HEED selects cluster heads according to

residual energy and with node proximity to neighbors

or node degree. Our protocol uses local information

about the connectivity of each node and the connectivity

of its neighbors in addition to the residual energy to

decide which node should become a cluster head. ECDS

takes less time and fewer rounds to cluster the network,

allowing more messages to reach the base station. For the

scenarios in our study, ECDS clustering takes 3.5 rounds

or less, compared to 4.5 rounds or less for HEED. The

number of cluster heads is as expected and the number

of nodes in each cluster remains steady. Our algorithm

results in very few single node clusters. The number of

cluster heads, the size of the clusters and the number

of clusters which contain only the cluster head are much

better in ECDS then in HEED. The lifetime of the sensor

network, measured as time of first node death and time

of last node death, is better in ECDS than in HEED.

While the overall energy consumption is slightly higher

for ECDS, when considering that ECDS produces more

useful data, the energy consumption per message is much

lower. The results of said simulation are available in

Section VI.

II. DEFINITIONS AND NOTATIONS

This section describes the notations used in the rest of the

paper and defines the dominating set, network clustering, and

energy constrained connected dominating set.

Definition 2.1: For a graph G and a subset S of the vertex

set V (G), denote by NG[S] the set of vertices in G which are

in S or adjacent to a vertex in S. If NG[S] = V (G), then S
is said to be a dominating set of G.

Definition 2.2: Given an undirected graph G = (V,E), and,

for each vi ∈ V (G), a constraint r(vi) ∈ N, the energy-

constrained dominating set (ECDS) of G is a pair (S, C),
where C is an assignment from x ∈ S to Vx ⊆ V such that

(a) {Vx | x ∈ S} is a partition of V , (b) for each x ∈ S,

x ∈ Vx ⊆ NG[{x}], and (c) for each x ∈ S, ||Vx|| ≤ r(x)+1.

In the definition of ECDS, we assume that when a node is

selected as a cluster head, it includes itself in the cluster.

(See part (b) of the definition.) Also note from the “+1” in

condition (c) that we allow a node to cover itself for free. That

is, the constraint r(x) for x denotes the maximum number of

nodes that x can cover in addition to itself.

ECDS is also related to, but different from, the Network

Clustering problem [15]. ECDS has a constraint parameter

that is not present in Network Clustering. Also, the clusters

must form a partition in ECDS, where as they may overlap

in the Network Clustering problem. The general dominating

set can be described as a constrained dominating where each

constraint is equal to n, the number of nodes in the graph. It

trivially follows that the constrained minimum dominating set

is NP-complete. The minimum dominating set in the general

form has approximation algorithms of within 1 + log ‖V ‖.
Since the constrained dominating set problem is a special case

of the general dominating set problem, no improvement on

these bounds will be possible.

In Wireless Sensor Networks (WSN) coverage generally

means ensuring that the entire area has proper sensor distribu-

tion to ensure even sensing. In this work, we define coverage

as one node’s ability to handle the relaying of messages to

and from other nodes in its cluster.

III. RELATED WORK

In [16], cluster heads are chosen so that the energy con-

sumption over the entire network is even, ensuring that the

network lives as long as possible. A node will chose a cluster

head to ensure the overall energy consumption in the entire
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Fig. 1. Energy constraint clustering example: 1(a) Original Network 1(b) Without constraints after one round 1(c) With constraints after one round,1(d) With
constraints after two rounds

network is even. Our algorithm, on the other hand, requires

only local information about the topology and residual energy.

In [17] each vertex is assigned a weight, as well as a

capacity, and the goal is to minimize the sum of the weights

without exceeding the capacity of any vertex. The authors

provide a (2 + ε) OPT approximation algorithm.

A randomized distributed algorithm that runs in

O(log n log Δ + 1) rounds and where the size of the dominat-

ing set obtained is, with high probability, within O(log n) of

the optimal, is presented in [18]. Our distributed algorithm is

based on this algorithm and extends its ideas to vertices with

constraints and applies it to wireless sensor networks.

A fast, distributed algorithm is presented in [19]. It is used

to compute a small k-dominating set D (for any fixed k)

and its induced graph partition. (which breaks the graph into

radius k clusters centered around the vertices of D). The time

complexity of the algorithm is O(k log∗ n), where log∗ is the

inverse Ackermann function.

In [20], a series of approximation algorithms for finding a

small, weakly-connected dominating set (WCDS) in a given

graph is presented for use in clustering mobile ad hoc net-

works. The main contribution of the work is a completely

distributed algorithm for finding small WCDS. Our work

focuses on wireless sensor networks and creates connected

dominating sets.

The connected minimum dominating set is considered in

[21]. The authors provide two approximation algorithms which

achieve approximation factors of 2H(Δ) + 2 and H(Δ) + 2
where Δ is the maximum degree in the graph and H is the

harmonic function.

IV. DISTRIBUTED ALGORITHM

This algorithm is a modification of the local randomized

greedy (LRG) algorithm from [18]. The LRG algorithm is a

modification of the distributed version of the greedy algorithm

of [22]. To enable comparison, we first informally describe

the LRG algorithm and then describe our modification to the

algorithm.

The LRG algorithm proceeds in rounds. At the start of a

round, each node that is not already in the dominating set

computes whether it wants to be a candidate dominator in that

round. Candidacy is determined by letting only nodes that can

cover a large number of nodes be candidates. These nodes

must have a large number of neighbors remaining. Note that

a node can be covered by multiple candidates. A node defines

its support as the number of candidates that cover it. Each

node is selected for the dominating set with a probability that

is the inverse of the median of supports of all nodes that it

covers. Once a node is selected, its neighbors are considered

“covered”. The round has ended; if uncovered nodes remain,

another round starts.

The reason for using the median of supports follows: If we

pick all the candidates, then we might pick too many nodes

for the dominating set. If we pick only one candidate, then we

may require too many rounds.

We will now describe our modification of the LRG al-

gorithm and show an effective (O(log n log Δ)) randomized

distributed algorithm for ECDS. In this version, the algorithm

is required to obey the constraints in expectation. In particular,

for each node u, E[# nodes covered by u | u is selected

as a cluster head] ≤ r(u). In fact, our algorithm obeys the

constraint in expectation in an even stricter sense. Note that

in the above formulation, it is possible for certain sets of

cluster heads to grossly violate the constraints. For example,

the above constraint allows an algorithm to have the following

behavior: Whenever the algorithm outputs the set {v1} as

the cluster head, all the constraints are violated grossly. Our

algorithm does not have this undesirable behavior. In fact, our

algorithm obeys the following: Let u be an arbitrary node and

let U ⊆ V − {u}. Then, E[# nodes covered by u|U ⋃{u} is

selected as a cluster head] ≤ r(u). This basically says that the

nodes obey the constraints in expectation independent of one

another.

The following issues must be handled:

1) What is the support of a node?

2) Given that we select a node x to be a dominator, how do

we select which nodes to cover/dominate from among

the neighbors of x.

To address issue 1, we say that the constrained span c(x) of

a node x at a given step in our algorithm is the smaller of the

following two quantities: the number of uncovered neighbors

of x and the constraint of x. (The set of neighbors of a

node x includes x and all nodes with which x shares a high

quality communication link/edge). Let x be a candidate and

let y be a node that is adjacent to x. The out-support sout(x)
of x is the ratio of the constrained span c(x) to the number

of uncovered neighbors of x. For example, if a candidate x
has 5 uncovered neighbors and the constraint of x is 3, then

c(x) = 3, sout(x) = 3/5. The out-support of x is the fractional

support a node gives to each of its neighbors. The in-support

814



sin(y) of y is the sum of the out-supports of each neighbor of

y. Thus, the in-support of a node is the total support a node

will get if all its neighbors are dominators and each gives

fractional support to all the neighbors. Roughly speaking, the

larger a node’s in-support, the larger the probability that it will

be covered in a randomly chosen dominating set.

How should we decide which nodes to select as dominators?

Certainly, selecting all nodes would be overkill. Consider a

node x whose neighbors y1, y2, . . ., yk have in-supports (in

increasing order) sin(1) ≤ sin(2) ≤ . . . ≤ sin(k). Clearly,

yk “needs” node x as a dominator at most as much as yk−1

needs x because sin(k−1) ≤ sin(k). Similarly, yk−1 needs x
at most as much as yk−2 needs x, and so on. Thus, to decide

whether we want to select x as a dominator (2 above), we use

the inverse of the median of sin(i)’s. More specifically, we

select a candidate x with probability equal to the inverse of

the median of the in-supports of the neighbors of x.

The complete algorithm, the weighted local randomized

greedy (WLRG) algorithm, is described in Algorithm 2.

INPUT: Graph G = (V,E), constraint r(vi) on vertices

OUTPUT: Subset D ⊆ V , set of currently chosen vertices

1: Span calculation: Compute the constrained span c(x) by

computing the minimum of the constraint and the number

of uncovered neighbors of x. Also, compute ĉ(x), the

rounded constrained span as the smallest power of 2 that

is at least as much as c(x).
2: Candidate selection: Compute whether ĉ(x) is at least

as much as the rounded constrained span of each node

within a distance of 2 from x. If so, x is a candidate.

3: Constrained out-support calculation: If x is a candidate,

compute the constrained out-support of x as follows: If

c(x) = 0, let sout(x) = 0. Else,

sout(x) =
c(x)

||N(x)− C|| .

Note that ||N(x) − C|| is the number of uncovered

neighbors of x.

4: Constrained in-support calculation: If x is an uncovered

node, let A(x) be the set of neighbors of x that are

candidates. Compute the constrained in-support sin(x) of

x as

sin(x) =
∑

y∈A(x)

sout(y).

5: Dominator selection: If x is a candidate, find the median

m of {sin(y) | y ∈ N(x) − C}. Let p = 1/m. With

probability p, add x to D.

6: Neighbor selection: If x is selected, add x to D, and for

each neighbor y ∈ N(x) − C, select y with probability

sout(x) and add it to Vx. Set C =
⋃

x∈D Vx.

7: Go to the next round.

Fig. 2. Weighted Local Randomized Greedy Algorithm

Explanatory notes on the algorithm: Let D = C = ∅. D
will denote the set of nodes selected to be in the dominating

set. C will denote the set of nodes already covered by the

dominators. Also, the set of neighbors of x with which x
shares a good communication link are determined using the

received signal strength indicator(RSSI). RSSI is inversely

proportional to the signal strength. This allows nodes to

communicate only with other nodes to which there is a strong

connection. Fewer retransmissions will be required to achieve

a successful transmission over such links. While there is

only a weak correlation between RSSI and node distance, the

link quality does impact the amount of energy required for

communications.

• An intuitive way to think about sin(y) is the follow-

ing: Suppose all candidate nodes were made domina-

tors. Suppose also that each dominator x selected c(x)
neighbors—the maximum number of nodes that x can

dominate—at random from its neighbors. Then, sin(x)
is the expected number of dominators that cover the

uncovered node x.

• A candidate whose uncovered neighbors all have large

sin’s intuitively need not be selected as a dominator,

because its neighbors will likely get covered by other
nodes. On the other hand, if we only select very few

dominators, then the algorithm will run for many rounds.

This is the intuition for selecting a dominator with

probability equal to the median of the inverse of sin’s.

We can show the the algorithm described above (with a

slight modification) returns a dominating set that obeys the

constraints with high probability (whp). The number of rounds

is O(log n log Δ) (Δ is the maximum constrained degree)

whp.

V. ANALYSIS OF THE DISTRIBUTED ALGORITHM WLRG

WLRG (Weighted Local Randomized Greedy) is described

in Section IV. We now show that WLRG terminates in

O(log n log Δ) rounds with high probability.

Theorem 5.1: WLRG on a graph G = (V,E) terminates

in O(log n log Δ) where n is the number of nodes and Δ is

max{min(t(v), d(v)) | v ∈ V }, where t(v) is the constraint

on v and d(v) is the degree of v.

We will now give the proof of this result. The structure

of this proof closely follows the analysis of LRG [18].

In fact, since ECDS is a generalization of the dominating

set problem, WLRG is a generalization of LRG. The key

difference between our analysis and the analysis of LRG is

that (a) we need a notion of partial coverage and (b) we need

to incorporate in our analysis the neighbor selection step, a

step that is not present in the LRG algorithm.

Let G = (V,E) be the sensor node graph. In the proof,

we will focus on a round (say the ith round) of WLRG. Let

C be the set of nodes covered in an earlier round. Let H =
(V ′, E′) be the subgraph of G such that V ′ is the union of

all candidate nodes X (as defined by the candidate selection

step) and all uncovered nodes Y adjacent to some x ∈ X , and

E′ consists of edges (u, v) ∈ E where u is a candidate and v
is an uncovered node.
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Lemma 5.2: (Equivalent to Lemma 3.1 of [18].) All candi-

dates in a connected component of H have the same rounded

span.

Proof: Let v1 and v2 be two candidates in a connected

component of H . Consider a path p from v1 to v2 in H .

Then there cannot be two consecutive nodes in p such that

both are non-candidates. (This is because at least one end-

point of each edge in H is a candidate node.) Since any two

candidates within a distance of 2 must have the same rounded

span, we have that all candidates that lie on p have the same

rounded span. And it follows that all candidates in a connected

component of H have the same rounded span.

We will now show using a potential function argument

that WLRG terminates in O(log n log Δ) rounds with high

probability. We define the potential at the start of a round as

follows: Let m be the maximum rounded span of any node at

the start of a round. Define Φ as

Φ =
∑

v:ĉ(v)=m

c(v).

Lemma 5.3: (Equivalent to Lemma 3.2 of [18].) Let Φi and

Φ′
i be the potentials at the beginning and end of round i. There

is a d > 0 such that E[Φ′
i] ≤ dΦi.

Note that the potential at the start of round i + 1 might not

be the same as the potential at the end of round i because the

underlying graph changes due to some nodes being covered

in round i.
Recall that X is the set of candidates. For each candidate v,

let U(v) denote the set of uncovered neighbors of v. Sort the

elements of U(v) in nonincreasing order of their in-supports

sin()’s. Let T (v) (respectively, B(v)) denote the set of the

first �||U(v)||/2� (last �||U(v)||/2�) elements of U(v). For

a candidate v and a node u ∈ U(v), we say that v is a

top dominator for u if u ∈ T (v). The probability that a top

dominator v of u is selected is 1/m, where m is the median

of {sin(y) | y ∈ U(v)}. Since u ∈ T (v), 1/m ≥ 1/sin(u).
For an uncovered node u in H , we say that u is a top

heavy node if at least sin(u)/4 of its in-support comes from

candidates that are top dominators for u. An uncovered node

is bottom heavy if it is not top heavy.

Lemma 5.4: If u is top heavy, then the probability that u
is covered in this round by a top dominator of u is at least

1− e−1/4.

Proof: Let Pc(u) be the probability that u is covered in

this round by a top dominator. Then, the probability that u is

not covered in this round by a top dominator is 1 − Pc(u).
Since u is not covered if none of the top dominators adjacent

to u cover u, we can write this probability as:

Πv∈X:u∈T (v)P [u is not covered by v].

We will upper bound this term.

Let Pd(v) be the probability that v is picked to be a

dominator in this round. If u is not covered by v, then exactly

one of the following events happen:

• v is not picked to be a dominator (with probability 1 −
Pd(v) or

• v is picked to be a dominator (with probability Pd(v))
and yet v does not cover u (with probability 1−sout(v))

Thus,

P [u is not covered by v] = (1−Pd(v))+Pd(v)(1−sout(v)),

which simplifies to 1−Pd(v)sout(v). As shown above, if u ∈
T (v), then Pd(v) ≥ 1/sin(u). Thus,

Πv∈X:u∈T (v)(1−Pd(v)sout(v)) ≤ Πv∈X:u∈T (v)(1− sout(v)
sin(u)

).

Define xv = sout(v)
sin(u) .

Note that since u is top heavy, it follows from definition,

that

Σv∈X:u∈T (v)sout(v) ≥ sin(u)
4

.

Thus,

Σv∈X:u∈T (v)xv ≥ 1
4
.

Let there be n elements in the set {v ∈ X | u ∈ T (v)}.

Πv∈X:u∈T (v)(1− xv) ≤ (1− 1
4n

)n ≤ e1/4.

Since 1− Pc(u) ≤ e1/4, it follows that Pc(u) ≥ 1− e1/4.

Consider an arbitrary edge (v, u) ∈ E′. (Recall that E′ is

the set of edges (v, u) in H such that v is a candidate and u
is an uncovered node.) This edge can be one of four types:

1) v is a top dominator for u and u is top heavy (call this

set of edges Ett),

2) v is a top dominator for u and u is bottom heavy (call

this set of edges Etb),

3) v is a bottom dominator for u and u is top heavy (call

this set of edges Ebt), or

4) v is a bottom dominator for u and u is bottom heavy

(call this set of edges Ebb).
Let Stt =

∑
(v,u)∈Ett

sout(v). Similarly, define Stb, Sbt, and

Sbb. Let S be the sum, over all edges (v, u) such that v is a

candidate and u is an uncovered node in H , of sout(v).
Note that Ett∩Ebt or Ebt∩Ebb might not be empty because

a node v can be both a top and a bottom dominator for a node

u. Certainly, though, Ett ∩ Etb = Ebt ∩ Ebb = ∅.
Lemma 5.5: (equivalent to Lemma 3.4 of [18].) Let Stt and

S be as defined above. Then,

Stt ≥ (1/3)S.

Proof: Consider a bottom heavy node u.

∑

v∈X:u∈B(v)

sout(v) <
sin(u)

4
.

Thus, ∑

v∈X:u∈B(v)

sout(v) ≥ 3sin(u)
4

.

Thus,
∑

v∈X:u∈B(v)

sout(v) > 3
∑

v∈X:u∈T (v)

sout(v).
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If we sum both sides of the above inequality over all bottom

heavy nodes, we have that Sbb ≥ 3Stb. We also know that

Sbb ≤ (1/2)S. Thus, Stb ≤ (1/6)S. Now,

Stt + Stb ≥ (1/2)S.

Thus, Stt ≥ (1/2− 1/6)S = (1/3)S.

We can now use these results to prove Lemma 5.3 and also

Theorem 5.1 in exactly the same manner as [18]. The only

difference between the two proofs is that in our proof Δ is

max{min(t(v), d(v)) | v ∈ V }, a global upper bound on the

constrained span for any node in any round, while in [18] Δ is

the maximum degree of the graph, also a global upper bound

on the span of a node in the graph.

VI. EXPERIMENTS

In order to test the distributed clustering algorithm, we

implemented the algorithm in TinyOS and ran simulations in

TOSSIM [23]. We compared the ECDS algorithm against the

HEED algorithm [7] and used a random topology for each

simulation. We choose HEED for comparison because it has

been proven as a reliable algorithm, which can be implemented

in a WSN. We ran a simulated 15 minutes for network sizes of

30, 45, 60, and 75 nodes. We set the initial energy and the cost

per action in such a way that a 15 minute simulation would

provide adequate data for analysis. A simulation of 15 minutes

with 75 nodes runs up to 24 hours, thus we limited ourselves

to short simulated time frames. Our algorithm is independent

of the routing protocol used, but for our experiments we

use the Surge multi-hop application that is part of TinyOS.

HEED also uses the Surge multi-hop routing protocol. Each

node generates a reading every 20 seconds. The cluster heads

aggregate the readings. Surge uses a link estimation and parent

selection (LEPS) mechanism to determine multi-hop routes.

All traffic received at each node is monitored and used to

update the internal neighbor table. The neighbor table tracks

all neighbors and selects the next hop based on shortest path

semantics. The default destination is the base station.

We use a credit-point system for updating the mote energy

budget as used with iHEED [24]. ECDS and HEED use energy

for tasks such as sending and receiving and points are deducted

proportionally to the actual amount of energy used. Each node

starts with the same amount of points and for each send/receive

an amount proportional to the size of the message is deducted.

For the simulation, we set parameters corresponding to the

initial energy and the cost per action. In an implementation,

this data should be read from the sensors hardware. In our

implementation, cluster heads receive many more messages

from nodes in their cluster than it sends messages to nodes in

its cluster. All messages are sent with the same power level,

therefore we do not consider the distance when determining

the cost of each send/receive [25]. For ECDS, the initial energy

allows a constraint of 20. During each 15 minute simulation,

periodic re-clustering was performed. Whenever the network

re-clusters, the constraint is updated and is based on the energy

available at each node. For each network size, the experiments

were repeated 30 times.

We measured the size of the dominating set and compared

it to the expected size of the dominating set for each round,

which allowed us to show that the algorithm performs as

expected. We measured the number of rounds the algorithm

executed until the entire network was clustered. We compared

the time of the first node’s deaths to the last node’s death.

Having all nodes die at approximately the same time provides

the most useful WSN. Additionally, we measured the time

it took for the entire network to cluster. A fast clustering

algorithm ensures a useful WSN.

A. Cluster Generation

In a distributed environment it is important to evaluate how

long it takes for a clustering protocol to finish. There are two

measurements for WSN : time and the number of rounds of

execution. Figure 3(a) shows the average number of rounds

to cluster the network for various sizes. An ideal distributed

clustering algorithm will cluster in a constant number of

rounds. Both the ECDS and the HEED algorithm execute

in a constant number of rounds, but the ECDS algorithm

finished in fewer rounds. The algorithm depends on the routing

information obtained from the (independent) routing protocol.

This routing information may not be complete, especially

in the earlier rounds. Incomplete routing information will

exclude some nodes from joining a cluster at each round.

Similar behavior can be seen in Figure 3(b), which shows

the average time it took for the networks to cluster. Clearly,

the number of rounds and the time are related and both are

important measurements. An algorithm that runs over several

short rounds may still outperform an algorithm that runs in a

constant number of long rounds. Again, it is important that an

algorithm takes a constant amount of time, no matter the size

of the network. Both the ECDS and the HEED algorithm take

a constant amount of time, but the ECDS algorithm is faster.

B. Cluster Goodness

Our algorithm uses a randomized, probabilistic approach.

At each round, the sum of the probabilities is equal to the

number of expected cluster heads. Figure 3(c) shows the

average expected number of cluster heads versus the average

actual number of cluster heads for each network size. For all

networks, the average number of expected cluster heads is

close to the average actual number of cluster heads, indicating

that our algorithm performs as expected. Figure 4(a) shows

the average size of the dominating set. The dominating set

is the number of cluster heads selected for each simulation

run. Each node starts with the same amount of energy, an

amount that can support up to 20 nodes in a cluster. Another

important consideration is the number of nodes assigned to

each cluster. Scalability is improved when clusters are of

similar size regardless of network size. Figure 4(b) shows

the average number of nodes in each cluster. In ECDS the

number of nodes assigned to a cluster remains relatively

constant, while the size decreases for HEED. Not only the

number of nodes in each cluster and the number of clusters

matter, but also how many of those clusters are single-node
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clusters (clusters in which the cluster head is the only node). A

single node cluster does not improve performance, but they are

unavoidable. A good algorithm will minimize the number of

such clusters. Figure 4(c) shows the average number of single

node clusters for ECDS and HEED. For ECDS the number

of single node clusters decreases as the size of the network

grows. ECDS chooses only neighbors which are “near” as

cluster heads, some nodes will not be near a cluster head and

thus create single node clusters. As the network grows, each

node has more opportunities at finding a near cluster head,

hence the decrease. On the other hand, HEED’s single node

clusters increase in number as the network grows.

C. Lifetime of Sensor Nodes

In a wireless sensor network, the early death of some

nodes can disconnect other nodes from the base station. This

situation can lead to a reduced usefulness of the network

because some data cannot reach the base station. We measure

lifetime in two ways: (1) the time at which the first node

dies and (2) the time at which the last node dies. The time

at which the first node dies is important because it can lead

to a disconnection of part of the network. The time at which

the last node dies shows how long nodes are able to run the

protocol. Figure 5(a) shows the time at which the first node

died for the ECDS and the HEED algorithm. The time of the

first death asymptotically decreases in ECDS and is constant

for HEED. Figure 5(b) shows the time of death for the last

node in the network. It is equally important that all nodes

die around the same time. A single node that outlives others

by a large margin is of little use. It can be estimated that

the lifetimes will be similar for ECDS and HEED in large

networks.

For both ECDS and HEED the first and last deaths are

within 200 seconds of each other, indicating an even energy

consumption across the network.

D. Energy Consumption

The amount of energy used during the execution of a

protocol is very important in sensor networks. Figure 5(c)

shows the average energy consumption for the two protocols.

We use PowerTossim to determine energy used. From that

we can calculate the average energy used per node and the

average per simulation. The energy consumption of the HEED

algorithm is linear, while the energy consumption of the ECDS

algorithm is asymptotically decreasing. As the networks grow

larger, the energy consumption for ECDS and HEED will be

similar. In sensor networks, the energy consumption for each

message sent should be considered in addition to the overall

energy consumption. A sensor network that uses very little

energy is not useful if it does not produce an adequate amount

of data. Figure 5(d) shows the average energy consumption for

each message sent. Since ECDS clusters faster, it generates

more messages.

VII. CONCLUSION AND OPEN PROBLEMS

In this paper, two different algorithms are presented to

address the problem of energy constrained clustering for

wireless sensor networks. For the greedy algorithm we pro-

vide an O(log n) approximation guarantee. The second al-

gorithm presented is a distributed algorithm for the energy

constrained dominating set. We proved that this algorithm runs

in O(log n log Δ) rounds whp. This algorithm performs well

on the random graphs in our simulations. Our simulations

showed that our algorithm performs very well in terms of time

to cluster, cluster size, and energy consumption. We compared

our algorithm with the HEED algorithm. It outperformed

HEED in terms of cluster size, time to cluster, and energy

consumption per message sent. Future work will include

extending the algorithm to consider node proximity when

selecting cluster heads and deciding which nodes to add to

the cluster. Considering node proximity will produce tighter
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clusters and minimize the overall energy consumption within

each cluster. Secondly, we plan on extending the algorithm to

allow for multi-hop clusters. Currently every node is one hop

from its cluster head. We will extend the algorithm to allow

nodes to be k-hops from their cluster heads. Additionally,

we plan on extending the algorithm to allow each node to

have multiple cluster heads which will ensure that each node

has access to at least one cluster head at all times. Ensuring

multiple coverings for each node will allow for the use of

multi-path routing in clustered networks.
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