
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1998

Systolic Algorithm for Processing RLE Images Systolic Algorithm for Processing RLE Images

Hao Feng

Fikret Erçal
Missouri University of Science and Technology, ercal@mst.edu

Filiz Bunyak
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
H. Feng et al., "Systolic Algorithm for Processing RLE Images," Proceedings of the IEEE Southwest
Symposium on Image Analysis and Interpretation, 1998, Institute of Electrical and Electronics Engineers
(IEEE), Jan 1998.
The definitive version is available at https://doi.org/10.1109/IAI.1998.666872

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229136774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IAI.1998.666872
mailto:scholarsmine@mst.edu

SYSTOLIC ALGORITHM FOR PROCESSING RLE IMAGES

Ha0 Fengt, Fikret ErcalS, and Filiz Bunyap

Computer Science Department and Intelligent Systems Center,
University of Missouri - Rolla

ABSTRACT

Image difference operation is commonly used in
on-line automated printed circuit board (PCB) inspection
systems as well as many other image processing
applications. In this paper, we describe a new systolic
algorithm and its system architecture which computes
image differences in run-length encoded (RLE) format.
The efficiency of this operation greatly affects the overall
performance of the inspection system. It is shown that,
for images with a high similarity measure, time
complexity of the systolic algorithm is a small constant.
A formal proof of correctness for the algorithm is also
given in the paper.

I. INTRODUCTION

On-line automatic inspection of PCBs requires
acquisition and processing of gigabytes of binary image
data in a matter of few seconds. To meet the demands for
high speed and accuracy, we have designed a fast
modular RLE-based PCB inspection system. The system'
uses run-length encoding (RLE) for storage and
operations and an inspection scheme which exploits the
availability of an artwork for comparison purposes. It is
suitable for parallel processing and consists of four steps:
(i) segmentation of artwork and feature extraction, (ii)
image acquisition, (iii) inspection of blank areas, and (iv)
inspection of trace areas. Steps (ii), (iii) and (iv) are time-
critical online operations, therefore, they should be
performed with high efficiency. Image difference is the
most frequently used operation in steps (iii) and (iv), and
hence, overall system performance critically depends on
the speed of this operation. In this study, a parallel

systolic algorithm is developed to compute the difference
between the corresponding rows of two images which are
represented in compressed form using RLE. The system
performs its operations in compressed mode and can be
effectively used to find the differences between two RLE
images.

Systolic systems use cellular iterative
computations and perform global tasks through exchange
of local data in pipelined fashion2. Since most of the
image processing operations exhibit high local
dependencies among data elements, systolic machines are
widely used in image processing applications such as
filtering3, thinning4, convolution5, etc. The
straightforward parallel method for computing these
iterative-convergent operators is through a globally
synchronous updating mode: all variables are updated at
once, based on the values calculated during the previous
step, before another iteration step is initiated. Most
systolic image processing algorithms proposed so far are
based on operations on pixel data. Since systolic
machines are designed to exploit spatial information and
most of the spatial locality information is lost in
compressed domain, it is extremely difficult to design
systolic algorithms which operate on compressed image
data. Fortunately, some compression techniques such as
RLE preserve part of the information pertaining to spatial
locality. Hence, in this paper, we are able to propose a
systolic system that fiids the difference between two
binary images represented in RLE. Work is underway to
extend our design to other image operations in
compressed domain.

Figure 1 demonstrates the operation for finding

Figure 1 : RLE-based image difference

E-mail: feng@umr.edu WWW: http://www.umr.edu/-feng

E-mail: bunyak@umr.edu WWW: http://www.umr.edd-bunyak
* E-mail: ercal@umr.edu WWW http://www.cs.umr.edu/-ercal

127

mailto:feng@umr.edu
http://www.umr.edu/-feng
mailto:bunyak@umr.edu
http://www.umr.edd-bunyak
mailto:ercal@umr.edu
http://www.cs.umr.edu/-ercal

the difference (XOR operation) between the
corresponding rows of two images represented in RLE.
Pseudo-code for the sequential algorithm is given below:

Algorithm: RLE-based Image Difference(X0R)

Repeat Until end ofrow is reached
{

rows are equal)

don’t change Diference;
(as both of the rows switch color at the
same point their xor does not change
since (0 xor 1) == (1 XOI 0) and
(1 xor 1) == (0 xor 0) result color
remains the same)

Else Add a new run to Diference,
(Result switches color)
with start point: last end point
and end point: smaller of the end points of

Move to next run in the row having the
smallest end point among the current runs

If (end of current runs in both of the

Then Move to next runs in both of the rows;

current runs

1

II. RLE-BASED SYSTOLIC ~ G O ~ T ~ M FOR
IMAGE DIFFERENCE

We assume that each row of a given image is
expressed as a vector of run elements (tuples) as shown in
Figure 1. In each tuple, first element is the starting
position and the second element is the length of the run.
For efficiency reasons, only the runs corresponding to the
foreground pixels are used as input for the systolic
computation. Let’s assume that the maximum number of
runs in any row is bounded by k. Then the result of image
difference for two rows can have at most 2k tuples.
Therefore, 2k systolic cells are needed in the system to be
able to store the result data as shown in Figure 2. When
the computation is completed, each systolic cell will hold
either none or one tuple,

For each cell, 11 and 12 are used to input the
original data (tuples from rows of image1 and image2)
(see Figure 2(a)). Iin/Iout are used to pass the contents of
Register-Big between neighboring cells. Out is for
storing the final result back to memory. C signals the end
of the process. Termination is reached when none of
the cells holds a tuple in Reg-Big. Computation starts

Cell 1 Cell 2 Cell 2k Cell k

out

Figure 2. (a) Architecture of a cell (b) 2k cells cascaded together to form the systolic system

Image-1 (15,3) (20,3) (28,2) (32,3)
Image-2 (3,7) (13,5) (20,5) (28,2) (323)

step1
Cell1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell10

Reg-Small (15,3) (20,3) (282) (32,3) (32,3)* //if there is only one input structure, put it into Register-Small during initialization.
Reg-Big (3,7) (13,5) (20,5) (28,2)
Reg-Small (3,7) (13,5) (20,5) (28,2) (32,3)
Reg-Big (15,3) (20,3) (28,2) (32,3)

Reg-Small (3,7) (13,5) (20,5) (28,2) (32,3)
Reg-Big (153) (2 0 3 (282) (3 2 3
Reg-Small (3,7) (13,2)
Reg-Big (232)

Reg-Small (3,7) (13,5) (20,5) (282) (32,3)
Reg-Big (153) (2 0 3 (282) (3 2 3

Reg-Big

step2

Step3

Reg-Small (3,7) (13,2) (232)

result (3,7) (l3,2) (23,2), Final result after post-process (merging the adjacent runs) is (3,7)(13,2)(23,2).
(First two rows mean registers of each cell containing before cell computation, while last two rows mean registers of each
cell containing after cell computation before tuple-move.)

Figure 3. Systolic computation steps for the image given in Fig.l(k=5)

128

by inputting the run tuples in sorted order into the cells
through input ports I, and I2 as shown in the example in
Figure 3. Each cell executes the following algorithm
repeatedly until the termination condition is reached.

Cell Algorithm (LXOR and Data Move):

Cell algorithm uses two operations: LXOR and Move
which are defined in the next section. Depending on the
application, a post-processing step may be needed to
merge the result tuples that are adjacent with each other.

Repeat until (termination condition is not reached)
If there is no tuple or only one tuple in the cell

Else {
no computation is necssary.

// LXOR the tuples

Case 1 : (adjacent) The end position of one tuple is
the beginning position of another tuple, leave
them as they were but reallocate their register
position according to their beginning position.
Ex. (20,3) and (15,5) will be put into Reg-Big
and Reg-Small respectively.

Case 2: Two tuples have the same start position and
different length, the XOR result will be put into
Reg-Big.
Or Two tuples have the same end position and
different length, the result will be put into
Reg-Small.

Case 3: (Other) XOR two tuples and the resulted
two tuples will be put into two registers based on
their starting position.

Switch {

I
Move the tuple in Reg-Big (if exits) into right
neighbor. If the neighbor is empty, put the tuple into
Reg-Small of the neighbor, else put it into Reg-Big.

111. PROOF OF CORRECTNESS

The correctness of the algorithm can be shown
by proving that XOR operation is applied once and only
once to any two overlapping tuples in the given rows.
That is, any two overlapping tuples meet in a cell once
and only once at some step of the systolic execution and
the result of the operation will be the same as that
obtained in the sequential algorithm (XOR operation).

In order to prove this, we f is t give a formal
definition of the operations in a cell between two data
movements. Later, we show two important properties of
the operation that are essential for our proof. The actual

proof follows from the definition of the cell operation and
the given algorithm.

1) Definitions For Relative Tuple Positions:

Given two tuples, T1 (beginl, lengthl) and T2
(begin2, length2), they may either be disjoint or
overlapped. If the two tuples are adjacent (i.e. their end
points meet), by definition, they will be considered as
overlapped.

I) Disjoint tuples
If T1 and T2 are disjoint, T1 may be either “less

than” (T1 < T2) or “greater than” T2 (T1 > T2).
Foimally,

a) T1< T2, if (beginl+lengthl) < begin2
b) T1> T2, if (begin2+length2) < beginl

11) Overlapping tuples
We use the notation (T1 G T2) to denote that T1

and T2 have some overlap or they are adjacent with each
other. Using formal terms,

c) T1 e T2,
if (begin15 begin2 5 beginl+lengthl), OR
if (begin2 I beginl 5 begin2+length2).

Based on the relative positions of T1 and T2, we define
the following special relationships under this category:

cl) T1 c= (Left Clearly Contained in, LCC) T2,
when (beginl= begin2) and (lengthl < length2).

c2) T1 s (Right Clearly Contained in, RCC) T2,
when (beginl < begin2) and
(beginl+ lenghl = begin2+length2) .

(Note that T1 c= T2 and T2 3 T1 are different cases)
c3) T1 c (left adjacent with) T2,

c4) T1+ (right adjacent with)T2,
when (beginl+ lengthl = begin2).

when (begin2+ length2 = beginl).

2) Definition of LXOR Operation:

Computation of the image difference between
two rows is based on the LXOR operation performed
synchronously by each cell of the systolic array shown in
Figure 2. LXOR (less-condition XOR) operation is
performed on two input tuples T1 and T2. As a result of
this operation, two tuples are produced; Ts (small tuple)
and Tb (big tuple), either or both of which may be null.
By definition, if both Ts and Tb exist, then (Ts < Tb) or
(Ts c Tb). Operation LXOR can be formally defined as
follows:

T1 LXOR T2 = (Ts, Tb) where
Case (T1 t T2):
Case (T1 c T2):

Ts = T1, Tb = T2,

129

Ts = null, Tb = (beginl+lengthl, length2-lengthl)

Ts = (beginl, lengthl-length2), Tb =null.
Case (T 1 3 T2):

Other: Standard XOR is applied to two input tuples.
Resulting tuples will have a “<” relationship between
them, smaller tuple is called Ts, bigger one Tb.

Like standard XOR, LXOR has the following
two properties:
a) LXOR is commutative; T1 LXOR T2 = T2 LXOR T1.
b) T1 LXOR (T2 U T3) = (T1 LXOR T2) LXOR T3,

where T2 and T3 are non-overlapped.

Property (a) implies that the result of the
operation does not depend on the physical location of the
two tuples which are operands to the LXOR. In other
words, we need not pay attention to which registers the
two tuples in a cell are stored in.

Property (b) is interesting in that, for a tuple T1,
if it is overlapped with an aggregation of non-overlapped
(two or more) tuples, the result of LXOR operation
between T1 and the aggregation can be obtained by
operating T1 with the tuples in the sequence one at a
time. Obviously, in our systolic implementation, the
result of this operation will possibly be stored in multiple
cells of the systolic system.

In summary, between every move, each cell
repeatedly performs LXOR operation on the tuples stored
in Reg-Big and Reg-Small and then moves data in Reg-
Big to the right neighbor.

From condition (l), we can see

From (2) and (3), we have

From (4), we conclude that Ta, and Tbb are
disjoint, while it is possible that Tab and Tbs may overlap
with each other. So, moving Tab to CB and Tbb away from
CB guarantees that two possibly overlapped tuples will
not move away from each other and eventually meet
later. Since this process is repeated till there is no tuple
left to move in Reg-Big of any cell, any two overlapping
tuples will eventually meet some time during the process.
Also note from (1) that, at termination, the tuples in Reg-
Small (disjoint or adjacent) will be in (sorted) order.

We can see that, at any step in the algorithm, (4)
always holds before any data move. Also, from the
property 2) of LXOR operation, we can see that the final
result after all the data moves and after the post-
processing step for merging the adjacent tuples, is
equivalent to the result obtained by the algorithm RLE-
based Image Difference(X0R). This concludes our proof
for the general case.

It is easy to see that the proof above still holds
for the case that a cell might only have one tuple or no
tuples between data moves.

3) Correctness Proof:
IV. COMPLEXITY ANALYSIS

Let’s first make proof for general case where
there are two input tuples in each cell. For any two
neighboring cells CA and CB, assume that the tuples in
them are labeled as Tal, TQ, Tbl and Tb2, respectively.
Initially, (1) holds since input tuples are ordered. During
the process, this order is preserved since TI is always
replaced by previous Ts while T2 replaced by Tb of its left
neighbor.

The results of LXOR operation between them
are T,, Tab, Tbs and Tbb respectively, where T,, stands for
the small tuple in cell C,, and Txb stands for the big tuple
in C,. None of the four tuples is null in general.

Right after the LXOR operation in the cell and
before the data move, we will have

For the sequential algorithm, the time
complexity of the operation is O(2k) where k is the
maximum number of tuples in one row. For systolic
algorithm, originally there will be k cells with two tuples
each, and at each step, data will move to right one
position at a time. At the end, the tuples of the result
vector will be stored in the cells; one tuple per cell. The
length of a result vector may range from 0 to 2k.
Therefore, in the best case, the computation will finish in
1 step, and it will take k steps in the worst case. On the
average, the running time is expected to be W2. The time
complexity is highly dependent on the similarity of two
input images. Indeed, it is proportional with the amount
and the distance of run-length differences in two image
rows. Since, in an application such as PCB inspection, the
image rows are so much alike, the time complexity is
expected to be almost constant.

130

V. CONCLUSIONS

In this paper, we have presented an efficient
systolic algorithm to find the differences between two
run-length encoded images. The algorithm terminates in
W2 steps on the average, where k is the number of runs in
an image row. The time complexity is highly dependent
on the similarity of two input images. Since, in an
application such as PCB inspection, the image rows are
so much alike, the time complexity is expected to be
almost constant.

Currently, we are in the process of improving
our design such that i) the cells numbered between k and
2k can be utilized in the beginning of the computation
and ii) the termination condition may be reached even if
some cells have two tuples but that all tuples are disjoint
and in order. We are also gathering statistical data on the
distribution of image rows that are being compared. This
kind of analysis will help us to obtain a more accurate
average running time for the systolic computation.
Furthermore, we plan to develop similar systolic designs
for other commonly used image operations (e.g. dilation,
erosion, convolution, etc.) in compressed domain.

References

1. F. Ercal, F. Bunyak, H. Feng, and L. Zheng, A fast
modular RLE-Based inspection scheme for PCBs,
Proc. of SPIE - Architectures, Networks, and
Intelligent Systems for Manufacturing Integration,
Pittsburg, Oct. 1997, Vol. 3203, pp. 49-59.

2. Vipin Kumar, Ananth Grama, A. Gupta, and G.
Karypis, Parallel Computing Design and Analysis of
Algorithms, The Ben jdCummings Publishing
Company, Inc.

3. F. Robin, M.Renaudin, G. Privat and N. Van Den
Bossche, Functionally asynchronous array processor
for morphologicalJiltering of greyscale images, IEE
Pro-computer Digit Tech, Vol 143, No.5.

4. N. Ranganathan and K. B. Doreswamy, A Systolic
Algorithm and Architecture for Image Thinning,
Proc. Of Fifth Great Lakes Symoisium on VLSI,
Bufflo, NY, Mar. 1995

5. N. K. Ratha, A. K. Jain and D. T. Rover,
Convolution on Splash 2, Proc. Of IEE Symposium
on FPGAs for Custom Computing Machies, Napa
Valley, CA, April, 1995

131

	Systolic Algorithm for Processing RLE Images
	Recommended Citation

	Systolic algorithm for processing RLE images

