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Abstract 

We present a timestamp based algorithm for  the 
detection of both write-write and read-write conflicts 
for  a single file in distributed systems during network 
partitions. Our algorithm allows operations to occur 
in different network partitions simultaneously. When 
the sites from different partition merge, the algorithm 
detects and resolves both read-write and write-write 
conflicts without taking into account the semantics of 
the transactions. Once the conflicts huve been 
detected, some reconciliation steps f o r  the resolution 
of conflicts have also been proposed. Our algorithm 
will be useful in real-time systems where timeliness of 
operations is more important than response time 
(delayed commit). 

1. Introduction 

Replication of database files is a key factor to 
improve availability in distributed systems. However, 
when file replication is there, replicated copies must 
behave like a single copy. Several proposed methods 
[1,2,3,4,6,7,8,11,14,15,16] enforce consistency of the 
database by permitting replicated copies of the files to be 
accessed only in one partition in case of network or site 
failures. Many of these methods put restrictions on the 
execution of different transactions without guaranteeing 
that the files can be accessed in atleast one partition. 
Many of these algorithms handle only simple partitions 
(i.e., no multiple partitions). Most of these algorithms do 
not permit transactions to be backed out once they have 
been committed. Therefore, these protocols do not allow 
execution of conflicting transactions [ 13. Thus, they 
guarantee the consistency of the database across the 
partitions by severely limiting availability. 

In many real-time applications, it is desirable to keep 
the system functioning in the presence of some site 
failures or network partitions to increase availability. The 
operations should be allowed to execute independently in 
different partitions. However, the system will delay real 
commit of transactions (i.e., the transfer of data to stable 
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storage) until all the partitions merge. The processing of 
transactions in each partition will be consistent, however, 
global inconsistencies across the partitions may occur. 
Thus, there is a possibility of backing out some of the 
locally committed transactions in each partition. 

When the system is partitioned, each partition 
maintains the consistent data but cannot make sure that 
its actions do not conflict with the actions in the other 
partitions. In such cases, the conflicts are to be detected 
whenever any two partitions or some sites from different 
partitions merge. There are mainly two types of 
conflicting operations namely read-write and write-write 
[l] depending upon the order of executions of read and 
writes. These conflicting operations are important as 
their execution order affects the final database-state. 
When sites from different partitions merge, read-write 
and write-write conflicts among the copies of the 
database files are to be detected and resolved. This will 
re-establish the consistency among the copies of the 
database files within the new partition. 

Parker et al. [12] have proposed the detection of only 
write-write conflicts for a single file using version 
vectors. However, resolving inconsistency is not straight 
forward and is essentially left to the user. This scheme 
has also been extended to the transactions which access 
more than one file [13]. However, it does not detect all 
inconsistencies and in fact, detect some false 
inconsistencies [5]. 

In [5], a precedence graph technique for read-write 
and write-write conflict detection is proposed for 
replicated data in distributed systems. The committed 
transactions in each partition form the local transaction 
graph. At the time of reconnection, a global transaction 
graph IS formed. The cycles from the global transaction 
graph are detected and resolved by a transaction back out 
strategy to make the database consistent. In the situations 
when millions of transactions access the single file each 
second, the algorithm has to keep track of all the 
committed transactions and their commit orders. 
Furthermore, it has to detect all the cycles among the 
committed transactions in the global transaction graph. 
Also, to bring back the value of a file to a consistent 
state, conflicts have to be resolved. Hence, the algorithm 
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has high cost associated with it. Therefore, it may be 
worthwhile to detect and resolve conflicts without 
keeping track of transactions, or operations executed 
under the transactions. 

One might think that with a simple timestamp scheme 
using synchronized clocks [9] in each partition, it would 
be possible to detect write-write and read-write conflicts 
among the copies of a single file. However, this is not 
possible as the read and write operations execute 
independently in each partition. Therefore, the conflicts 
may or may not occur even if reading or writing time of a 
file in one partition is less than the writing time of the 
same file in other partition. This is because these 
timestamps are independent of each other and belong to 
two different partitions. Hence, the detection of conflicts 
using simple timestamp scheme may not possible. This 
has also been stated in [ 121. 

In [ 121, the following strategy has been mentioned 
(no algorithm was given) for the detection of only 
write-write conflicts using timestamps for a single file. 
Whenever a file is modified, one marks it with the two 
update times namely the previous and the last. When two 
partitions merge, a check is made to find whether no 
update in the file has occurred or one copy of the file 
differs from the other by a single update. In such cases no 
conflict occurs, but in many complex situations, the 
approach fails [ 121. For example, suppose ( wT~,wTlI}  
and { wTIO,wTI2} are two write timestamp elements 
associated with the copies of the same file in the two 
partitions say A and B, respectively. Each timestamp 
element represents the previous and the last write 
timestamps of the same file in the corresponding 
partitions. When these two partitions merge, we compare 
the write timestamp elements of the partitions A and B to 
detect the possible conflicts. Observe that write 
timestamps wT9 and wTll of partition A are less than 
wTlo and wTl2 of partition B, respectively. However, 
this does not detect whether a conflict is there or not for 
the following reasons. If these write timestamps 
correspond to independent updates in two different 
partitions then there will be a write-write conflict. 
Consider another situation where one of the write 
timestamp elements actually belongs to one of the 
previous partitions when the sites of the partitions A and 
B were together in one partition. Furthermore, suppose 
since then no further updates have taken place in the 
partition A. In this case, there will be no conflict. 
Therefore, the above scheme fails to detect whether 
conflict is there or not. 

We extend the scheme given in [12] using 
timestamps to deal with both read and write conflicts to 
increasing availability in real-time distributed systems. 
The timestamp-based approach given in this paper 
permits the operations to execute independently in 

various partitions and thus, allows possible 
inconsistencies to occur at the cost of more availability. 
We think that timeliness of operations in a real-time 
distributed system is more important than response time 
(real commit). That is, commits can be delayed until all 
the partitions finally merge into one partition but 
operations should be allowed to occur. Our algorithm 
detects read-write and write-write conflicts when any two 
partitions or sites from different partitions merge. Our 
approach here uses read and write timestamps to detect 
and reconcile both read-write and write-write conflicts 
for a single file. Once inconsistencies have been detected, 
we provide some reconciliation steps to resolve conflicts. 

Our technique for resolving conflicts do not take into 
account the semantics of the operations that manipulated 
the file, and the semantics of the data being stored. 
Hence, our scheme does not provide transaction oriented 
database recovery. Our scheme also assumes that all the 
transactions complete in their respective partitions before 
a partition occurs. That is, there is no active transaction 
at the time of a partition. However, as mentioned, no 
transactions can commit until all partitions finally merge 
into one partition. We, also, assume “read-one and 
write-all” approach within a partition. More details 
appear in [IO]. 

2. Definitions 

In this section, we formalize some definitions as 
follows : 
Definition 1: A network partition is said to occur when 
there are disjoint groups of sites such that no 
communication is possible between the groups. Each of 
the disjoint groups is called a partition that shares a 
common synchronized view of some set of files. 
Definition 2: A w-timestamp vector for a file f is defined 
as a sequence of n timestamp elements where n is the 
number of sites in the system. Each timestamp element 
can be at the most two tuple where the first entry is the 
first update time and second entry is the last update time 
at that site. After a network partition occurs, a new 
w-timestamp vector is formed corresponding to the 
updates in the new partition. When an update occurs, 
only the timestamp elements corresponding to the sites 
present in that partition is updated and the others remain 
same. 

For example, suppose s1 and s2 are two sites in the 
system. Let wTi and wTj be the initial and final update 
times at these sites respectively, for a file f, before a 
network partition occurs. The w-timestamp vector, when 
both the sites are in one partition, will be <{ wTi, wT, }, 
( wTi, wT, }>. After a partition, suppose sites’ SI and s2 
go to two different partitions say A and B, respectively. 
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If the first update occurs at site s2 in the partition B at 
time wTk then the new w-timestamp vector of partition B 
(and hence of site s2 ) will be <( wTi, wT, }, w T ~  >. 
That is, only the timestamp element of the site present in 
the partition is updated and the other remains same. 
Definition 3: A w-timestamp vector To is said to 
dominate an another vector TI if the following holds. 
1. To and TI are the w-timestamp vectors associated with 
the copies of the same file in the two partitions and, 

for each k = 1,2, ..., n where n is the number of sites in the 
system and { wTi , wTj } and { wT1, wT, } are the two 

timestamp elements of the w-timestamp vectors To and 
TI  , respectively. Also, wTi and wT1 are the initial and 
wTj and wT, are the last update times in their respective 
partitions. Intuitively, if To dominates TI,  the copy of the 
file with vector To has seen a superset of updates seen by 
the copy with vector T1. 
Definition 4: Two operations belonging to different 
transactions are said to be in conflict if they access the 
same data item simultaneously and one of the two 
operations is a write operation. In case both the 
operations are write, it is called a write-write (w-w) 
conflict. If one of the two operations is a read then it is 
called a read-write (r-w) conflict. 
Definition 5 :  Two w-timestamp vectors are said to be in 
a write-write conflict if no one dominates the other. That 
is, the conditions given in definition 3 are not satisfied. 
Definition 6: An update partition row-vector for a copy 
of the file f is an ordered tuple of values. Each tuple value 
corresponds to a site present in the partition. Initially, the 
value corresponding to a site is set to 1. Whenever an 
update occurs in a new partition, the values 
corresponding to the sites present in the partition remains 
1 and the others are changed to 0. Moreover, if a site was 
absent in the last partition but appears into the new 
partition, its value is set to l*. This reflects that this site is 
new in this partition. This also says that the site’s data 
value has been made consistent with respect to the other 
sites present in its new partition. The next update in this 
partition will change 1 * to 1. 
Definition 7: Apartition graph PG(f) for any file f is a 
directed graph where the source node (and sink if it 
exists) is labelled with the names of all the sites in the 
network having a copy of the file f and all the other 
nodes are labelled with a subset of this set of names. 
Each node can only be labelled with the names of the 
sites appearing in its ancestor nodes in the graph; 
conversely every site name on a node must appear on 
exactly one node of its descendants. 
Example 1: Consider a partition graph PG(f) with three 
sites A, B, C where each site has a copy of the file f as 
shown in Figure 1. Initially, sites A, B, C were in the 

2. Max { wT~,  wTj }k E To 2 Max { w T ~ ,  wT,}k E Ti 

same partition, and after multiple partitions, sites isolate 
themselves in different partitions. In the last merge, all 
the three sites again join the same partition. 

2.1. When to detect conflicts 

Let N be a node in the partition graph PG(f) for a file 
f. The read-write and write-write conflicts are to be 
detected at the node N if node N has two distinct fathers 
NI and N2 such that the following hold : 
1. Some writes or reads or both off has taken place at NI 
or N2 or at both, or a conflict is previously detected at 
one or both nodes and may be some more reads or writes 
or both have occurred at one or both nodes. 
2. There is no ancestor node of N having two identical 
fathers N1 and N2. 

Level 
0 

1 

2 

3 

4 

5 
6 

Figure 1. Partition graph 

3. How to keep and update timestamps and 
row-vectors 

For the detection and resolution of write-write and 
read-write conflicts, the algorithm needs only the first 
and the last write timestamps in each new partition. 
However, the algorithm needs all the timestamps 
corresponding to the read operations performed at a site. 
Therefore, the algorithm stores one read timestamp per 
read operation at the respective sites. The write 
timestamps are kept as a vector, called w-timestamp 
vector. The algorithm stores a list of write timestamp 
vectors at each site. Initially the w-timestamp vector 
consists of the first and the last write timestamps 
corresponding to all the sites present in the system. If a 
write operation occurs after a network partition then the 
write timestamp entries at all the sites present in the new 
partition is updated. This gives a new w-timestamp 
vector. A site will have one w-timestamp vector 
corresponding to each partition the site has travelled 
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provided that the value of the file is updated at that site in 
each of those partitions. That is, each partition 
corresponds to one new w-timestamp vector in case there 
is an update in that partition. If there is no update in a 
new partition then this partition will not have any new 
w-timestamp vector. The last updated value of the file in 
each partition is attached with the w-timestamp vector of 
that partition. These timestamps are kept at each site until 
all sites merge into one partition. However, some of them 
will be discarded while resolving conflicts. 

Our algorithm also associate a row-vector with each 
w-timestamp vector and read timestamp (see definition 
6). The row-vector gives the information about the sites 
present in the partition at the time of read or write 
operations. In a new partition, if there is no new update, a 
read operation will return the value that will be the last 
updated value at that site in one of the previous 
partitions. Therefore, the row-vector attached with the 
read timestamp will be the row-vector attached with the 
w-timestamp vector of the corresponding old partition. 
On the other hand, if there is an update in the new 
partition, a read operation will return the new value. In 
this case, the row-vector associated with the read 
timestamp will be the row-vector attached with the 
w-timestamp vector of the new partition. 

3.1. How to form a new partition and store first 
and last write timestamps 

When a write operation wants to update a file, it first 
checks the row-vector associated with the w-timestamp 
vector at its site. It then updates the copies of the file at 
all the sites (write-all approach) having entries as 1 and 
1* in the row-vector. In case the write operation is not 
able to update all the copies of the file at all the sites 
having entries as 1 and 1 *  in the row-vector, it forms a 
new partition. To accomplish this, the home site 
broadcasts to all the sites it can communicate to join the 
new partition. Once it receives the response from a 
number of sites, it decides about its new partition. It then 
updates the copies of the file as well as the row-vectors at 
all the sites in its new partition. However, a read 
transaction will not be able to find out if there is a new 
partition as it reads the value only at its home site. 
Therefore, it may return an old value. However, it will be 
detected as it will generate a read-write conflict with 
respect to updates in other partitions. 

Initially each site in the system is also associated with 
a flag 0. When a write operation performs the first 
update on the file (before this the file has the initial 
value), the flag is changed to 1 and the time of this write 
operation is logged. The 1 value of the flag means that 
the first update in the initial partition has occurred. Now 

onwards the write time of the next write will be stored 
but this will be updated for subsequent writes. When a 
write operation’s home site forms a new partition, it will 
be the first operation that will update the file in the new 
partition. Therefore, its time will be stored as the first 
update time. For the next write operation within the 
same partition, its write time will be stored but will be 
updated every time for subsequent writes within the 
partition. This will determine the first and the last update 
time in each new partition. 

4. Detection of w-w conflict 

When two sites from two partitions merge to form a 
new partition, the algorithm compares the last 
w-timestamp vectors of the two merging partitions. Note 
that two w-timestamp vectors are said to be in 
write-write conflict if neither dominates the other (see 
definition 3). 
Example 2: Consider a system consisting of four sites a, 
b, c, d. To detect write-write conflicts when two 
partitions merge, we compare the last w-timestamp 
vectors of these two partitions. Two cases can arise; 
either cm of them dominates the other (see Definition 3) 
or they ccmflict (see Definition 4). For example, the 
w-timestamp vector <wT1,(wT2 , wT5 }, wT4, wT1 > 
dominates <wT1, wT4, wT3, wT1> but w-timestamp 
vectors <wT1, wT4, wT3, wT1> and <wT,,( WTZ, wT3 }, 
wT4 , wT1 > are in conflict whereas <wT1, wT4, { wT2, 
wT3 }, wT2 >, <wT1, wT2, wT3, wT4 > and <wT1, WTS , 
{ wT6, wT7}, wT7> do not conflict (considering two at a 
time since detection of a conflict is assumed to be a 
binary operation in this paper) since the last one 
dominates the other two. For a more detailed example, 
see appendix. 

4.1. Resolution of w-w conflict 

Once a write-write conflict for a file f between the 
last w-timestamp vectors of the file at the two merging 
sites, say s, and s2 , has been detected, the next task is 
to resolve this conflict. To resolve the w-w conflict, the 
algorithm compares the last w-timestamp vector of the 
file f a t  site s1 with the previous w-timestamp vectors of 
the same file stored at site s2. This is under the 
assumption that site s1 has seen more updates than site s2. 

However, if the updates occur at site s2 are not to be 
discarded for any reasons (e.g., critical updates) then the 
algorithm compares the last w-timestamp vector of the 
file at the site s2 with the previous w-timestamp vectors 
of the site sl. By comparing in this fashion, the algorithm 
always finds that at some point, the last w-timestamp 
vector at site s2 dominates one of the w-timestamp 
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vectors at site sl. In other words, at this point of time, 
there was no conflict between the sites s2 and S I .  

Therefore, the algorithm will discard all the w-timestamp 
vectors at sites sl  which are in conflict with the last 
w-timestamp vector at site s2 . It will also discard all the 
read timestamps at site s1 after the last discarded 
w-timestamp vector. This is because these reads will be 
in conflict with the writes performed at site s2. Therefore, 
it is desirable to detect write-write conflicts (if any) 
before read-write conflicts. This will reduce the number 
of comparisons required to detect read-write conflicts 
later. 

After the site s2 has joined the new partition, the last 
update time in the write timestamp element of site s2 in 
the w-timestamp vector will be set to the maximum of the 
timestamp element of any site in the new partition. It is 
also marked with a *. Also, the last write timestamp of 
site s2 in the old partition will become the first update 
time in the new timestamp element. For example, if 
{ wT,,wT,}is the timestamp element of any site in the 
new partition and the last write timestamp of the site s2 

is wT, then the write timestamp element of the new 
joining site s2 is kept as ( wTi,wT,*}. We later see that 
the write timestamp wT, is used for the detection of 
read-write conflicts. The timestamp entry wT,* denotes 
that the site s2 has joined the new partition but no new 
updates have taken place at site s2 in the new partition. It 
also informs that the value of the file at site s2 is made 
consistent with the help of the value of a copy of the file 
at the site s1 as exists at time wT,. The entry in the 
row-vector corresponding to the site s2 is also changed to 
1 *. The entry marked with 1 * informs that this site is new 
in this partition. The next update at site s2 in the new 
partition will change 1* to 1. For examples, see Level 3 
and Level 5 in Appendix. 

5. Detection of r-w conflict 

The algorithm detects read-write (r-w) conflicts only 
after the detection of w-w conflicts. Suppose the last 
w-timestamp vector at site s1 dominates the last 
undiscarded w-timestamp vector at site s2. In this case, 
the r-w conflicts are detected between the read 
timestamps stored at site s2 and the write timestamp 
elements from the w-timestamp vectors stored at site S I .  

First, the algorithm compares the latest read timestamp 
available at site s2 with the write timestamp element of 
the file from the last w-timestamp vector at site S I .  

Suppose the latest read timestamp of the file at site s2 is 
less than the corresponding write timestamp element of 
the file at site sl. In this case, the algorithm keeps 
comparing the read timestamp with the write timestamp 
elements from the previous w-timestamp vectors at site 

s, until one of the conditions given below is satisfied. 
Note that for the purpose of comparison, a read 
timestamp is always compared with the write timestamp 
associated with WT,*, and in the row-vector, the 
corresponding 1* entry is treated as 0 since WT,* is not a 
real update. See appendix for an example. 

5.1. Conditions for the detection of r-w conflict 

Condition 1 : If Min ( wT, ,wT,},, < [rTk I,, < 

Max { wT, ,wTn } 
and the row-vectors attached with read 

and write timestamp elements differ 
then r-w conflict 
else no r-w conflict 

= Max { wT, ,wT,Jsl 

or [rTk],, = Min ( wT, , W T , } ~ ~  

then r-w conflict 
Condition 3 : If [rTklS2 > Max { wT, ,WT,},~ and 

the row-vectors attached with read and write timestamp 
elements differ 

Condition 2 : If [rTklJ2 

then r-w conflict 
else no r-w conflict 

Note: [rTk I,, indicates the k,,reading time at site s2. 

(wT, ,WT,},~ indicates that wT, is the initial and wT, is 
the final update times at site s1 in a partition. 
Min (wT, ,wT,},, = (wT, and Max ( wT,,wT,},, = 

{wTn . 

5.2. Correctness of the conditions 

We now argue the correctness of the conditions given 
above as follows. 
Correctness of condition 1: In general, suppose that a 
read timestamp associated with a file at one site falls 
between the first and the last update timestamp 
associated with the same file at the other site. In this case, 
the conflict is there or not depends upon the following. If 
the row-vectors attached with read and write timestamps 
differ (i.e., the reading of a file in one partition is 
independent of the updates in the other partition) then a 
read-write conflict will occur. If the row-vectors are 
same then it implies that read returned the last write 
value of the file and since then there is no new update 
operation at the other site. Hence, there will be no r-w 
conflict. 
Correctness of condition 2: Suppose a read timestamp 
at a site coincides with either the first or the last update 
timestamp at some other site. In this case, the 
row-vectors attached with the read and write timestamps 
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will always differ. This is because same read and write 
timestamps implies that a read and a write operations are 
performed at the same time in two partitions. In the same 
partition, this is not possible as no conflicts are allowed 
within the same partition. Hence, there will be a 
read-write conflict. 
Correctness of condition 3: Suppose a read timestamp 
of a file at a site in one partition is greater than the last 
write timestamp of the same file at some other site in a 
different partition. In this case, if the corresponding 
row-vectors differ then it will generate a read-write 
conflict. This is because different row-vectors implies 
that a read in one partition is independent of the last write 
of the same file in some other partition. If the row- 
vectors are same then there will be no conflict since same 
row-vectors imply that the read is consistent with the last 
write at the other partition. In other words, same row- 
vectors imply that both the sites have seen consistent 
updates. Therefore, read will return the correct value. 

5.3. Resolution of r-w conflicts 

Suppose a r-w conflict is detected between the two 
merging sites. In this case, the algorithm simply discards 
the read timestamp in conflict with the write timestamp 
element from the w-timestamp vector at the other site. 
Similarly, the other read timestamps are also compared, 
and are discarded if they are in conflict with the write 
timestamp elements stored at other site. 

Note that some r-w conflicts are detected and 
resolved automatically during the resolution of w-w 
conflicts. 

Suppose a read timestamp at site s2 is found to be not 
in conflict with the write timestamp element at site S I .  In 
this case, the remaining read timestamps at site s2 will 
not be in r-w conflicts with the write timestamps at site 
sI . Therefore, there is no need to compare the earlier 
read timestamps at site s2 with the write timestamp 
elements at site sl. 

Suppose the last w-timestamp vector at S I  dominates 
the last undiscarded w-timestamp vector at site s2. In this 
case, there will not be any r-w conflicts between all the 
reads performed at site s1 and all the updates performed 
at site s2 before the last undiscarded w-timestamp vector. 

6. Conclusion 

In this paper, we have presented an efficient and 
useful technique for detecting and resolving read-write 
and write-write conflicts in real-time distributed systems 
based on timestamp approach. Here, an inconsistency has 
been assumed due to multiple users modifying different 
copies of the same file without mutually excluding one 

another. This situation will occur, for example, when 
network failures isolate these users in different partitions. 
Our scheme uses only some of read and write timestamps 
to detect and resolve conflicts. Our future work will be to 
test this scheme in a real world environment. We would 
like to discuss about the space requirements for storing 
the read and write timestamps as well as row-vectors. 
Also, we intend to extend this scheme for more than one 
file. 
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Appendix : Example 

Each node in the Fig. 1 corresponds to a partition for 
a file f during which the sites maintain an independent 

consistent view of the file f in their own partition. A 
conflict is detected when two partitions merge into one 
partition. 

We have given below the six different levels through 
which the sites A, B, C travel and finally merge into one 
partition as shown in Fig.1. The w-timestamp vectors, 
and read timestamps, and their associated row-vectors 
are given in case of each partition. 
Notations used : 
1. A row-vector attached with a w-timestamp vector 
gives the information about the sites present when the 
updates start occurring in that partition. 
2 .  A w-timestamp vector corresponds to a partition 
whereas a read timestamp corresponds to a site. 
3 .  The row-vector <111>, attached with a read 
timestamp implies that reading is at site B. Also, the 
value read corresponds to the last update when all the 
three sites A,B,C were in the same partition. Similar 
notation has been used for other row-vectors of this type. 
4. The read timestamp <rT4, rTg ><110>, implies that 
first read at site B is at time rT4 and the second read is at 
time rTg . <I  lo>, denotes that reads are with respect to 
the writes performed at the site B in the partition {AB}. 
Similar notation has been used elsewhere also. 

Level 1. Partitions of { ABC} are {AB} and { C}. 
The w-timestamp vectors and read timestamps at {AB} 
and { C} are as follows: 

w-timestamp vectors read timestamps 
rT2 <I  1 l > A  

In partition (AB} 

< w T ~  ,W Ti ,W TI > <I 11> 
<{wT, .wT, } , ( w T ~ ,  w T ~  } . w T i > < l l O >  

rT9 <1 lo>, ,<rT4 , rTg ><11 O>A 
In partition (C}  

<wT1 , wT1 , wT1> <I 11> 
<wT1 , wT1 , WTS > <001> 

rTz <11 l > c ,  rT4 <11 
<rT7 , rTlo ~ 0 0 1 > ~  

Level 2. Partitions of [AB} are [ A )  and { B). 

w-timestamp vectors read timestamps 
In partition (A} 

<wT~ , wTI , wT1 > <11 I >  
< ( w T ~ ,  w T ~  } , { w T ~ ,  wT7 }, w T ~  ><11O> 

rT2 <111>~ 

<rT4 , rT8 ><1 lo>* 

< ~ T 1 4 ,  [ w T ~  , w T ~  ), wT1> <loo> 
<rT16, rTI9 > < 1 0 0 > ~  

In partition ( B }  
w-timestamp vectors read timestamps 
<wT1 , w T ~  , w T ~  > <111> 

<{wT3, wT7 }, w T ~ ~ ,  wTl > <010> 

Level 3. After merging of partitions {B} and {C} into 
{ BC} . We assume that site B has seen more updates than 
C. 

The last w-timestamp vector at site B dominates the 
first w-timestamp vector at site C and therefore, we 
discard rest of the w-timestamp vectors and the read 
timestamps after the last discarded w-timestamp vector. 
The read timestamp rT2<1 11>, is not in conflict with any 
w-timestamp vectors (see section 4.1) and therefore, it 
will remain as valid read at site C whereas rT4 <11 l>c, 
<rT7, rTlo><OO1>c are discarded due to conflict. Also, 
<01 l*  > implies that site C has joined the partition and 
the value of the file is made consistent with respect to the 
value of the file at site at time w T ~ ~  (shown by wT2,, at 
the corresponding position of the site C in the 
w-timestamp vector). 

rT9 < 1 1 0 > ~  

rT22 <OIO>B 
<{wT~,  wT7 } , ( w T ~ ,  w T ~  }, WTI ><11O> 

* 

In partition {BC} 

w-timestamp vectors read timestamps 
<wTi,wTi,wTI > < I l l >  rT2 < I l l > c  

rT9 < l 1 0 > ~  < ( w T ~ ,  w T ~ } , { w T ~ ,  w T ~ } , w T ~  ><110> 
<[wT3, wT7 }, wTZO, {wTl ,wT2~><OII*>  

rTZ2 <O 1 O>B , rT26 <O 1 1 * >C 

<{ w T ~ ,  w T ~  }, WT29, WT29 > <011> rT32 <01 l>c  

Level 4. After partition of { BC} into { B} and (C}. 

w-timestamp vectors read timestamps 
< w T ~  ,W TI ,W Ti > <111> 

<{wT3, wT7 }, wT20, {wTl,wT2i><011*> 
<( wT3, wT7 }, WT29, WT29 > <011> rT22 <010>~ 
<{wT3, wT7 }, WT36, WT29 P <010> rT39 i 0 1 0 > ~  

w-timestamp vectors read timestamps 
<wT~,  wT1, wT1> <I 11> rT2 < l l l > c  

< I w T ~ ,  w T ~ } ,  W T Z O , ( W T ~ , W T ~ ~  I >  <(Ill*> 

<{ wT3, wT7 }, wT29, wTZ9 > < O l  l >  

In partition {B} 

rT9 < 1 1 0 > ~  
< { w T ~ , w T ~ } , { w T ~ , w T ~  ),wT1><110> 

In partition {C}  

<{wT~,  wT7 },(wT3, w T ~  1, w T ~  ><110> 

rT26 <011* >c 
rT32 <01 l>c  
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Level 5. After merge of partitions { A )  and {B) into 
{AB} with the assumption that site A has seen more 
updates than site B. The last w-timestamp vector at site 
B dominates the second w-timestamp vector at site A 
(see Level 2 )  and therefore, we have discarded rest of the 
w-timestamp vectors along with corresponding bad reads 
and their read timestamps. 

In partition {AB] 
w-timestamp vectors read timestamps 

Level 6. After merge of (AB) and {C) into {ABC} 
with the assumption that sites A and B dominates the 
site C. 

In partition {ABC] 
w-timestamp vectors read timestamps 

<wT1 ,W TI ,W TI > <I 1 I >  rT2 <I  1 l>c , rT2 <I 11>A 
<(wT3 ,wT7 ),{wT3, w T ~  ) ,wTl  ><110> 

rT9 <110>~ ,<rT4, rT8 ><1 IO>, 
<{ wT3 , wT7 ), wTzO, { wTl,wT2:> <01 I *  > 

rT22 <O 1 O>B , rT26 <O I I * >c 
< ( w T ~ , w T ~  } , W T ~ ~ , W T ~ ~ > < O I ~ >  rT32 <O1l>c 
<(wT7,wT3^, 1, wT36, wT29 > <I* 10> rT39 <OlO>B 
<wT45, wT45, wT45 > < 1 1  I >  

699 


	Timestamp-Based Approach for the Detection and Resolution of Mutual Conflicts in Distributed Systems
	Recommended Citation

	Timestamp-based approach for the detection and resolution of mutual conflicts in distributed systems

