
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1997

Timestamp-Based Approach for the Detection and Resolution of Timestamp-Based Approach for the Detection and Resolution of

Mutual Conflicts in Distributed Systems Mutual Conflicts in Distributed Systems

Sanjay Kumar Madria
Missouri University of Science and Technology, madrias@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
S. K. Madria, "Timestamp-Based Approach for the Detection and Resolution of Mutual Conflicts in
Distributed Systems," Proceedings of the Eighth International Workshop on Database and Expert Systems
Applications, 1997, Institute of Electrical and Electronics Engineers (IEEE), Jan 1997.
The definitive version is available at https://doi.org/10.1109/DEXA.1997.617412

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/DEXA.1997.617412
mailto:scholarsmine@mst.edu

Timestamp-based Approach for the Detection and Resolution of Mutual
Conflicts in Distributed Systems

Sanjay Kumar Madria
School of Computer Science

University Sains Malaysia, 11800 Minden
Penang, Malaysia
skm@ cs.usm.my

Abstract

We present a timestamp based algorithm for the
detection of both write-write and read-write conflicts
for a single file in distributed systems during network
partitions. Our algorithm allows operations to occur
in different network partitions simultaneously. When
the sites from different partition merge, the algorithm
detects and resolves both read-write and write-write
conflicts without taking into account the semantics of
the transactions. Once the conflicts huve been
detected, some reconciliation steps f o r the resolution
of conflicts have also been proposed. Our algorithm
will be useful in real-time systems where timeliness of
operations is more important than response time
(delayed commit).

1. Introduction

Replication of database files is a key factor to
improve availability in distributed systems. However,
when file replication is there, replicated copies must
behave like a single copy. Several proposed methods
[1,2,3,4,6,7,8,11,14,15,16] enforce consistency of the
database by permitting replicated copies of the files to be
accessed only in one partition in case of network or site
failures. Many of these methods put restrictions on the
execution of different transactions without guaranteeing
that the files can be accessed in atleast one partition.
Many of these algorithms handle only simple partitions
(i.e., no multiple partitions). Most of these algorithms do
not permit transactions to be backed out once they have
been committed. Therefore, these protocols do not allow
execution of conflicting transactions [13. Thus, they
guarantee the consistency of the database across the
partitions by severely limiting availability.

In many real-time applications, it is desirable to keep
the system functioning in the presence of some site
failures or network partitions to increase availability. The
operations should be allowed to execute independently in
different partitions. However, the system will delay real
commit of transactions (i.e., the transfer of data to stable

0-8186-8147-0197 $10.00 Q 1997 IEEE

storage) until all the partitions merge. The processing of
transactions in each partition will be consistent, however,
global inconsistencies across the partitions may occur.
Thus, there is a possibility of backing out some of the
locally committed transactions in each partition.

When the system is partitioned, each partition
maintains the consistent data but cannot make sure that
its actions do not conflict with the actions in the other
partitions. In such cases, the conflicts are to be detected
whenever any two partitions or some sites from different
partitions merge. There are mainly two types of
conflicting operations namely read-write and write-write
[l] depending upon the order of executions of read and
writes. These conflicting operations are important as
their execution order affects the final database-state.
When sites from different partitions merge, read-write
and write-write conflicts among the copies of the
database files are to be detected and resolved. This will
re-establish the consistency among the copies of the
database files within the new partition.

Parker et al. [12] have proposed the detection of only
write-write conflicts for a single file using version
vectors. However, resolving inconsistency is not straight
forward and is essentially left to the user. This scheme
has also been extended to the transactions which access
more than one file [13]. However, it does not detect all
inconsistencies and in fact, detect some false
inconsistencies [5].

In [5], a precedence graph technique for read-write
and write-write conflict detection is proposed for
replicated data in distributed systems. The committed
transactions in each partition form the local transaction
graph. At the time of reconnection, a global transaction
graph IS formed. The cycles from the global transaction
graph are detected and resolved by a transaction back out
strategy to make the database consistent. In the situations
when millions of transactions access the single file each
second, the algorithm has to keep track of all the
committed transactions and their commit orders.
Furthermore, it has to detect all the cycles among the
committed transactions in the global transaction graph.
Also, to bring back the value of a file to a consistent
state, conflicts have to be resolved. Hence, the algorithm

692

has high cost associated with it. Therefore, it may be
worthwhile to detect and resolve conflicts without
keeping track of transactions, or operations executed
under the transactions.

One might think that with a simple timestamp scheme
using synchronized clocks [9] in each partition, it would
be possible to detect write-write and read-write conflicts
among the copies of a single file. However, this is not
possible as the read and write operations execute
independently in each partition. Therefore, the conflicts
may or may not occur even if reading or writing time of a
file in one partition is less than the writing time of the
same file in other partition. This is because these
timestamps are independent of each other and belong to
two different partitions. Hence, the detection of conflicts
using simple timestamp scheme may not possible. This
has also been stated in [121.

In [121, the following strategy has been mentioned
(no algorithm was given) for the detection of only
write-write conflicts using timestamps for a single file.
Whenever a file is modified, one marks it with the two
update times namely the previous and the last. When two
partitions merge, a check is made to find whether no
update in the file has occurred or one copy of the file
differs from the other by a single update. In such cases no
conflict occurs, but in many complex situations, the
approach fails [121. For example, suppose (wT~,wTlI}
and { wTIO,wTI2} are two write timestamp elements
associated with the copies of the same file in the two
partitions say A and B, respectively. Each timestamp
element represents the previous and the last write
timestamps of the same file in the corresponding
partitions. When these two partitions merge, we compare
the write timestamp elements of the partitions A and B to
detect the possible conflicts. Observe that write
timestamps wT9 and wTll of partition A are less than
wTlo and wTl2 of partition B, respectively. However,
this does not detect whether a conflict is there or not for
the following reasons. If these write timestamps
correspond to independent updates in two different
partitions then there will be a write-write conflict.
Consider another situation where one of the write
timestamp elements actually belongs to one of the
previous partitions when the sites of the partitions A and
B were together in one partition. Furthermore, suppose
since then no further updates have taken place in the
partition A. In this case, there will be no conflict.
Therefore, the above scheme fails to detect whether
conflict is there or not.

We extend the scheme given in [12] using
timestamps to deal with both read and write conflicts to
increasing availability in real-time distributed systems.
The timestamp-based approach given in this paper
permits the operations to execute independently in

various partitions and thus, allows possible
inconsistencies to occur at the cost of more availability.
We think that timeliness of operations in a real-time
distributed system is more important than response time
(real commit). That is, commits can be delayed until all
the partitions finally merge into one partition but
operations should be allowed to occur. Our algorithm
detects read-write and write-write conflicts when any two
partitions or sites from different partitions merge. Our
approach here uses read and write timestamps to detect
and reconcile both read-write and write-write conflicts
for a single file. Once inconsistencies have been detected,
we provide some reconciliation steps to resolve conflicts.

Our technique for resolving conflicts do not take into
account the semantics of the operations that manipulated
the file, and the semantics of the data being stored.
Hence, our scheme does not provide transaction oriented
database recovery. Our scheme also assumes that all the
transactions complete in their respective partitions before
a partition occurs. That is, there is no active transaction
at the time of a partition. However, as mentioned, no
transactions can commit until all partitions finally merge
into one partition. We, also, assume “read-one and
write-all” approach within a partition. More details
appear in [IO].

2. Definitions

In this section, we formalize some definitions as
follows :
Definition 1: A network partition is said to occur when
there are disjoint groups of sites such that no
communication is possible between the groups. Each of
the disjoint groups is called a partition that shares a
common synchronized view of some set of files.
Definition 2: A w-timestamp vector for a file f is defined
as a sequence of n timestamp elements where n is the
number of sites in the system. Each timestamp element
can be at the most two tuple where the first entry is the
first update time and second entry is the last update time
at that site. After a network partition occurs, a new
w-timestamp vector is formed corresponding to the
updates in the new partition. When an update occurs,
only the timestamp elements corresponding to the sites
present in that partition is updated and the others remain
same.

For example, suppose s1 and s2 are two sites in the
system. Let wTi and wTj be the initial and final update
times at these sites respectively, for a file f, before a
network partition occurs. The w-timestamp vector, when
both the sites are in one partition, will be <{ wTi, wT, },
(wTi, wT, }>. After a partition, suppose sites’ SI and s2
go to two different partitions say A and B, respectively.

693

If the first update occurs at site s2 in the partition B at
time wTk then the new w-timestamp vector of partition B
(and hence of site s2) will be <(wTi, wT, }, w T ~ >.
That is, only the timestamp element of the site present in
the partition is updated and the other remains same.
Definition 3: A w-timestamp vector To is said to
dominate an another vector TI if the following holds.
1. To and TI are the w-timestamp vectors associated with
the copies of the same file in the two partitions and,

for each k = 1,2, ..., n where n is the number of sites in the
system and { wTi , wTj } and { wT1, wT, } are the two

timestamp elements of the w-timestamp vectors To and
TI , respectively. Also, wTi and wT1 are the initial and
wTj and wT, are the last update times in their respective
partitions. Intuitively, if To dominates TI, the copy of the
file with vector To has seen a superset of updates seen by
the copy with vector T1.
Definition 4: Two operations belonging to different
transactions are said to be in conflict if they access the
same data item simultaneously and one of the two
operations is a write operation. In case both the
operations are write, it is called a write-write (w-w)
conflict. If one of the two operations is a read then it is
called a read-write (r-w) conflict.
Definition 5 : Two w-timestamp vectors are said to be in
a write-write conflict if no one dominates the other. That
is, the conditions given in definition 3 are not satisfied.
Definition 6: An update partition row-vector for a copy
of the file f is an ordered tuple of values. Each tuple value
corresponds to a site present in the partition. Initially, the
value corresponding to a site is set to 1. Whenever an
update occurs in a new partition, the values
corresponding to the sites present in the partition remains
1 and the others are changed to 0. Moreover, if a site was
absent in the last partition but appears into the new
partition, its value is set to l*. This reflects that this site is
new in this partition. This also says that the site’s data
value has been made consistent with respect to the other
sites present in its new partition. The next update in this
partition will change 1 * to 1.
Definition 7: Apartition graph PG(f) for any file f is a
directed graph where the source node (and sink if it
exists) is labelled with the names of all the sites in the
network having a copy of the file f and all the other
nodes are labelled with a subset of this set of names.
Each node can only be labelled with the names of the
sites appearing in its ancestor nodes in the graph;
conversely every site name on a node must appear on
exactly one node of its descendants.
Example 1: Consider a partition graph PG(f) with three
sites A, B, C where each site has a copy of the file f as
shown in Figure 1. Initially, sites A, B, C were in the

2. Max { wT~, wTj }k E To 2 Max { w T ~ , wT,}k E Ti

same partition, and after multiple partitions, sites isolate
themselves in different partitions. In the last merge, all
the three sites again join the same partition.

2.1. When to detect conflicts

Let N be a node in the partition graph PG(f) for a file
f. The read-write and write-write conflicts are to be
detected at the node N if node N has two distinct fathers
NI and N2 such that the following hold :
1. Some writes or reads or both off has taken place at NI
or N2 or at both, or a conflict is previously detected at
one or both nodes and may be some more reads or writes
or both have occurred at one or both nodes.
2. There is no ancestor node of N having two identical
fathers N1 and N2.

Level
0

1

2

3

4

5
6

Figure 1. Partition graph

3. How to keep and update timestamps and
row-vectors

For the detection and resolution of write-write and
read-write conflicts, the algorithm needs only the first
and the last write timestamps in each new partition.
However, the algorithm needs all the timestamps
corresponding to the read operations performed at a site.
Therefore, the algorithm stores one read timestamp per
read operation at the respective sites. The write
timestamps are kept as a vector, called w-timestamp
vector. The algorithm stores a list of write timestamp
vectors at each site. Initially the w-timestamp vector
consists of the first and the last write timestamps
corresponding to all the sites present in the system. If a
write operation occurs after a network partition then the
write timestamp entries at all the sites present in the new
partition is updated. This gives a new w-timestamp
vector. A site will have one w-timestamp vector
corresponding to each partition the site has travelled

694

provided that the value of the file is updated at that site in
each of those partitions. That is, each partition
corresponds to one new w-timestamp vector in case there
is an update in that partition. If there is no update in a
new partition then this partition will not have any new
w-timestamp vector. The last updated value of the file in
each partition is attached with the w-timestamp vector of
that partition. These timestamps are kept at each site until
all sites merge into one partition. However, some of them
will be discarded while resolving conflicts.

Our algorithm also associate a row-vector with each
w-timestamp vector and read timestamp (see definition
6). The row-vector gives the information about the sites
present in the partition at the time of read or write
operations. In a new partition, if there is no new update, a
read operation will return the value that will be the last
updated value at that site in one of the previous
partitions. Therefore, the row-vector attached with the
read timestamp will be the row-vector attached with the
w-timestamp vector of the corresponding old partition.
On the other hand, if there is an update in the new
partition, a read operation will return the new value. In
this case, the row-vector associated with the read
timestamp will be the row-vector attached with the
w-timestamp vector of the new partition.

3.1. How to form a new partition and store first
and last write timestamps

When a write operation wants to update a file, it first
checks the row-vector associated with the w-timestamp
vector at its site. It then updates the copies of the file at
all the sites (write-all approach) having entries as 1 and
1* in the row-vector. In case the write operation is not
able to update all the copies of the file at all the sites
having entries as 1 and 1 * in the row-vector, it forms a
new partition. To accomplish this, the home site
broadcasts to all the sites it can communicate to join the
new partition. Once it receives the response from a
number of sites, it decides about its new partition. It then
updates the copies of the file as well as the row-vectors at
all the sites in its new partition. However, a read
transaction will not be able to find out if there is a new
partition as it reads the value only at its home site.
Therefore, it may return an old value. However, it will be
detected as it will generate a read-write conflict with
respect to updates in other partitions.

Initially each site in the system is also associated with
a flag 0. When a write operation performs the first
update on the file (before this the file has the initial
value), the flag is changed to 1 and the time of this write
operation is logged. The 1 value of the flag means that
the first update in the initial partition has occurred. Now

onwards the write time of the next write will be stored
but this will be updated for subsequent writes. When a
write operation’s home site forms a new partition, it will
be the first operation that will update the file in the new
partition. Therefore, its time will be stored as the first
update time. For the next write operation within the
same partition, its write time will be stored but will be
updated every time for subsequent writes within the
partition. This will determine the first and the last update
time in each new partition.

4. Detection of w-w conflict

When two sites from two partitions merge to form a
new partition, the algorithm compares the last
w-timestamp vectors of the two merging partitions. Note
that two w-timestamp vectors are said to be in
write-write conflict if neither dominates the other (see
definition 3).
Example 2: Consider a system consisting of four sites a,
b, c, d. To detect write-write conflicts when two
partitions merge, we compare the last w-timestamp
vectors of these two partitions. Two cases can arise;
either cm of them dominates the other (see Definition 3)
or they ccmflict (see Definition 4). For example, the
w-timestamp vector <wT1,(wT2 , wT5 }, wT4, wT1 >
dominates <wT1, wT4, wT3, wT1> but w-timestamp
vectors <wT1, wT4, wT3, wT1> and <wT,,(WTZ, wT3 },
wT4 , wT1 > are in conflict whereas <wT1, wT4, { wT2,
wT3 }, wT2 >, <wT1, wT2, wT3, wT4 > and <wT1, WTS ,
{ wT6, wT7}, wT7> do not conflict (considering two at a
time since detection of a conflict is assumed to be a
binary operation in this paper) since the last one
dominates the other two. For a more detailed example,
see appendix.

4.1. Resolution of w-w conflict

Once a write-write conflict for a file f between the
last w-timestamp vectors of the file at the two merging
sites, say s, and s2 , has been detected, the next task is
to resolve this conflict. To resolve the w-w conflict, the
algorithm compares the last w-timestamp vector of the
file f a t site s1 with the previous w-timestamp vectors of
the same file stored at site s2. This is under the
assumption that site s1 has seen more updates than site s2.

However, if the updates occur at site s2 are not to be
discarded for any reasons (e.g., critical updates) then the
algorithm compares the last w-timestamp vector of the
file at the site s2 with the previous w-timestamp vectors
of the site sl. By comparing in this fashion, the algorithm
always finds that at some point, the last w-timestamp
vector at site s2 dominates one of the w-timestamp

695

vectors at site sl. In other words, at this point of time,
there was no conflict between the sites s2 and S I .

Therefore, the algorithm will discard all the w-timestamp
vectors at sites sl which are in conflict with the last
w-timestamp vector at site s2 . It will also discard all the
read timestamps at site s1 after the last discarded
w-timestamp vector. This is because these reads will be
in conflict with the writes performed at site s2. Therefore,
it is desirable to detect write-write conflicts (if any)
before read-write conflicts. This will reduce the number
of comparisons required to detect read-write conflicts
later.

After the site s2 has joined the new partition, the last
update time in the write timestamp element of site s2 in
the w-timestamp vector will be set to the maximum of the
timestamp element of any site in the new partition. It is
also marked with a *. Also, the last write timestamp of
site s2 in the old partition will become the first update
time in the new timestamp element. For example, if
{ wT,,wT,}is the timestamp element of any site in the
new partition and the last write timestamp of the site s2

is wT, then the write timestamp element of the new
joining site s2 is kept as (wTi,wT,*}. We later see that
the write timestamp wT, is used for the detection of
read-write conflicts. The timestamp entry wT,* denotes
that the site s2 has joined the new partition but no new
updates have taken place at site s2 in the new partition. It
also informs that the value of the file at site s2 is made
consistent with the help of the value of a copy of the file
at the site s1 as exists at time wT,. The entry in the
row-vector corresponding to the site s2 is also changed to
1 *. The entry marked with 1 * informs that this site is new
in this partition. The next update at site s2 in the new
partition will change 1* to 1. For examples, see Level 3
and Level 5 in Appendix.

5. Detection of r-w conflict

The algorithm detects read-write (r-w) conflicts only
after the detection of w-w conflicts. Suppose the last
w-timestamp vector at site s1 dominates the last
undiscarded w-timestamp vector at site s2. In this case,
the r-w conflicts are detected between the read
timestamps stored at site s2 and the write timestamp
elements from the w-timestamp vectors stored at site S I .

First, the algorithm compares the latest read timestamp
available at site s2 with the write timestamp element of
the file from the last w-timestamp vector at site S I .

Suppose the latest read timestamp of the file at site s2 is
less than the corresponding write timestamp element of
the file at site sl. In this case, the algorithm keeps
comparing the read timestamp with the write timestamp
elements from the previous w-timestamp vectors at site

s, until one of the conditions given below is satisfied.
Note that for the purpose of comparison, a read
timestamp is always compared with the write timestamp
associated with WT,*, and in the row-vector, the
corresponding 1* entry is treated as 0 since WT,* is not a
real update. See appendix for an example.

5.1. Conditions for the detection of r-w conflict

Condition 1 : If Min (wT, ,wT,},, < [rTk I,, <

Max { wT, ,wTn }
and the row-vectors attached with read

and write timestamp elements differ
then r-w conflict
else no r-w conflict

= Max { wT, ,wT,Jsl

or [rTk],, = Min (wT, , W T , } ~ ~

then r-w conflict
Condition 3 : If [rTklS2 > Max { wT, ,WT,},~ and

the row-vectors attached with read and write timestamp
elements differ

Condition 2 : If [rTklJ2

then r-w conflict
else no r-w conflict

Note: [rTk I,, indicates the k,,reading time at site s2.

(wT, ,WT,},~ indicates that wT, is the initial and wT, is
the final update times at site s1 in a partition.
Min (wT, ,wT,},, = (wT, and Max (wT,,wT,},, =

{wTn .

5.2. Correctness of the conditions

We now argue the correctness of the conditions given
above as follows.
Correctness of condition 1: In general, suppose that a
read timestamp associated with a file at one site falls
between the first and the last update timestamp
associated with the same file at the other site. In this case,
the conflict is there or not depends upon the following. If
the row-vectors attached with read and write timestamps
differ (i.e., the reading of a file in one partition is
independent of the updates in the other partition) then a
read-write conflict will occur. If the row-vectors are
same then it implies that read returned the last write
value of the file and since then there is no new update
operation at the other site. Hence, there will be no r-w
conflict.
Correctness of condition 2: Suppose a read timestamp
at a site coincides with either the first or the last update
timestamp at some other site. In this case, the
row-vectors attached with the read and write timestamps

696

will always differ. This is because same read and write
timestamps implies that a read and a write operations are
performed at the same time in two partitions. In the same
partition, this is not possible as no conflicts are allowed
within the same partition. Hence, there will be a
read-write conflict.
Correctness of condition 3: Suppose a read timestamp
of a file at a site in one partition is greater than the last
write timestamp of the same file at some other site in a
different partition. In this case, if the corresponding
row-vectors differ then it will generate a read-write
conflict. This is because different row-vectors implies
that a read in one partition is independent of the last write
of the same file in some other partition. If the row-
vectors are same then there will be no conflict since same
row-vectors imply that the read is consistent with the last
write at the other partition. In other words, same row-
vectors imply that both the sites have seen consistent
updates. Therefore, read will return the correct value.

5.3. Resolution of r-w conflicts

Suppose a r-w conflict is detected between the two
merging sites. In this case, the algorithm simply discards
the read timestamp in conflict with the write timestamp
element from the w-timestamp vector at the other site.
Similarly, the other read timestamps are also compared,
and are discarded if they are in conflict with the write
timestamp elements stored at other site.

Note that some r-w conflicts are detected and
resolved automatically during the resolution of w-w
conflicts.

Suppose a read timestamp at site s2 is found to be not
in conflict with the write timestamp element at site S I . In
this case, the remaining read timestamps at site s2 will
not be in r-w conflicts with the write timestamps at site
sI . Therefore, there is no need to compare the earlier
read timestamps at site s2 with the write timestamp
elements at site sl.

Suppose the last w-timestamp vector at S I dominates
the last undiscarded w-timestamp vector at site s2. In this
case, there will not be any r-w conflicts between all the
reads performed at site s1 and all the updates performed
at site s2 before the last undiscarded w-timestamp vector.

6. Conclusion

In this paper, we have presented an efficient and
useful technique for detecting and resolving read-write
and write-write conflicts in real-time distributed systems
based on timestamp approach. Here, an inconsistency has
been assumed due to multiple users modifying different
copies of the same file without mutually excluding one

another. This situation will occur, for example, when
network failures isolate these users in different partitions.
Our scheme uses only some of read and write timestamps
to detect and resolve conflicts. Our future work will be to
test this scheme in a real world environment. We would
like to discuss about the space requirements for storing
the read and write timestamps as well as row-vectors.
Also, we intend to extend this scheme for more than one
file.

References

[I] Bemstein, P., Hadzilacos, V., and Goodman, N.,
Concurrency Control and Recovery in Database systems,
Reading, MA : Addision-Wesley, 1987.
[2] Bhargava, B, Transactions Processing and Consistency
Control in Distributed Systems, Joumal of Management
Information System, Vo1.4, No.2, pp. 93-1 12, Fall, 1987.
[3] Bhargava B. and P.L. Ng., A Dynamic Majority
Determination Algorithm for Reconfiguration of Network
Partition, Information Science, Vo1.4, pp.27-45, 1988.
[4] Davcev, D., A Dynamic Voting Scheme in Distributed
Systems, IEEE Transactions on Software Engineering, Vol. 15,
pp.93-97, Jan.,1989.
[5] Davidson, S.B., Optimism and Consistency in Partitioned
Distributed Database Systems, ACM Transactions on Database
Systems. Vol. 9, No. 3, pp. 456-481, Sept., 1984.
[6] E1 Abbadi, A., and Tough, S., Availability in Partitioned
Replicated Databases, ACM Transactions on Database
Systems, Vol. 4, No.2, pp.264-290, June 1989.
[7] Ellis C.A., A Robust Algorithm for Updating Duplicate
Databases, in proceedings of 2nd Berkeley Workshop on
Distributed Data Management and Computer Networks, pp.

[8] Jajodia, S., and Mutchler, Dynamic Voting Algorithm for
Maintaining the Consistency of a Replicated Database, ACM
Transaction on Database Systems, Vo1.15, No.2, pp. 230-280,
1990.
[9] Lamport L., Time, Clocks, and the Ordering of Events in
a Distributed System, Communication of ACM, Vol. 21, pp.

[IO] Madria, S.K., Timestamp Based Approach for the
Detection and Resolution of Mutual Conflicts in Real-time
Ditributed Systems, CSD-TR-97-030, Department of
Computer Sciences, Purdue University, IN-47907, May,1997.
[I l l Nabil R. Adam, A New Dynamic Voting Algorithm for
Distributed Database Systems, IEEE Transactions on
Knowledge and Data Engineering, VoI.6, No.3, pp.470-478,
June, 1994.
[I21 Parker D.S., Gerald J., and Popek et al., Detection of
Mutual Inconsistency in Distributed Systems, IEEE
Transactions on Software Engineering, Vol. SE-9, No.3, May,
1983.
[13] Parker, D.S. and Ramos, R.A., A Distributed File System
Architecture Supporting High Availability, in proceedings of
6th Berkeley Workshop on Distributed Data Management and
Computer Networks, pp. 161-183, 1982.
[I41 Stonebraker M., Concurrency Control and Consistency of

1146-1 158, 1977.

558-565, July, 1978.

697

Multiple Copies of Data in Distributed INGRES, EEE
Transactions on Software Engineering, Vol. SE-5, pp. 188-194,
May, 1979.
1151 Thomas R.F., A Solution of the Concurrency Control
Problem for Multiple Copy Databases, in proceedings of
Spring COMPCON Feb.28-Mar.3, 1978.
[16] Tang, J., and Natarajan, A Static Pessimistic Scheme for
Handling Replicated Databases, in proceedings of ACM
SIGMOD Intemational Conference on Management of Data,
1989.

Appendix : Example

Each node in the Fig. 1 corresponds to a partition for
a file f during which the sites maintain an independent

consistent view of the file f in their own partition. A
conflict is detected when two partitions merge into one
partition.

We have given below the six different levels through
which the sites A, B, C travel and finally merge into one
partition as shown in Fig.1. The w-timestamp vectors,
and read timestamps, and their associated row-vectors
are given in case of each partition.
Notations used :
1. A row-vector attached with a w-timestamp vector
gives the information about the sites present when the
updates start occurring in that partition.
2 . A w-timestamp vector corresponds to a partition
whereas a read timestamp corresponds to a site.
3 . The row-vector <111>, attached with a read
timestamp implies that reading is at site B. Also, the
value read corresponds to the last update when all the
three sites A,B,C were in the same partition. Similar
notation has been used for other row-vectors of this type.
4. The read timestamp <rT4, rTg ><110>, implies that
first read at site B is at time rT4 and the second read is at
time rTg . <I lo>, denotes that reads are with respect to
the writes performed at the site B in the partition {AB}.
Similar notation has been used elsewhere also.

Level 1. Partitions of { ABC} are {AB} and { C}.
The w-timestamp vectors and read timestamps at {AB}
and { C} are as follows:

w-timestamp vectors read timestamps
rT2 <I 1 l > A

In partition (AB}

< w T ~ ,W Ti ,W TI > <I 11>
<{wT, .wT, } , (w T ~ , w T ~ } . w T i > < l l O >

rT9 <1 lo>, ,<rT4 , rTg ><11 O>A
In partition (C}

<wT1 , wT1 , wT1> <I 11>
<wT1 , wT1 , WTS > <001>

rTz <11 l > c , rT4 <11
<rT7 , rTlo ~ 0 0 1 > ~

Level 2. Partitions of [AB} are [A) and { B).

w-timestamp vectors read timestamps
In partition (A}

<wT~ , wTI , wT1 > <11 I >
< (w T ~ , w T ~ } , { w T ~ , wT7 }, w T ~ ><11O>

rT2 <111>~

<rT4 , rT8 ><1 lo>*

< ~ T 1 4 , [w T ~ , w T ~), wT1> <loo>
<rT16, rTI9 > < 1 0 0 > ~

In partition (B }
w-timestamp vectors read timestamps
<wT1 , w T ~ , w T ~ > <111>

<{wT3, wT7 }, w T ~ ~ , wTl > <010>

Level 3. After merging of partitions {B} and {C} into
{ BC} . We assume that site B has seen more updates than
C.

The last w-timestamp vector at site B dominates the
first w-timestamp vector at site C and therefore, we
discard rest of the w-timestamp vectors and the read
timestamps after the last discarded w-timestamp vector.
The read timestamp rT2<1 11>, is not in conflict with any
w-timestamp vectors (see section 4.1) and therefore, it
will remain as valid read at site C whereas rT4 <11 l>c,
<rT7, rTlo><OO1>c are discarded due to conflict. Also,
<01 l* > implies that site C has joined the partition and
the value of the file is made consistent with respect to the
value of the file at site at time w T ~ ~ (shown by wT2,, at
the corresponding position of the site C in the
w-timestamp vector).

rT9 < 1 1 0 > ~

rT22 <OIO>B
<{wT~, wT7 } , (w T ~ , w T ~ }, WTI ><11O>

*

In partition {BC}

w-timestamp vectors read timestamps
<wTi,wTi,wTI > < I l l > rT2 < I l l > c

rT9 < l 1 0 > ~ < (w T ~ , w T ~ } , { w T ~ , w T ~ } , w T ~ ><110>
<[wT3, wT7 }, wTZO, {wTl ,wT2~><OII*>

rTZ2 <O 1 O>B , rT26 <O 1 1 * >C

<{ w T ~ , w T ~ }, WT29, WT29 > <011> rT32 <01 l>c

Level 4. After partition of { BC} into { B} and (C}.

w-timestamp vectors read timestamps
< w T ~ ,W TI ,W Ti > <111>

<{wT3, wT7 }, wT20, {wTl,wT2i><011*>
<(wT3, wT7 }, WT29, WT29 > <011> rT22 <010>~
<{wT3, wT7 }, WT36, WT29 P <010> rT39 i 0 1 0 > ~

w-timestamp vectors read timestamps
<wT~, wT1, wT1> <I 11> rT2 < l l l > c

< I w T ~ , w T ~ } , W T Z O , (W T ~ , W T ~ ~ I > <(Ill*>

<{ wT3, wT7 }, wT29, wTZ9 > < O l l >

In partition {B}

rT9 < 1 1 0 > ~
< { w T ~ , w T ~ } , { w T ~ , w T ~),wT1><110>

In partition {C}

<{wT~, wT7 },(wT3, w T ~ 1, w T ~ ><110>

rT26 <011* >c
rT32 <01 l>c

698

Level 5. After merge of partitions { A) and {B) into
{AB} with the assumption that site A has seen more
updates than site B. The last w-timestamp vector at site
B dominates the second w-timestamp vector at site A
(see Level 2) and therefore, we have discarded rest of the
w-timestamp vectors along with corresponding bad reads
and their read timestamps.

In partition {AB]
w-timestamp vectors read timestamps

Level 6. After merge of (AB) and {C) into {ABC}
with the assumption that sites A and B dominates the
site C.

In partition {ABC]
w-timestamp vectors read timestamps

<wT1 ,W TI ,W TI > <I 1 I > rT2 <I 1 l>c , rT2 <I 11>A
<(wT3 ,wT7),{wT3, w T ~) ,wTl ><110>

rT9 <110>~ ,<rT4, rT8 ><1 IO>,
<{ wT3 , wT7), wTzO, { wTl,wT2:> <01 I * >

rT22 <O 1 O>B , rT26 <O I I * >c
< (w T ~ , w T ~ } , W T ~ ~ , W T ~ ~ > < O I ~ > rT32 <O1l>c
<(wT7,wT3^, 1, wT36, wT29 > <I* 10> rT39 <OlO>B
<wT45, wT45, wT45 > < 1 1 I >

699

	Timestamp-Based Approach for the Detection and Resolution of Mutual Conflicts in Distributed Systems
	Recommended Citation

	Timestamp-based approach for the detection and resolution of mutual conflicts in distributed systems

