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W
orkstation clusters have
become an increasingly pop-
ular alternative to traditional
parallel supercomputers for

many workloads requiring high perfor-
mance computing.  The use of parallel
computing for scientific simulations has
increased tremendously in the last ten
years, and parallel implementations of
scientific simulation codes are now in
widespread use.  There are two domi-
nant parallel hardware/software archi-
tectures in use today: distributed memo-
ry, and shared memory.  Systems
implementing shared memory provide
cooperating processes with a shared
memory address space that can be
accessed by all processors.  In shared
memory systems, parallel processing
occurs through the use of shared data
structures, or through emulation of mes-
sage passing semantics in software.
Distributed memory systems are com-
posed of a number of interconnected
computational nodes, which do not
share memory, but can communicate
with each other through a high-perfor-
mance network of some kind.
Parallelism is achieved on distributed
memory systems with multiple copies
of the parallel program running on dif-
ferent nodes, sending messages to each
other to coordinate computations.  The
messages used in a distributed memory
parallel program typically contain
application data, synchronization infor-

mation, and other data that controls the
execution of the parallel program. 

Workstation clusters can be built
from similar workstations networked
together using a high performance
interconnect of some kind. Since they
can be built from common off-the-shelf
components, workstation clusters often
enjoy a tremendous price/performance
advantage over traditional supercom-
puters.  With PC’s and workstations
now available in the $1000 price range,
clusters have become an extremely
compelling way to run computationally
demanding simulations used in science
and engineering.  The choice of work-
station and interconnect are the two
most important decisions in planning a
cluster, since they tend to have the
greatest effect on price, performance
and manageability. 

Two widely used parallel message
passing systems, MPI (Message Passing
Interface) and PVM (Parallel Virtual
Machine) allow the same software to
run on clusters of workstations and tra-
ditional parallel supercomputers. Before
they caught on, most parallel programs
were written using vendor-specific
message passing systems not portable
to other platforms. As MPI and PVM
gained success, the long sought after
goal of portable parallel programs
became a reality. They also helped to
legitimize workstation clusters as a
practical alternative to traditional paral-

lel computing hardware for many kinds
of parallel computation. Many different,
freely available, implementations of
MPI will run on most Unix systems. In
fact, many workstation vendors offer
commercial MPI implementations
tuned to run at peak performance on
their hardware and operating systems.
There is at least one commercial imple-
mentation of MPI for Windows NT.
PVM is also freely available for a large
number of Unix systems as well as
Windows NT.

The most important question to
answer when building a cluster is what
kinds of applications will be run on it?
Applications that do a lot of message
passing, or have very little tolerance for
message passing latency, require a
higher performance interconnect than
those that do not. The balance of
processor speed and interconnect speed
is an important consideration when
building a workstation cluster. To get
the best performance for the money
(when acquiring new hardware), evalu-
ate the requirements for the applications
to be executed on the system. In general
it is much easier to design a workstation
cluster tuned for a specific type of
application or a small domain of appli-
cations than for broader general-pur-
pose parallel computing tasks.

Another important concern in build-
ing a workstation cluster is how well it
will integrate into the existing comput-
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ing environment. It is easi-
er to manage workstation
hardware and software
already familiar at a given
site than hardware and
software that are signifi-
cantly different. This is
one of the biggest draw-
backs to traditional parallel
supercomputers. They
have historically been
“special” requiring new
administration skills and
additional training. Also,
traditional parallel super-
computers have a much
smaller selection of soft-
ware packages than for general-purpose
workstations. By applying the same or
similar workstations used in an organi-
zation, one can utilize existing software
and expertise.

Unlike a workstation laboratory envi-
ronment, a parallel workstation cluster
must meet performance requirements
beyond those required in most general pur-
pose computing environments. To under-
stand why, one must consider how parallel
computing software is typically used:

• The cluster should perform as a par-
allel computing resource, achieving
higher performance than possible using
assprted workstations configured in a
more standard way.

• The nodes in the cluster are always
used in groups, not individually as in a
general purpose workstation laboratory.

• Users run jobs on the cluster
through job execution scripts or applica-
tions. Users should never need to login to
compute nodes. Batch queuing systems
are frequently employed along with the
job execution facilities included with
MPI and PVM.

• Large clusters can be a challenge to
maintain if they depend on many external
services. It is best to dedicate a server or
servers to the cluster rather than using
existing servers that may not be capable
of providing the performance or reliability
necessary to run a large number of cluster
compute nodes. If servers are dedicated
for use by the workstation cluster, it can
also be much easier to coordinate software
upgrades and hardware maintenance.

Cluster compute
node hardware

Using the guidelines just described,
we can now discuss some example hard-
ware configuration choices and their
implications.  Several general machine
and network characteristics are of partic-

ular interest when choosing hardware
for cluster compute nodes.  These
include processor speed, cache size,
memory bandwidth, memory capacity,
network bandwidth, and network laten-
cy.  The individual effects of these char-
acteristics on overall performance
depend greatly on application require-
ments.  Some applications perform very
well on a cluster that maximizes only
one or two of these characteristics.
Parallel molecular dynamics simulations
in structural biology are an example of
an application that performs well even
on systems with limited memory band-
width and modest memory capacity.
Other applications such as computation-
al fluid dynamics simulations are
demanding in almost all of the areas list-
ed.  Another factor to take into account
is the scale of the problem or simulation
that will be run on a cluster.  The scale
of a problem often has significant
effects on its network bandwidth
demands and network latency tolerance.
Larger data sets usually provide an
application with greater tolerance for
network latency as more data is typical-
ly exchanged between compute nodes
in a given phase of communication.

Once application and hardware per-
formance characteristics have been
taken into consideration, other factors
such as integration into the computing
environment and maintainability must
be considered.  It is often the case that
several different types of hardware will
meet application performance criteria
but that some of the options will be
vastly preferable due to pre-existing
local expertise, physical space, cooling,
or other factors.  Institutions with site
licenses for software development tools
or high performance numerical libraries
often prefer cluster hardware that can
utilize the existing licensed software.  It

is worth noting that some
applications stand to ben-
efit significantly from the
use of advanced compil-
ers and numerical
libraries.  Since software
efficiency improvements
from compilers and
libraries act as a multi-
plicative factor on
sequential performance,
their benefits tend to
scale with the size of a
cluster. For a cluster of
more than 32 nodes, an
advanced compiler or
numerical library costing

a few thousand dollars may actually be
a better choice than purchasing addi-
tional compute nodes if it benefits the
majority of the applications that the
cluster will run.  

Physical space limitations, power,
and cooling are all considerations when
building large clusters.  Buying hard-
ware which can be rack mounted can be
advantageous when space is at a premi-
um, but adds to the cost of compute
nodes, eroding some of the price/perfor-
mance advantages that commodity
hardware typically offers.  Software
checkpoint capabilities are often used at
the application level to avoid the need
for uninterruptible power when building
a cluster on a budget. Power and cool-
ing capacity can become a problem
when building large clusters, and is a
site-specific issue for which there aren’t
many short cuts.

It is worth considering what the lifes-
pan of a cluster’s compute nodes will
be, and what to do with them when they
are no longer fast enough for the intend-
ed applications.  One strategy that has
been successfully employed by several
institutions is to recycle compute nodes
as desktop workstations after approxi-
mately two years of service.  Two years
is enough time to allow for a doubling
in processor speed in newly purchased
equipment and is short enough that
recycled compute nodes will still be
viable desktop computers. If compute
nodes are to be recycled as desktop
computers, compatibility with and simi-
larity to machines and software in the
existing computational environment
becomes even more important.

Typical cluster configurations
A typical workstation cluster config-

uration found in many institutions is
that of a group of 16 or more identical

Fig. 1  Cluster Interconnect Configuration
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compute nodes, interconnected using a
100baseT Ethernet switch, with one ore
more file servers or “master” nodes pro-
viding file service, job execution, and
scheduling functions.  Some clusters use
more sophisticated networking compo-
nents such as gigabit Ethernet or
Myrinet, which provide increased band-
width, decreased latency, or both. Some
institutions have made creative use of
multiple network interfaces per node
and multiple switched networks as an
inexpensive alternative to gigabit
Ethernet and Myrinet for achieving
improved bandwidth and latency while
retaining the price/performance advan-
tages of commodity hardware.

Cluster compute nodes usually  run
the minimum system software neces-
sary to perform their tasks. Each node is
installed with a minimalistic operating
system and any components of the MPI
or PVM software that must be installed
or configured locally to each node. All
other software including compilers,
debuggers, MPI headers and libraries are
installed on the cluster file server. Cluster
compute nodes may only access files that
reside local to each node or on the cluster
file server. The use of minimal operating
system software on compute nodes bene-
fits both performance and security.  One
successful system that takes this philoso-
phy to its logical extreme is the Scyld
Beowulf distribution (www.scyld.com),
which essentially stores nothing on the
compute nodes, net booting them from a
master node that provides them with
everything they need.  

The cluster file server or "master
node" is usually installed with the full
complement of development tools,
libraries and other software. This is sim-
ilar to workstations in general-purpose
workstation laboratories. The server
often contains a significant amount of
local disk storage. This space is made
available for cluster users as a tempo-
rary storage area for large data files and
programs. The storage area on the clus-
ter server is visible to all compute
nodes, and is the only shared storage
area available to all the cluster’s nodes. 

In normal use, cluster users copy
data files and programs binaries to the
storage area during execution of jobs on
the cluster. While jobs are running, data
may be read from and written to this
area. The contents of the storage are not
automatically erased on a regular basis;
however, there are no guarantees made
as to the long-term availability of data
left on the cluster server. Cluster users

typically depend on other computer
resources for long-term storage of their
programs and data.

MPICH
A popular version of MPI found on

many clusters is the “MPICH” distribu-
tion from Argonne National Labs and
Mississippi State University. In a cluster
environment, MPICH operates by
spawning processes on the nodes based
on a machines file and parameters given
to the mpirun command. The machines
file lists each of the nodes in the cluster
by name. When a user invokes the
mpirun command, mpirun parses the
machines file and spawns processes on
each node in the cluster. This is done in
the order they are listed in the machines
file. If the user requests more nodes
than are physically available, mpirun
can be made to spawn multiple process-
es per machine until the requested num-
ber of processes have been started.

The mpirun command spawns
processes on the nodes in the cluster
using one of two methods:

• Processes are spawned using the
rsh command or a functional equivalent.

• Processes are spawned using a spe-
cial daemon process that runs on each
node in the cluster.

If the mpirun command fails to suc-
cessfully spawn one of the processes,
the parallel program may hang indefi-
nitely if it is not written carefully. If a
user manually kills the hung mpirun
command by pressing ctrl-c, zombie
processes may be left running on the
nodes. They may degrade the perfor-
mance of subsequent parallel jobs to run
on the cluster. In the pathological case,
a large number of such processes may
consume all of the available memory on
a given compute node preventing any
jobs from executing.

LAM/MPI 
The LAM (Local Area

Multicomputer) MPI distribution uses a
slightly different method for spawning
processes on the compute nodes. The
user first creates a group of server dae-
mons running on the compute nodes.
These daemons are spawned using the
rsh command. The daemons themselves
act as an “allocation” of the nodes in the
cluster. Once these daemons are started,
all subsequent MPI jobs the user starts
get run on that set of compute nodes. 

The LAM daemons are similar to the
ones used by the MPICH distribution
but rather than running as root, the

LAM daemons run as the user invoking
the job. The user must create and
remove these daemons through the use
of various LAM provided utilities.

PVM
Like the MPI distributions, PVM

uses rsh to spawn processes on the com-
pute nodes of a workstation cluster.
PVM generates daemons on each of the
machines a user intends to use based on
a machine list supplied by the user and
other mechanisms. Unlike most of the
MPI distributions, PVM allows a user to
add or delete machines from a running
parallel program on the fly. PVM adds
and deletes nodes from its working set
by spawning and removing invocations
of pvmd, which runs on each node in the
active working set.

Read more about it
• Message Passing Interface Forum.

MPI: A message-passing interface stan-
dard. Technical Report CS-94-230,
Computer Science Department,
University of Tennessee, Knoxville, TN,
May 5 1994. Also appeared in
International Journal of Supercomputing
Applications, Vol. 8, No. 3/4, 1994.

• Al Geist, Adam Beuelin, Jack
Dongarra, Weicheng Jiang, R obert
Manchek, and Vaidy Sunderam. PVM:
Parallel Virtual Machines, A User's
Guide and Tutorial for Net worked
Parallel Computing. MIT Press, 1994.

• Thomas L. Sterlin, John Salmon,
Donald J. Becker, Daniel F. Savarese.
How To Build a Beowulf: A guide to the
Implementation and Application of PC
Clusters. MIT Press, 1999.

• Implementations of MPI and PVM
area available from these web sites:
www.mpi.nd.edu/lam (LAM MPI),
www.mcs.anl.gov/mpi/mpich (MPICH),
www.epm.ornl.gov/pvm (PVM).

• Many large built clusters  have web
pages worth reading, some are linked
from this useful site: www.beowulf.org

• Both NCSA and PSC are now build-
ing large supercomputer-class clusters of
high-performance workstation systems:
www.ncsa.uiuc.edu, www.psc.edu
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