
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1990

Experimentation with Large-Grained Parallelism using Local Area Experimentation with Large-Grained Parallelism using Local Area

Networks Networks

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Douglas E. Meyer

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
R. W. Wilkerson and D. E. Meyer, "Experimentation with Large-Grained Parallelism using Local Area
Networks," Proceedings of the 33rd Midwest Symposium on Circuits and Systems, 1990, Institute of
Electrical and Electronics Engineers (IEEE), Jan 1990.
The definitive version is available at https://doi.org/10.1109/MWSCAS.1990.140845

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229136571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MWSCAS.1990.140845
mailto:scholarsmine@mst.edu

Experimentation with Large-Grained Parallelism Using Local Area Networks

Ralph W. Wilkerson
Department of Computer Science

University of Missouri - Rolla
Rolla, MO 65401

Abstract
HIGHLAND, a distributcd-memory parallel pro-

cessing environment for heterogeneous local area net-
works, has been developcd. Designed as both a teaching
and a research tool, its purpose is to provide an effective
mechanism by which a number of networked UNIX*
workstations, dissimilar in both vendor and performance,
can be directly manipulated as a single, unified, multi-
processing system. Utilizing the MIT X-Windows envi-
ronment, HIGHLAND supports a highly interactive
graphical interface through which a programmer can cre-
ate, modify, and control complex systcms of communi-
cating processes.

1. Introduction
Before the potential of parallel processing systems

can be effectively utilized by the general programming
community, a significant retraining effort must first be
undertaken. Studies have shown that the dcgrce of suc-
cess obtained in teaching programming is greatly influ-
enced by the amount of hands-on exposure gnntcd to the
student. In an attempt to address this problem, the HIGH-
LAND system has been developed. Its purpose is to pro-
vide an accessible mechanism with which individuals
who do not have convenient access to morc orthodox
systems can be introduced to the field of parallel process-
ing. It accomplishes this goal by allowing a number of
networked UNIX workstations, dissimilar in both vendor
and performance, to be directly manipulated as a single,
unified, multiprocessing environment. Its use of com-
mon communication paradigms and a graphical interface
make it easy to use, highly interactive, and an ideal learn-
ing tool.

2. System Structure
HIGHLAND is modeled after the distributcd mcm--

ory parallel processing model. The user is prcsentcd with
a number of processing elements which arc intcrconncct-
ed and exchange information via a set of systcm-supplied
1/0 functions. As one would expect in such an environ-
ment, parallel applications are constructed as a set of
concurrently executable modules and downloaded onto
some number of processing elements. Communication
requirements between the processes are subsequently
identified and established prior to the actual execution of
the system. What makes this particular systcm uniquc is
the way in which this environmcnt is implemcntcd and
the style of interaction it offers the user.

* UNIX is a registered trademark of ATSLT.

Douglas E. Meyer
Department of Computer Science

University of Alabama - Huntsville
Huntsville, AL 35899

HIGHLAND simulates both the components and
the functionality of a generic distributed memory multi-
processing system using only the computational resourc-
es of a local area network. Processing elements, which
are allocated and used to execute the component process-
es of a given application, are in fact a set of UNIX work-
stations. Using the system’s communication software to
shield the user from various machine incompatibilities,
these workstations arc allowed to vary in both vendor
and capability. For implementation of the interprocessor
communication facility, the standard UNIX socket inter-
face was chosen. Supported by the TCP/IP suite of net-
work protocols and running over a standard 10 MB/
second Ethemet, this transport mechanism not only of-
fers a high degree of availability, but has also shown it-
self to be adequate to support larger-grain parallelism.

3. Interprocess Communication
At the program lcvel, each user-writtcn process is

supplied by HIGHLAND with a single input port and a
single output port to act as the endpoints for communica-
tion between itself and the other modules of a given ap-
plication. From the module’s perspective, these ports
exhibit several noteworthy characteristics. First, they arc
strictly serial in nature, supporting no type of direct or
look-ahead access. The ports are also directional, with
only read operations being permitted on the standard in-
put and only write operations being permittcd on the
standard output. Perhaps the most restrictive of the ports’
characteristics, however, is that fact that they represent
the sole mechanism by which data can enter or leave the
associated process. For those who have grown accus-
tomed to utilizing multiple input and output sources
whcn constructing an appIication, this may appear to se-
verely limit the utility of HIGHLAND’S communication
facilities, but such is not the case. Howevcr, this rcstric-
Lion is eliminatcd through the use of dcdicatcd system
utility processes for the implementation of morc compli-
cated data routing schemes.

The simplc observations and characteristics speci-
ficd above encompass the extent of a module’s implicit
knowledge of its VO ports. No information is given re-
garding the source of the data the process is reading from
its standard input, nor is any given spccifying the desti-
nation of the data being written onto the standard output.
Within HIGHLAND, the binding bctwccn the applica-
tion’s componcnt modules, which is necessary in order
to make such a determination, does not take place until
the time of execution. The major advantage to this sepa-
ration of process code and systcm configuration dctails is

CH28 19- 1/90/0000-0816$01.000 199 1 EEE

that it allows the information to be specified instead in a
format more convenient than conventional text. As will
be secn, this method is via the system’s interactive
graphical display.

4. System 110 Functions
In conjunction with the standard input and output

porrs, HIGHLAND also supplies a pair of system-sup-
portcd communication routines through which processes
can interact with them. Thcse routines are the hread func-
tion, which allows a process to gather data from its stan-
dard input, and the hwrite function, which is used for
writing data onto the standard output. Unlike some mes-
sage-passing environments which supply only untyped
byte transfer functions, HIGHLAND’S I/O functions re-
quire messages to be both strongly and fully typed. Com-
mon scalar data types such as character, short and long
integer values, as well as single and double precision
floating point numbers are all supported and valid for use
in the construction of interprocess messages.

In addition to supporting the transfer of messages
containing one or more occurrences of a single data type,
such as a string of integers or an array of floating point
values, HIGHLAND also allows the construction of
messages containing a composition of several distinct
typcs. In much that same way that the C language’s
“struct“ construct allows the collection of a set of disjoint
variablcs for subscqucnt manipulation as a unit, HIGH-
LAND’S system 1/0 routines offer a similar capability
for message specification. By implementing its own type
of structure data type, a straightforward method is of-
fcrcd by which any number of ficlds can be spccificd
within a message while maintaining the strongly typed
nature of messages of a simpler, singular type.

5. Data Translation Facilities
Since HIGHLAND was intended to operate by de-

fault in a heterogeneous workstation environment, a ma-
jor conccrn in the design of the system’s
communications facilities was the automatic conversion
of Lhc various data typcs bctwcen machines. To accom-
plish this, the systcm-supprtcd I/O facilitics were aug-
mcnted with an intcgratcd set of data conversion
routincs. On output operations thcse routines automati-
cally ctkc care of intcrprcting the type of each value
passcd, a stmightforward task thanks to the strongly
typed nature of the message structures, and converting
the data into a system independent or network data for-
mat prior to transmission. On the receiving end, corre-
sponding utilities handle the conversion from the
network format back into the local, host-specific form.

Since the data translation routines would inflict ad-
ditional overhead onto the communication process, it
was strongly desirable to choose a nctwork data format
that closely rcflccted the most common of thc various
systcm-dependent data formats. By doing so, the effort
expended in the data conversion process would be mini-

mized for a majority of the systems used. Basing the final
decision on the particular set of systems used for HIGH-
LAND’S development, a data specification was estab-
lished which in actuality is a combination of a pair of
existing format standards. For the encoding of integcr
values, the Sun Microsystem’s data representation was
selected. This standard, which is formally based off of
the ANSI X3J11/80-090 C language implementation
standard, supports the representation of both 16- and 32-
bit, signed and unsigned integer values. For representing
floating point values, the IEEE-754 standard was chosen.
This format provides a normalized structure for both 32-
bit single precision and @-bit double precision real val-
ues. When combined, these two standards form a com-
prehensive, well-established format for each
HIGHLAND-supported data type.

6. System Utilities
By providing each component user process of an

application with but a single input and output port, the
dcgrec of parallelism which can be achieved by the sys-
tem as a whole is severely limited. At best these simple
tools would allow the creation of a pipeline or a loop of
concurrently-executing proccsscs. While being extremc-
ly useful in their own right and providing sufficicnt pro-
cess interaction to solve a number of different typcs of
problems, these two constructs are just not applicable to
all situations. In spite of the simplified intcrface which
the scheme offers, it is obvious that a more sophisticated
mechanism must be supplicd and supported by HIGH-
LAND for the interconnection of processes and the rout-
ing of data between them. With no desire to increase the
complexity of the program-level communication inter-
face while doing so, it was decidcd that the best way of
offering this increased functionality was to remove the
more complex communication tasks from the application
processes altogether and assign them instead to a set of
external, system-supplied utility processes.

HIGHLAND’S system utilities are not to be con-
fused with the user processes discussed up to this point.
User processes arc those which are written by thc pro-
grammer and comprised mainly of application-specific
code. System utilities on the other hand are supplied in a
ready-to-execute form and are available for use with lit-
tle or no coding effort on the part of the programmer.
Each utility is designed to support a specific type of rout-
ing. function ranging from the very simple, such as repli-
callon and merging of data strcams, to morc complex
functions such as automatic and program-controllcd data
routing. In addition, depending on thc particular function
implemented, each utility can maintain several input and
output ports. This allows not only the off-loading of the
routing logic from the user processes, but also permits
the creation of communication networks of arbitrary
branching factors, both fan-in and fan-out.

7. Run-Time Environment
The run-time environment provided by HIGH-

817

Figure 1. HIGHLAND’S graphical control environment

LAND for the specification and execution of parallel ap-
plications is comprised of two distinct components. First,
on each of the UNIX systems which will be utilized as a
compute node, an IYServer daemon must exist. These
processes play the role of minions, permitting a certain
amount of control to be exercised remotely over their re-
spective host systems. While such facilities could consti-
tute a source of potential security problems, care has
been taken to ensure that the functionality of these pro-
cesses is limited to only that required for the support of
HIGHLAND. In addition, the operation of each HServer
takes place using only normal user authorizations and
permissions; no system or “root” level privileges are nec-
essary. While not providing complete security, these two
simple measures sufficiently limit the degree of potential
damage which could be maliciously inflicted on a sys-
tem.

Acting not only as the controller for the distributed
HServer daemons, but as the primary user interface as
well, HIGHLAND’S graphical control environment con-
stitutes the second major component of the run-time sys-
tem. This process executes on the user’s local machine
and acts as the driving force behind a HIGHLAND ses-
sion. From the user’s perspective, it is this controller that
creates and maintains the system’s graphical display. It
manages all pertinent aspects of man-machine interac-
tion and ensures that the information shown is an accu-
rate depiction of the current state of the application.
From an overall system perspective, it is the controller
that supports the illusion of a unified computing environ-
ment. It and it alone holds the knowledge of the machine
dependent aspects of the underlying hardware. With this
knowledge, it exercises the necessary controls over all

the utilized workstations to create the illusion of a single,
homogeneous multiprocessing system.

8. Application Specification and Execution
Once an application has been designed and coded

using a combination of user-written programs and sys-
tem utilities, its formal specification to the HIGHLAND
run-time environment can begin. Using the system’s
graphical interface (depicted in Figure 1) and guided by
a series of pull-down menus, the user progresses through
four distinct steps leading up to the application’s execu-
tion.

Step 1: Process Load
In step one, the individual utility and user processes

which will comprise the application are selected for exe-
cution. Since they exist as an integral part of the system,
the selection of utility processes is straightforward. Pro-
viding the user with a complete listing of all such avail-
able processes, the menuing system allows any desired
utility to be specified using only the mouse. Once select-
ed, an iconic representation of the utility is created on
HIGHLAND’S graphical display through which all sub-
sequent interaction will take place.

Due to the potential heterogeneity of the underlying
hardware, user processes are introduced to HIGHLAND
in source code form. In the current implementation, due
mainly to the high degree of standardization it offers,
only programs written in the C programming language
are supported. Using the provided menu options which
allow the traversal of the UNIX directory structure, the
user is presented with listings of files eligible for loading
into the system. From these lists, he or she may select de-

818

sircd proccsscs with a click of the mouse. Once specifi-
cation is complete, the process is placed onto
HIGHLAND'S display in icon form.

Step 2: Link Specification
In step two, the uscr is requested to specify the data

communication links to be established between the cur-
rcntly loaded processes. Keeping in line with the desire
to make the user interface as interactive as possible, this
information is spccificd using only the mouse and the
iconic representation of the component processes. The
uscr repetitively selects pairs of process icons, in source
process/dcstination process order, whenever a communi-
cation link is to be established between them. Then, ref-
ercncing its own internal database, the system
detcrmines the validity of each requested link and pro-
vides instant feedback as to the outcome of the check. If
the link was not a valid one, such as trying to connect a
proccss which has no available ports, text windows are
displayed explaining the cause of the request's rejection.
If thc rcquested link was valid, HIGHLAND immediate-
ly updates the display to reflect the instantiation of the
ncw link.

Step 3: Parallel Compilation
In the third step the user processes, which have been

loaded into HIGHLAND in source form, are readied for
execution. For each, the associated source files are
downloaded to the HServer daemons of their assigned
hosts for remote compilation. The compilations take
place in parallel, with the compilation of all individual
source files being initiated prior to any attempt being
made to retrieve the executablcs. By doing so, the time
rcquircd for the compilation of the entire parallel system
is only contingent upon the longest compile time of any
component user process. At the end of these parallel
compiles, as is the casc in any compilation, there are two
possiblc outcomes. If either syntactic or linkage errors
arc discovered, a log of thc errors is returned for use in
subscqucnt debugging. If the compilation complctes suc-
ccssfully, the exccutable version of the process is re-
turned to the controlling host whcre it is stored until
nccded.

Step 4: Execution and Control
In thc fourth and final step, the parallel application

is initiated. In what, from the system level, is by far the
most complicated of the four steps, HIGHLAND down-
loads the now executable processes to their target sys-
tcms, automatically establishes the specified
communication links over the network socket interface,
and starts the execution of the system. The details of this
proccss, however, are hidden entirely. From the user's
pcrspcctive, outside of a simple text window which de-
scribes the current state of the start-up process, this phase
appcar no more or less complex that those previously
discusscd.

HIGHLAND'S graphical interface ceases being a mech-
anism for constructing applications and becomes instead
a means of controlling them. From within the display. a
number of powerful capabilities are provided which al-
low the user to exercise complete authority over the exe-
cuting parallel system. A real time display of remote
workstation utilizations is supplied, providing a method
of gauging the effective parallelism of the application
over time. At a more microscopic level, tools also exist
which allow individual link traffic to be measured and
monitored. Through their use it is possible to pinpoint
potential bottlenecks in the system's overall dataflow.
When problems or inefficiencies such as these are en-
countered, it is possible to abort individual processes as
well as cancel the execution of the application entirely.
This, however, is not e0 be considered a loss of all work
done up until this point.

Due to the independence of the component process-
es and the ability of the HIGHLAND system to control
them, it is possible to reconfigure around potential prob-
lems without the need of starting the entire construction
process from scratch. Nodes can be added, deleted, or re-
assigned to different host processors. Likewise, addition-
al communication links can be requested and existing
links can be removed or rearranged. Upon the comple-
tion of any reconfiguration, HIGHLAND ensures that
only the minimal amount of work is performed to get the
overall system back to an executable status. With such
minimization, the overall cycle time between successive
configuration attempts is very small; a fact which en-
courages experimentation with the structure of the paral-
lel application.

9. Conclusion
HIGHLAND has been successfully ported and used

across several types of workstations. Utilizing these sys-
tems, a number of applications have been developed and
several more are currently in progress. Based on experi-
ences gathered to date, commonly available LAN re-
sources have proven themselves sufficient for the
support of larger-grained parallel processing applica-
tions. The future of the HIGHLAND system looks very
promising.

References
Boarder, J.C., "Graphical Programming for Parallel
Processing Systems", Proceedings of the Second
International Conference on Distributed Computing
Systems, 1981, pp. 467-475
LeBlanc, R.J., and Robbins, A.D., "Event-Driven
Monitor of Distributed Programs", Proceedings of
the 5th International Conference on Distributed
Computing Systems, 1985, pp. 515-522
Snyder, L., "Parallel Programming and the Poker
Programming Environment", IEEE Computer, July,
1984, Vol. 17, NO. 7, pp. 27-36

Once execution of the parallel program has begun,

819

	Experimentation with Large-Grained Parallelism using Local Area Networks
	Recommended Citation

	Experimentation with large-grained parallelism using local area networks

