
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1990

Distributed Evaluation of an Iterative Function for All Object Pairs Distributed Evaluation of an Iterative Function for All Object Pairs

on a SIMD Hypercube on a SIMD Hypercube

Fikret Erçal
Missouri University of Science and Technology, ercal@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
F. Erçal, "Distributed Evaluation of an Iterative Function for All Object Pairs on a SIMD Hypercube,"
Proceedings of the Fifth Distributed Memory Computing Conference, 1990, Institute of Electrical and
Electronics Engineers (IEEE), Jan 1990.
The definitive version is available at https://doi.org/10.1109/DMCC.1990.555407

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/DMCC.1990.555407
mailto:scholarsmine@mst.edu

Distributed Evaluation of an Iterative Function for
11 airs on a D Hypercube

Fikret Ersal
Department of Computer Engineering and Information Sciences

Bilkent University,

Abstract

An efficient distributed algorithm for
evaluating an iterative function on all
pairwise combinations of C objects on
an SIMD hypercube is presented. The
algorithm achieves uniform load dis-
tribution and minimal, completely lo-
cal interprocessor communication.

1 Introduction

The problem addressed here is the following:

Given a set of C objects uniformly distributed

among the processors of an SIMD hypercube,

and an operation on pairs of objects which may

possibly modify the objects, is there a way to
efficiently evaluate the operation iteratively on

all the possible C(C - 1)/2 pairwise combina-

tions of the C objects in a distributed fashion

? This problem arises for example in the con-

text of parallel k-way graph partitioning on a

hypercube 111, and in the scheduling of a round-
robin tournament between C players using C/2

courts, where the paths between courts form a

hypercube interconnection. Matches between

Ankara, TURKEY

players are to be scheduled so that the courts

are maximally utilized and the players do min-

imal walking between courts.

In an earlier study [4], a distributed solution to

the problem for an MIMD hypercube was pre-

sented, and shown to be optimal with respect

to processor utilization and communication. In

this paper, we solve the same problem for an

SIMD hypercube. Two important constraints

in the iterative application of the function make

the otherwise trivial problem a non-trivial one

: 1) the objects might get modified by the ap-

plication of the operation, (i.e. not read-only)

and 2) the result of the current step depends on

the state of the objects after the previous step

(iterative). Since the operation can change the
objects, a consisteny problem arises if multiple

copies of the same object exist simultaneously

in the distributed system. Therefore, only one

copy of an object must be allowed in the sys-

tem.

The key to an efficient distributed pair-
wise combining algorithm is the appropriate
scheduling of communication of the objects be-

tween the processors so that all possible pairs

364
6-21 13-3/90/0000/036 01.00 0 1990 IEEE

meet exactly once, and no redundant compu-

tations occur. To achieve this, we require each

processor. to communicate with only its near-

est neighbors, and do some useful1 work af-

ter each communication. We present a fully

distributed algorithm which maximally uti-

lizes the system and uses minimal interpro-

cessor communication. The algorithm com-

prises p + 1 phases, where p is the dimen-

sion of the hypercube. Each phase consists of

two subphases - an object-circulation sub-
phase, and a window-fragmentation sub-

phase. Object-circulation subphase make

use of the SIMD data circulation algorithm

given in [2] with a simple modification to han-

dle variable window sizes.

The paper is organized as follows : In section

2, we present a fully distributed algorithm us-

ing only local inter-processor communication

for solving the pairwise-evaluation problem on

an SIMD hypercube. In section 3, the algo-

rithm is shown to be optimal. Section 4 con-

cludes the paper with a brief discussion.

2 Distributed Pairwise-
Evaluation on an SIMD Hy-
percube

We use the following notation in specifying the
algorithm:

Given a processor numbered k, 0 5 k 5 P - 1

b d i k) : d-th bit of the binary representation of k
N (k) : the neighbor processor whose binary
representation differs from k in only the d-th bit
e l k , c 2 k : objects assigned to processor k
P = 2P : the number of hypercube processors
C = 2c : the total number of objects

Pairwise-Evaluation Algorithm listed below

evaluates a given function for all C(C - 1)/2
pairwise combinations of C objects using C/2

processors. Initially, each processor p, con-

tains two of the C objects, labeled C l k and

C2,, with no two processors containing the

same object. The processors alternate between

computation and communication, with each

processor repeatedly performing: 1) a pair-
wise operation on the two locally held objects,

and, 2) communication of one of the objects

to a neighbor processor, in turn receiving some

other object from a neighbor.

SIMD Distributed Pairwise-Evaluation
Algorithm :

Processor Pk executes:

1. for d t p to 0 do
2. for s c 1 to 2d - 1 do
3.
4. send(C2k, Nh(d+) (k)) ;
5. recv(~2k, ~ h (d * ") (k)) ;
6. endfor
7.
8.

operate on the pair (C

operate on the pair (C
if (a? > 0) then

9.
10. send(Clk, N (d - l) (1));
11. recv(Clk, N d - l) (k)) ;
12. else
13. send(C2k, N (d - l) (k)) ;
14. recv(C2k, ~ (d - l) (k)) ;
15. endif
16. endif
17. endfor

if (b d - l (k) = 1) then

The key requirement is that the objects be

moved between the processors in such a way

365

that each possible pair of objects comes to- used to denote the i-th number in the sequence

gether exactly once to enable the application Xd, 1 5 i 5 2 d . As an example, h(3,l) = 0,
of the pairwise operation on that pair. The h (3 , 2) = 1, h(3,3) = 0, and h(3,4) = 2 .

algorithm has p 4- 1 phases (indexed by “d”) ,
During a phase, corresponding to one iteration

where p is the number of dimensions of the hy-
of the d-loop of the algorithm, each processor

percube. Each phase consists of two subphases
keeps one of its objects (Cl) local, while it - an object-circulation subphase where pro-
repeatedly receives, transforms and passes on

cessors circulate their ob iects in closed windows ”
the second object (C2). Considering phase p ,

with all processors communicating in one single
(lines 2-6), and a window-fragmentation

subphase where each window subdivides into -
two isolated windows (lines 8-16]. The window window, at the end of the 21, - 1 steps in the

first part (the object-circulation subphase) of

the phase, all objects constituting the various
structure thus changes from phase to phase,

with 2p-d independent windows of size 2d be-
Clk’s (denoted C S l) would have been matched ing formed during phase d, as illustrated for a
up with respect to every object in the CS2 4-dimensional hypercube in Fig. 1.
set (and the pairwise operation performed on

For an MIMD hypercube, object-circulation in each such generated pair). Thus the only pair-

with highest address bit of one (b p - l (k) = l) ?

swaps its C1 object for the C2 object of its Xi = 0, Xd = Xd-i,d - 1,Xd-1 (d > 1)

For example, X , = 0,1,0,2,0,1,0. Using Xd partner processor(Pl, with bp-l(Z)=O). Thus,
sequence, object circulation in a window of after this communication subphase, all proces-
size 2d is achieved by first circulating data in sors Pk with (bp-l(k)=l), will only ha:'^, ob-

windows of size 2d-1 in parallel using Xd-1 jects from the original CS2 set, while all pro-

sequence, then performing a data exchange cessors with (bp-l(k)=O) will have all the ob-

across the two windows (along bit d-1), and fi- jects comprising the original C S 1 set. This
nally circulating the exchanged data in the two subphase is labeled the “window-fragmentation

windows again using Xd-1 sequence. subphase” because the window gets fragmented
algorithm given above, the notation h(@) is into two smaller windows and no communica-

the

3

1111

0100

1011

am

(a) d=4 1 window of size 16

@) d=3 2 windows of size 8

(c) d=2 4 windows of size 4

0110 - 0111 1110 - 1111

01m - 0101 1100 - 1101

mi0 - Doti 1010 - loll

0- mol lam - 1001

(c) d= l 8 windows of size 2

c1

d=2

&l

c1 c2 c1 c2 c1 c2 c1 c2

Po0 PO, PlO PI1

d=o@-@w@-@@-@

Figure 2: Illustration of Distributed PC algo-
rithm on a 2-D hypercube (4 processors)

tion takes place thereafter between the proces-

sors in the “highest-bit-1” window and those

in the “highest-bit-0” window. Thus in phase

(p - l), two windows of size 2 P - I are formed

for the object-circulation subphase and com-

munication occurs between processors differ-
0110 0 e 0111 1110 e 0 1111 ing in their (p - 2)th bit during the window-

o ~ m e e 0101 I I ~ e e 1101 fragmentation subphase.
mi0 e e a011 1010 a 0 1011

During each phase of the algorithm, new

object-pairs meet at the processors, for appli-
cation of the pairwise operation. The algo-

rithm guarantees that during an outer pass,

am. 0 mol IUJI e 0 1001

(d) d=O 16 windows of size 1

no pair of objects is ever matched up more
Figure 1: Illustration of window formation in
different phases of the Distributed PC algo- than once. Fig. 2 is used to illustrate
ri t hm this “no-repetition” property of the algo-

367

rithm. In order to focus on the nature of combinations that occur during execution of the
the window-fragmentation subphase, the ef- algorithm is C(C - 1)/2.

fects of the alternating object-circulation sub-

phase are intentionally omitted. Eight ob- Proof: Each processor performs one pairwise

jects are shown, mapped onto four proces- comparison during every step of every phase of
S O T S , two objects per processor. During phase the algorithm, as is clear from the algorithm

2 (d = 2), the application of the object- specification. The number of steps in phase

circulation subphase results in the generation d is 2d. Hence the total number of pairwise
of all possible pairwise combinations with one combinations tried is:
object from CS1 (AOO,A01,A10,All) and the

other from CS2 (Boo,Bo~,BI~,B~~). Ignoring
0

for now the actual permutation of the C2 ob- 2 p * 2d = 2p * (2(p+1) - 1)
jects that will result at the end of the object- d=p

circulation subphase, and assuming it to be = P (2 P - 1) = C(C - 1)/2

as shown, the window-fragmentation subphase

of phase 2 will result in the state shown for

d = 1. Processors Po0 and Pol are left with

objects Aw,A01,A1O7A11, whereas PI0 and PI1 Lemma Given Objects ci and cj, the

now have objects Bm7B01,B10,B11. After the (ci7cj) can occur at most Once

window-fragmentation phase of phase 2, PO* during execution Of the algorithm.

and PI* do not ever again communicate with

each other. Since no pairwise combinations Proof: Let d be the earliest phase that the

involving two A-objects had occurred during combination (C;,Cj) occurs. Obviously, at
phase 2, and since none of the B-objects can most one such match can occur during the

any longer meet any of the A-objects, all object-circulation subphase of phase d. For

pairs of objects that align at any processor are such a match to occur, one of them must be-

unique combinations that have not occurred long to the C1-object-set and the other to the

earlier. The same property clearly holds re- C2-object-set. Since they belong to different

cursively, as illustrated in the figure. object-sets, during the window-fragmentation

0

subphase of phase d, C; and Cj will necessar-
ily end up in processors Pk, Pi, where 1 and k

differ at least in bit d - 1, and hence Pk and Pl

In the next section, we formally prove the cor-
rectness of the distributed algorithm.

belong to different windows. Obviously, they

cannot get matched in any later phase d‘ < d.

Hence at most one match (C;,Cj) can occur

3 Proof of Optimality

Lemma 1 The total number of pairwise object during an outer pass. U

368

Theorem 1 Given any two objects C, and Cj ,
the pairwise combination (Ci,Cj) occurs ex-
actly once during execution of the algorithm.

Proof: Theorea 1 follows immediately from

lemma 1 and lemma 2. By lemma 1, a total of
C(C - 1)/2 pairwise combinations occur, and

by lemma 2, no combination (Ci,Cj) can occur

more than once. Since the number of possible

distinct combinations of object pairs is C(C -
1) / 2 , all possible matches must occur exactly

once during execution of the algorithm. 0

Theorem 1 implies that as regards to computa-

tion, the algorithm is optimal since every pro-

cessor is busy during each computational step
and no duplicate computations occur. With

respect to communication too, under the con-

straint of computational load balancing and

uniform data distribution, each processor can

only contain two objects, and after perform-

ing the pairwise operation on its currently held

pair, it will have to send out at least one ob-
ject and receive one object in order to perform

useful comp:itation at the next step. The algo-

rithm causes only one object to be sent and one

object received by each processor at each step,

Le., the 2::crithm performs minimal communi-

cation.

4 Discussion

An efficient distributed algorithm for evaluat-

ing an iterative function on all pairwise combi-

nations of C objects on an SIMD hypercube is

presented, and it is shown to achieve uniform

load distribution and minimal, completely local
inter-processor communication.

In case that C > 2 P , the algorithm can be

extended in a straightforward fashion. For

C = MP, M = 2k, k > 1, groups of M / 2 ob-

jects should be considered in place of single ob-

jects in the presented algorithm. Now, instead

of a single pairwise operation, (M / 2) 2 pairwise

operations are performed at each step of the al-

gorithm between member partitions of the two

(M/2)-ary object-groups in a processor. With

such a (M / 2) - ary group of objects in place of
single objects, the algorithm for distributed PC
is essentially the same as above, except for an
additional set of operations between the com-

ponents of each (M / 2) - ary group of objects.

References

[l] P. Sadayappan, F. Ercal and J. Ramanu-
jam, “Parallel Graph Partitioning on a
Hypercube,” Proc. of Fourth Conj. on By-
percube Concurrent Computers and Appli-
cations, March, 1989.

[2] S.Ranka and S. Sahni, Hypercube Algo-
rithms For Image Processing and Pattern
Recognition, Bilkent University Lecture
Notes, Springer-Verlag, in press.

[3] E. Dekel, D. Nassimi, and S. Sahni,
“Parallel Matrix and Graph Algorithms,”
SIAM Journal on Computing, 1981, pp.
657-675.

[4] P. Sadayappan, F. Ercal and J. Ramanu-
jam, “Distributed Generation of Pairwise
Combinations on a Hypercube,” in Pro-
ceedings of Parallel Computing 89, Leiden,
The Netherlands, August 1989.

369

	Distributed Evaluation of an Iterative Function for All Object Pairs on a SIMD Hypercube
	Recommended Citation

	Distributed evaluation of an eterative function for all object pairs on a SIMD hypercube

