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Distributed Evaluation of an Iterative Function for 
11 airs on a D Hypercube 

Fikret Ersal 
Department of Computer Engineering and Information Sciences 

Bilkent University, 

Abstract 

An efficient distributed algorithm for 
evaluating an iterative function on all 
pairwise combinations of C objects on 
an SIMD hypercube is presented. The 
algorithm achieves uniform load dis- 
tribution and minimal, completely lo- 
cal interprocessor communication. 

1 Introduction 

The problem addressed here is the following: 

Given a set of C objects uniformly distributed 

among the processors of an SIMD hypercube, 

and an operation on pairs of objects which may 

possibly modify the objects, is there a way to 
efficiently evaluate the operation iteratively on 

all the possible C(C - 1)/2 pairwise combina- 

tions of the C objects in a distributed fashion 

? This problem arises for example in the con- 

text of parallel k-way graph partitioning on a 

hypercube 111, and in the scheduling of a round- 
robin tournament between C players using C/2 

courts, where the paths between courts form a 

hypercube interconnection. Matches between 

Ankara, TURKEY 

players are to be scheduled so that the courts 

are maximally utilized and the players do min- 

imal walking between courts. 

In an earlier study [4], a distributed solution to 

the problem for an MIMD hypercube was pre- 

sented, and shown to be optimal with respect 

to processor utilization and communication. In 

this paper, we solve the same problem for an 

SIMD hypercube. Two important constraints 

in the iterative application of the function make 

the otherwise trivial problem a non-trivial one 

: 1) the objects might get modified by the ap- 

plication of the operation, (i.e. not read-only) 

and 2) the result of the current step depends on 

the state of the objects after the previous step 

(iterative). Since the operation can change the 
objects, a consisteny problem arises if multiple 

copies of the same object exist simultaneously 

in the distributed system. Therefore, only one 

copy of an object must be allowed in the sys- 

tem. 

The key to an efficient distributed pair- 
wise combining algorithm is the appropriate 
scheduling of communication of the objects be- 

tween the processors so that all possible pairs 
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meet exactly once, and no redundant compu- 

tations occur. To achieve this, we require each 

processor. to communicate with only its near- 

est neighbors, and do some useful1 work af- 

ter each communication. We present a fully 

distributed algorithm which maximally uti- 

lizes the system and uses minimal interpro- 

cessor communication. The algorithm com- 

prises p + 1 phases, where p is the dimen- 

sion of the hypercube. Each phase consists of 

two subphases - an object-circulation sub- 
phase, and a window-fragmentation sub- 

phase. Object-circulation subphase make 

use of the SIMD data circulation algorithm 

given in [2] with a simple modification to han- 

dle variable window sizes. 

The paper is organized as follows : In section 

2, we present a fully distributed algorithm us- 

ing only local inter-processor communication 

for solving the pairwise-evaluation problem on 

an SIMD hypercube. In section 3, the algo- 

rithm is shown to be optimal. Section 4 con- 

cludes the paper with a brief discussion. 

2 Distributed Pairwise- 
Evaluation on an SIMD Hy- 
percube 

We use the following notation in specifying the 
algorithm: 

Given a processor numbered k, 0 5 k 5 P - 1 

b d i k )  : d-th bit of the binary representation of k 
N ( k )  : the neighbor processor whose binary 
representation differs from k in only the d-th bit 
e l k ,  c 2 k  : objects assigned to processor k 
P = 2P : the number of hypercube processors 
C = 2c : the total number of objects 

Pairwise-Evaluation Algorithm listed below 

evaluates a given function for all C(C - 1)/2 
pairwise combinations of C objects using C/2 

processors. Initially, each processor p, con- 

tains two of the C objects, labeled C l k  and 

C2,, with no two processors containing the 

same object. The processors alternate between 

computation and communication, with each 

processor repeatedly performing: 1) a pair- 
wise operation on the two locally held objects, 

and, 2) communication of one of the objects 

to a neighbor processor, in turn receiving some 

other object from a neighbor. 

SIMD Distributed Pairwise-Evaluation 
Algorithm : 

Processor Pk executes: 

1. for d t p to 0 do 
2. for s c 1 to 2d - 1 do 
3. 
4. send(C2k, Nh(d+) (k ) ) ;  
5. recv(~2k,  ~ h ( d * " ) ( k ) ) ;  
6. endfor 
7. 
8. 

operate on the pair (C 

operate on the pair (C 
if (a? > 0) then 

9. 
10. send(Clk, N ( d - l )  (1)); 
11. recv(Clk, N d - l ) ( k ) ) ;  
12. else 
13. send(C2k, N ( d - l ) ( k ) ) ;  
14. recv( C2k, ~ ( d - l ) ( k ) ) ;  
15. endif 
16. endif 
17. endfor 

if ( b d - l ( k )  = 1) then 

The key requirement is that the objects be 

moved between the processors in such a way 
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that each possible pair of objects comes to- used to denote the i-th number in the sequence 

gether exactly once to  enable the application Xd,  1 5 i 5 2 d .  As an example, h(3,l) = 0, 
of the pairwise operation on that pair. The h ( 3 , 2 )  = 1, h(3,3) = 0, and h(3,4) = 2 .  

algorithm has p 4- 1 phases (indexed by “d” ) ,  
During a phase, corresponding to  one iteration 

where p is the number of dimensions of the hy- 
of the d-loop of the algorithm, each processor 

percube. Each phase consists of two subphases 
keeps one of its objects (Cl )  local, while it - an object-circulation subphase where pro- 
repeatedly receives, transforms and passes on 

cessors circulate their ob iects in closed windows ” 
the second object (C2). Considering phase p ,  

with all processors communicating in one single 
(lines 2-6), and a window-fragmentation 

subphase where each window subdivides into - 
two isolated windows (lines 8-16]. The window window, at the end of the 21, - 1 steps in the 

first part (the object-circulation subphase) of 

the phase, all objects constituting the various 
structure thus changes from phase to  phase, 

with 2p-d independent windows of size 2d be- 
Clk’s (denoted C S l )  would have been matched ing formed during phase d, as illustrated for a 
up with respect to  every object in the CS2 4-dimensional hypercube in Fig. 1. 
set (and the pairwise operation performed on 

For an MIMD hypercube, object-circulation in each such generated pair). Thus the only pair- 

with highest address bit of one ( b p - l ( k ) = l ) ?  

swaps its C1 object for the C2 object of its Xi = 0, Xd = Xd-i,d - 1,Xd-1 (d  > 1) 

For example, X ,  = 0,1,0,2,0,1,0. Using Xd partner processor(Pl, with bp-l(Z)=O). Thus, 
sequence, object circulation in a window of after this communication subphase, all proces- 
size 2d is achieved by first circulating data in sors Pk with (bp-l(k)=l), will only  ha:'^, ob- 

windows of size 2d-1 in parallel using Xd-1 jects from the original CS2 set, while all pro- 

sequence, then performing a data exchange cessors with (bp-l(k)=O) will have all the ob- 

across the two windows (along bit d-1), and fi- jects comprising the original C S 1  set. This 
nally circulating the exchanged data in the two subphase is labeled the “window-fragmentation 

windows again using Xd-1 sequence. subphase” because the window gets fragmented 
algorithm given above, the notation h(@) is into two smaller windows and no communica- 

the 
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Figure 2: Illustration of Distributed PC algo- 
rithm on a 2-D hypercube (4 processors) 

tion takes place thereafter between the proces- 

sors in the “highest-bit-1” window and those 

in the “highest-bit-0” window. Thus in phase 

( p  - l), two windows of size 2 P - I  are formed 

for the object-circulation subphase and com- 

munication occurs between processors differ- 
0110 0 e 0111 1110 e 0 1111 ing in their ( p  - 2)th bit during the window- 

o ~ m  e e 0101 I I ~  e e 1101 fragmentation subphase. 
mi0 e e a011 1010 a 0 1011 

During each phase of the algorithm, new 

object-pairs meet at the processors, for appli- 
cation of the pairwise operation. The algo- 

rithm guarantees that during an outer pass, 

am. 0 mol IUJI e 0 1001 

(d) d=O 16 windows of size 1 

no pair of objects is ever matched up more 
Figure 1: Illustration of window formation in 
different phases of the Distributed PC algo- than once. Fig. 2 is used to  illustrate 
ri t hm this “no-repetition” property of the algo- 
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rithm. In order to focus on the nature of combinations that occur during execution of the 
the window-fragmentation subphase, the ef- algorithm is C(C - 1)/2. 

fects of the alternating object-circulation sub- 

phase are intentionally omitted. Eight ob- Proof: Each processor performs one pairwise 

jects are shown, mapped onto four proces- comparison during every step of every phase of 
S O T S ,  two objects per processor. During phase the algorithm, as is clear from the algorithm 

2 (d = 2), the application of the object- specification. The number of steps in phase 

circulation subphase results in the generation d is 2d. Hence the total number of pairwise 
of all possible pairwise combinations with one combinations tried is: 
object from CS1  (AOO,A01,A10,All) and the 

other from CS2 (Boo,Bo~,BI~,B~~). Ignoring 
0 

for now the actual permutation of the C2 ob- 2 p  * 2d = 2p * (2(p+1) - 1) 
jects that will result at the end of the object- d=p 

circulation subphase, and assuming it to be = P ( 2 P  - 1) = C(C - 1)/2 

as shown, the window-fragmentation subphase 

of phase 2 will result in the state shown for 

d = 1. Processors Po0 and Pol are left with 

objects Aw,A01,A1O7A11, whereas PI0 and PI1 Lemma Given Objects ci and cj, the 

now have objects Bm7B01,B10,B11. After the (ci7cj) can occur at most Once 

window-fragmentation phase of phase 2, PO* during execution Of the algorithm. 

and PI* do not ever again communicate with 

each other. Since no pairwise combinations Proof: Let d be the earliest phase that the 

involving two A-objects had occurred during combination (C;,Cj) occurs. Obviously, at 
phase 2, and since none of the B-objects can most one such match can occur during the 

any longer meet any of the A-objects, all object-circulation subphase of phase d. For 

pairs of objects that align at any processor are such a match to occur, one of them must be- 

unique combinations that have not occurred long to the C1-object-set and the other to the 

earlier. The same property clearly holds re- C2-object-set. Since they belong to different 

cursively, as illustrated in the figure. object-sets, during the window-fragmentation 

0 

subphase of phase d, C; and Cj will necessar- 
ily end up in processors Pk, Pi, where 1 and k 

differ at least in bit d - 1, and hence Pk and Pl 

In the next section, we formally prove the cor- 
rectness of the distributed algorithm. 

belong to different windows. Obviously, they 

cannot get matched in any later phase d‘ < d. 

Hence at most one match (C;,Cj) can occur 

3 Proof of Optimality 

Lemma 1 The total number of pairwise object during an outer pass. U 
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Theorem 1 Given any two objects C, and Cj ,  
the pairwise combination (Ci,Cj) occurs ex- 
actly once during execution of the algorithm. 

Proof: Theorea 1 follows immediately from 

lemma 1 and lemma 2. By lemma 1, a total of 
C(C - 1)/2 pairwise combinations occur, and 

by lemma 2, no combination (Ci,Cj) can occur 

more than once. Since the number of possible 

distinct combinations of object pairs is C(C - 
1 ) / 2 ,  all possible matches must occur exactly 

once during execution of the algorithm. 0 

Theorem 1 implies that as regards to computa- 

tion, the algorithm is optimal since every pro- 

cessor is busy during each computational step 
and no duplicate computations occur. With 

respect to communication too, under the con- 

straint of computational load balancing and 

uniform data distribution, each processor can 

only contain two objects, and after perform- 

ing the pairwise operation on its currently held 

pair, it will have to send out at least one ob- 
ject and receive one object in order to perform 

useful comp:itation at the next step. The algo- 

rithm causes only one object to be sent and one 

object received by each processor at each step, 

Le., the 2::crithm performs minimal communi- 

cation. 

4 Discussion 

An efficient distributed algorithm for evaluat- 

ing an iterative function on all pairwise combi- 

nations of C objects on an SIMD hypercube is 

presented, and it is shown to achieve uniform 

load distribution and minimal, completely local 
inter-processor communication. 

In case that C > 2 P ,  the algorithm can be 

extended in a straightforward fashion. For 

C = MP, M = 2k, k > 1, groups of M / 2  ob- 

jects should be considered in place of single ob- 

jects in the presented algorithm. Now, instead 

of a single pairwise operation, ( M / 2 ) 2  pairwise 

operations are performed at each step of the al- 

gorithm between member partitions of the two 

(M/2)-ary object-groups in a processor. With 

such a ( M / 2 )  - ary  group of objects in place of 
single objects, the algorithm for distributed PC 
is essentially the same as above, except for an 
additional set of operations between the com- 

ponents of each ( M / 2 )  - ary group of objects. 
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