
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1997

RMESH Algorithms for Parallel String Matching RMESH Algorithms for Parallel String Matching

Hsi-Chieh Lee

Fikret Erçal
Missouri University of Science and Technology, ercal@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
H. Lee and F. Erçal, "RMESH Algorithms for Parallel String Matching," Proceedings of the 3rd International
Symposium on Parallel Architectures, Algorithms, and Networks, 1997, Institute of Electrical and
Electronics Engineers (IEEE), Jan 1997.
The definitive version is available at https://doi.org/10.1109/ISPAN.1997.645099

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229136475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ISPAN.1997.645099
mailto:scholarsmine@mst.edu

RMESH Algorithms For Parallel String Matching
Hsi-Chieh Leet, Fikret Ercalt

Abstract- String matching problem received much atten-
tion over the years due to its importance in various applica-
tions such as text/file comparison, DNA sequencing, search
engines, and spelling correction. Especially with the intro-
duction of search engines dealing with tremendous amount
of textual information presented on the world wide web
and the research on DNA sequencing, this problem deserves
special attention and any algorithmic or hardware improve-
ments to speed up the process will benefit these important
applications.

In this paper, we present three algorithms for string
matching on reconfigurable mesh architectures. Given a
text T of length n and a pattern P of length m, the first al-
gorithm finds the exact matching between T and P in O(1)
time on a 2-dimensional RMESH of size (n - m+ 1) x m. The
second algorithm finds the approximate matching between
T and P in O(k) time on a 2D RMESH, where k is the max-
imum edit distance between T and P. The third algorithm
allows only the replacement operation in the calculation of
the edit distance and finds an approximate matching be-
tween T and P in constant-time on a 3D RMESH.

Keywords- String Matching, Approximate String Match-
ing, Reconfigurable Mesh Architecture, Parallel Algorithms,
RMESH

1. INTRODUCTION
The exact string matching is the problem of detecting the

occurrence of a particular substring P, called a pattern, in
another string T, called the text. It most commonly arises
in text processing and pattern recognition. The well-known
Knuth-Morris-Pratt algorithm 11 has a time complexity of

exhibits better performance in practice when the pattern
length is relatively long [3].

The k-differences approximate string matching problem
is to find the occurrences of substrings on a text string T
whose edit distance from a pattern string P is less than k.
The edit distance between strings SI and 5'2, d(SI ,S2) , is
defined as the minimum number of edit steps in converting
S1 to Sz using the following three kinds of edit opcrations:

O(n+m). Boyer and Moore [2] 6 eveloped an algorithm that

Delete an element from 4.
Insert an element to SI.

e Replace an element of S1 with another element.
The definition of edit distance can also be generalized by
assigning different costs for different operations or different
alphabets.

The k-differences approximate string matching problem
has received much attention over the last few decades due
to its importance on various areas, such as, text/file com-
parison, molecular biology, error/spelling correction and
many otheI s. A dynaInic prograniming algorithm for com-
puting the edit distance between two strings was first
developed by Needleman and Wunsch [4] and variations
were then independently developed by many researchers.
Sankoff and Kruskal's book [5] provides references to re-
lated work and describes the variations of the dynamic

f Hsi-Chieh Lee is with the Information Management Department,
Yuan-Ze University, 135 Far Eastern Rd., Chung-Li, Taiwan 326 Re-
public of China. E-mail: imhlee@saturn.yzu.edu.tw .

SFikret Ercal is with the Computer Science Department, University
of Missour-Rolla, Rolla, MO 65401, USA. E-mail: ercal@cs.umr.edu

programming algorithms. The sequential dynamic pro-
gramming algorithm requires time and space complexity
of O(mn) where III is the length of the pattern and n is the
length of the text. A sequential algorithm of complexity
O(nk) that derived frorn Ukkonen's work [6] was devel-
oped by Landau and Vishkin [7]. They also designed an
O(log(m)+k) parallel algorithm using n processors. How-
ever, Galil and Park [8] pointed out that their algorithm
uses suffix trees which required O(1ogn) time for con-
struction on n processoirs [9]. To achieve speedup with-
out first constructing the suffix trees, Jiang and Wright
[lo] designed an O(k) pasallel algorithm using the priority
CRCW-PRAM parallel model. Their algorithm was based
on a variation of Ukkonen's algorithm [6], [7].

In this paper, we first describe the reconfigurable mesh
architecture (RMESH) model used for solving various
string matching problems (Section I-A). Then, section 11-A
presents an 0(1) time algorithm for exact string matching
between a text T and a pattern P using a 2-dimensio~ial
RMESH architecture. The algorithm to find the approx-
imate matching between strings T and P is presented in
Section 11-B. This algorithm is an efficient adaptation
of Ukkonen's algorithm [6] to reconfigurable mesh archi-
tectures and it has a time complexity of O(k) on a 2-D
RMESH, where k is the inaximum edit distance between T
and P. A third algorithm is presented in Section 11-C which
allows only the replacement operation in the computation
of the edit distance. This algorithm runs in 0(1) t' ime on
a 3-dimensional RMESH architecture.

A . RMESH Model
There are various but similar reconfigurable mesh

(RMESH) architectures proposed in the literature. First
two al orithms proposed in this paper use a 2D RMESH
modelfll] while the third algorithm requires a 3D RMESH.
Some important features: of this model are as follows:

Fig. 1. A 3U KMESH with 4 x 4 x N processors

1. A 3D RMESH is an N x N x N array of PES connected
in a standard mesh topology. The index of a PE is a
3-tuple (i , j , k) , where 0 5 i 5 N - 1 is the row index,

223
1087-4089/97 $10.00 0 1997 IEEE

mailto:ercal@cs.umr.edu

0 5 j 1. N-1 is the column index, and 0 5 k 5 N-1
is the layer index.

2. Each of the PES has six sets of ports that is con-
nected to its six nearest neighbors in the plane as
shown in Figure 1. {Ei, Si, Wi, Ni, Ui, Li} stands
for the set of input ports from the east, south,
west, north, upper, and lower neighbors, respectively.
{E,, So, WO, No, U,, L o } is the list of output ports to
the east, south, west, north, upper, and lower neigh-
bors, respectively. Within a PE, any combination of
the input ports can be connected to any combina-
tion of the output ports. This feature allows multiple
busses to pass through a particular PE.

3. Output ports cannot read the bus and input ports
cannot write onto the bus. Data between PES can
move only from output ports into input ports.

4. A link is established if and only if the input (output)
port and the corresponding output (input) port are
both closed at the same time.

5. Only one processor in a subnet can write data on the
bus at any given time. In unit time, data put onto a
directional bus can be read by every P E who is reach-
able from the source P E by following the directional
links that define the subnet.

The list of ports connected to the same bus within a
P E will be indicated inside { } parenthesis. For example,
when we say, “a processor sets its { X i , E, Z,} switches”,
it means that the input ports, X i and Yi, and the output
port, 2, are enabled and connected to the same bus within
a PE. Figure l (b) illustrates a case where processors set
their {Ni , W,, So, E,} switches.

11. STRING MATCHING ALGORITHMS ON A N RMESH
A . Exact String Matching

Given a text T (t o , t l , ..., tn- l) of length n and a pat-
tfrn P (p o , p l , ...,pm- 1) of length m, we present a constant
time algorithm to find all the occurrences of P in T on the
RMESH architecture described in section I-A. Without
loss of generality, let us assume that elements of pattern
P initially reside on processors at row 0, one element per
PE, i.e., po on P E o , ~ , p l on PEoJ, etc. Similarly, text T
initially resides at column 0 (see Figure 2(a)).

Fig. 2. Illustration of Exact String Matching Algorithm

AZgorith,m II. 1 (Exact String Matching Algorithm)

Step 1: Form n diagonal buses as shown in Figure 2(a).
Step 2: PEi,o, Vi,O 5 i 5 n - 1, broadcasts ti on its
corresponding diagonal bus.
Step 3: Broadcast pj’s along the column buses. At this
point, PEi,j holds both p j and ti+j, V i , j , 0 5 i 5 n-m

{* Initially, all input/output ports are disabled *}

~

224

B. Approximate String Matching I

and 0 5 j 5 m - 1 . . Step 4: Processors at each of the first (n - m + 1) rows
form special broadcast buses to determine whether
there is a perfect match or not along their particular
rows, as follows:
- If p j = t i + j , enable switches {&,WO}. Otherwise,

Step 5: PEi,m-l, Vi,O 5 i 5 n - m sends a spe-
cial signal ’*’ towards left and PEi,o reads the bus.
Those PES which receive the special signal ’*’ indicate
a match starting at the string position that they hold.
Step 6: If we want to detect the existence of at least
one exact match, the algorithm continues with the fol-
lowing steps:
- Form a special column bus on column 0 according

to the following rules: If PEQ receives the special
signal ’*’ in Step 5, it enables only switch { N o } ({Si}
remains disabled) and it is marked as “selected”. All
others enable both switches {No , Si} (Figure 2(c)).

- Any selected PEi,o, V i , 0 5 i 5 n - m sends its id on
the bus. If PE0,o receives a value q, then there is
an exact match starting at t?, otherwise, there is no
exact match of P anywhere in T.

The number of processors could be reduced from O(mn)
to O(m(n-mt-1)) by changing the initial distribution of the
original string as shown in Figure 2(d)).

leave all the switches disabled.

The k-differences approximate string matching problem
is to find the occurrences of substrings of a text string T
whose edit distance from a pattern string P is less than k.

Given a text T (t l , t 2 , ..., tn) of length n and a pattern
P (p l , pa , ...,pm) of length m, the well-known dynamic pro-
gramming algorithm that constructs a D-matrix to find the
approximate matching between T and P with at most k
differences is given below. This algorithm has a sequential
time complexity of O(mn):

Initialization:
 DO,^ = 0 , Q j where 0 5 j 5 n
Di,o = i, V i where 0 5 i 5 m

for j = 1 to n do
if(pi == t j) Di,j = min(Di-l,j + 1, Di,j-1 +
else Di,j = min(Di-l , j+l, Di,j-l+l, D i - ~ , j - ~ + l)

Figure 3(a) shows the corresponding D matrix for string
T = “HHHACAL” and P = “HAAC”.

An alternative dynamic programming algorithm achieves
the same results by constructing an L-matrix. The advan-
tage of this algorithm is that it is suitable for parallel im-
plementation. It is originally due to Ukkonen [6]. Based on
the same algorithm, Landau and Vishkin [7] presented an
O((Zogm) + k) time algorithm on the CRCW-PRAM model
and Jiang and Wright [101 developed several algorithms to
solve the approximate string matching problem in O(k)
time on CRCW-PRAM model. Code for this algorithm is
given below.

for i= l to m do

LDi-1,j-1)

Initialization:
Ld,-l = -1, Vd where 0 5 d 5 n
Ld,ldl--l = Id1 - 1, L d , l , - - a = Id1 - 2, Vd where

L,+1,, = -1, Ve where -1 5 e L, k

for d = -e to n do

- (k + l) L , d < - l

for e=O to k do

row = maz(Ld-l,e-l, Ld,e-l Ld+l,e-l f

TOW = min(row, m)
1)

while row < m and proW+l == trour+l+d

if Ld,e == m

row = row + 1
Ld,e = row

print “There is an approximate

The resulting L-matrix for the previous example is given
matching ending at td+m.”

in Figure 3(b).

H H H A C A L

(a) The D-matrix

e = O

e = 1

e - 2

e - 3

(b) The L-matrix

Fig. 3. The D-matrix and L-matrix for approximate string matching

In this section, we present an algorithm which is an ef-
ficient adaptation of the above a1 orithm to the RMESH
model. Our algorithm runs in Ofk) time where k is the
maximum number of differences allowed between the two
strings. Note that this algorithm can also be used for exact
string matching. It is considered as a special case when the
difference k equals 0. In such a case, the time complexity
of the algorithm is reduced to 0(1) which is the same as
Algorithm 11.1.

Without loss of generality, let’s first assume that PEi,.j
contains p i , t j and a variable MATCHi,j which equals 1 If
pi = tj and 0 otherwise. Note that switches will be enabled
explicitly, i.e., every step in the algorithms given below will
assume that all i nmt /outmt r>orts are disabled initially.

L Fr-1 f i e r o w i n d e r o i a c h @ isderisedasaresultofthemx(!cperationinthealgonthm

diagonal 0 diagonal n = l I F

I H H H A C A L / H H H A C A L

(a) initialization (b) iteration of e = 0

H H H A C A L H H H A C A L

(c) he itenlion of e = I (d)theiteratianofe=2

Fig. 4. Illustration of Approximate String Matching Algorithm I

required to get thle MATCHi+l,j+l value).
Step 5: [Each PE checks its status and decides if it
is allowed to broadcast] Any PEi,j that satisfies at
least one of the follovving conditions sends its row index
i along the corresponding subnet and PEoj records
the received value as Lj,,. (for each PEi;, neighbor
communication is required to get the MA’ZCHi+l,j+l
value)

1. (i = Lj,,) and (M A T C H i j = 0) and

{ * Initially, all input/output ports are disabled. When
not specified explicitly, to form special buses means to es-
tablish diagonal buses as shown in Figure 4(a). *}

Step 1: [Initialization] PEoj holds all the Lj,* values
initially:

Lj,-1 = -1, V j where 0 5 j 5 n
Lj,ljl-l = I j l - 1, LjJjl-2 = I j l - 2, “ j

where - (k + 1) 5 j 5 -1
Ln+l,e = -1, Ve where -1 5 e 5 k

Repeat Steps 2-6, for e = 0,1, ..., k
Step 2: [Neighbor communications] PE0,j reads
L j - ~ , ~ - l and L, j+~ ,~ - l from its east and west neigh-

- >.,

3. (2 = m).
Step 6: [PES on row 0 check if there is a match] P&,j
checks the Lj,, value. If Lj,, = m, quit and report
that an approximate string is found with a difference
of e.

This algorithm uses an RMESH of size (m+n+l)(m+l)
where m and n are the lengths of the pattern P and the
text T respectively. Since repeat loop executes at most k
times, it achieves a time complexity of O (k) where k is the
maximum difference allowed between P and T.

C. Approximate String Mutching I1
In some applications, we are interested in detecting the bors, for 0 5 j 5 n.

vj where 5 j 5 TI 3 computes L j) e = where the number of mismatches between the two strings
m~x((Lj- l ,e- l) , (Lj ,e-I + 1),(Lj+1+-1 1)) and is at most k (k 5 m). This is a special case of the k-
broadcasts the result on its corresponding subnet (di- diflerences approximate string matching problem described
agonal bus, see Figure 4(a)). above. Here, only the replacement operation is considered
Step 4: [Each PE checks its status and set switches] in calculating the edit distance. If we assume that (n -
Form special buses according to the following rules m + 1) 2 m 2 16, then this algorithm uses a 3-dimensional
(See Figure 4): RMESH of size (n - m f 1) x m x (n - m + l), where m

- P E i j enables its southeast port, for 0 5 i < Lj,e and and n are the lengths of the pattern (P) and the text (T)
O S j L n . respectively.

- PEi,j enables its southeast port if MATCHi+i,j+i =
1 and Lj,e 5 i 5 m (neighbor communication is

Step 3: [Broadcast the L j , e pEo , j Occurrences of a particular substring P in another string T

Algorithm 11.3 (Approximate String Matching Algorithm 11)

225

{* Assume that (n - m + 1) 2 m 2 16 and initially, all

Steps 1-3: Steps 1-3 of Algorithm 11.1 (Exact String
Matching Algorithm) . Step 4: Each Pi,? executes:
if p j = ti+j then c=O else c=l
Step 5:[Count the number of 1’s on each row] It is
proved in [12] that, counting the number of 1’s in a 0/1
sequence of length m can be performed in 0(1) time on
m x log2 m reconfigurable mesh (Lemma 2). Since it
is assumed that (n - m + 1) 2 m 2 16 and m 2 log2 m
for 7n 2 16, processors utilize the third dimension of
the RMESH to form (n-m+l) 2D horizontal planes of
size m x (n - m + 1) and each 2D plane counts the
number of 1’s on its corresponding row in O(1) time
(see Figure 5(b)). The results are stored in the first
column of the front plane as shown in Figure 5(c).
Step 6:[Find the minimum count, mc] Form a 2D mesh
of size n - m + 1) x (n ~ m + 1) to find thc minimum
of the i n-m+l) counts each representing the number
of mismatches between P and T at different starting
points (see Figure 5(c). Call this number mc and store
it along with the processor id in PE0,O. A minimum-
finding-algorithm with 0(1) complexity can be used
for this purpose (e.g. the algorithm in section I11 of

Step 7: If the minimum count, me 5 k , then PE0,o
reports success: “there is a match between P and T
with at most k mismatches”. Otherwise, report that
the search is not successful.

input/output ports are disabled *}

~ 3 1) .

m

n-mt

2D RMESH to count
the 1’s in the fin1 row

I

h e 1’5 in *e last cow

1+ i

(a) initial distnhutlon of P and 1 (b) Counting the number of 1’s (c) (n-mtl)x(n-mtl) 2D
RMESH is used to find
L e minimum count

in each row

Fig. 5. 3D RMESH used for solving the constant-time approximate
string matching algorithm

Steps 1-3 are same as those in Algorithm 11.1 and can
be executed in O(1) time. Since the counting operation
in Step 5 and the minimum operation in Step 6 can both
be performed in 0(1) time [12 , [13], the overall time com-
plexity of this algorithm is 0 i 1). Here, note that, in step
6, if we were to use an O(1) sorting algorithm instead of
a minimum-finding-algorithm, we would have found all the
occurrences of P in T where the number of mismatches be-
tween the two strings is at most k (k < m). There are a
number of papers which present algorithms to sort N num-
bers in O(1) time using an N 2 RMESH [14], [15], [16].

111. CONCLUSIONS

cause they offer the needed efficiency and flexibility in inter-
processor communications by allowing the network topol-
ogy to change dynamically as required by the algorithm.
String matching has been a common problem in many ap-
plications, such as, searching, DNA sequencing, spell check-
ing, and file comparison. This paper presents three time-
efficient algorithms for string matching on an RMESH. The
first algorithm finds the exact matching between a text T
of length n and a pattern P of length m in O(1) time.
The second algorithm finds the approximate matching be-
tween T and P in O (k) time, where k is the maximum edit
distance between T and P. Both algorithms require a 2-D
RMESH. The third algorithm finds an approximate match
between T and P with an edit distance of at most k where
only the replacement operation is considered in the com-
putation of the edit distance. This algorithm runs in O(1)
time on a 3-D RMESH. As a final note, we state that the
RMESH model described in section I-A is directional [ll]
and provides more power than needed. A simpler model
would be sufficient to run the proposed algoiithms without
increasing the reported time complexities.

REFERENCES
D. E. Knuth, J. H. J . Morris, and V. R. Prat t , “Fast pattern
matching in strings,” SIAM Journal on Computing, vol. 6(2),
pp. 323-350, June 1977.
R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20(10), pp. 762-772, October
1977.
S. Baase, Computer Algorithms; Introduction to Design and
Analysis. Addison-Wesley, 2nd ed., 1988.
S. B. Needleman and C. D. Wunsch, “A general method appli-
cable to the search for similarities in the amino acid sequences of
two proteins,” Journal of Mol. Bio., vol. 48, pp. 444-453, 1970.
D. Sankoff and J. B. K. (Eds.), Time Warp, String Edits, and
Macro molecules: The Theory and Practice of Sequence Com-
parison. Addison-Wcslcy, Reading, MA, 1083.
E. Ukkonen, “On approximate string matching,” in Proceedings
Int. Conf. Found. Comput. Theory, Lecture Notes in Computer
Science, vol. 158, pp. 487-495, Springer-Verlag, Berlin/New
York, 1983.
G. M. Landau and U. Vishkin, “Fast parallel and serial approxi-
mate string matching,” Journal of Algorithms, vol. 10, pp. 157-
169, 1989.
2. Galil and K. Park, “An improved algorithm for approximate
string matching,” SIAM J . Comput., vol. 19(6), pp. 989-999,
1990.
A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and
U. Vishkin, “Parallel construction of a suffix tree with applica-
tions,” Algorithmica, vol. 3, pp. 347-365, 1988.

[lo] Y. Jiang and A. H. Wright, [‘O-(k) parallel algorithms for approx-
imate string matching,” Neural, Parallel and Scientific Compu-

[ll] F. Ercal and H. C. Lee, “Constant-time reconfigurable mesh al-
gorithms for maze routing,’’ Technical Report CSC 96-05, Uni-
versity of Missouri-Rolla (also submitted to JPDC), 1996.

[12] H. Park, H. J . Kim, and V. K. Prasanna, “An o(1) time opti-
mal algorithm for multiplying matrices on reconfigurable mesh,”

[13] R. Miller, V. K. Prasanna-Kumar, D. I. Reisis, and Q. F. Stout,
“Parallel computations on reconfigurable meshes,” IEEE Trans.
Computers, vol. 42(6), pp. 678-692, June 1993.

[I41 M. Nigam and S. Sahni, “Sorting n numbers on n x n reconfig-
urable meshes with buses,” in Technical Report 92-5, University
of Florida, 1992.

[15] J . W. Jang and V. K. Prasanna, “An optimal sorting algo-
rithm on reconfigurable mesh,” in Proceedings. Sixth Interna-
tional Parallel Piocessing Symposium, pp. 130-7, 1992.

[16] S. Olariu, J. L. Schwing, and J. Zhang, “Integer sorting in o(1)
time on an n x n reconfigurable mesh,” in Eleventh Annual In-
ternational Phoenix Conference on Computers and Communi-
cations, pp. 480-4, 1992.

tations, vol. 1, pp. 443-452, 1993.

Information Processing Letters, vol. 47, pp. 109-113, 1993.

In recent years, the researchers have shown interest in
designing efficient algorithms for RMESH architectures be-

226

	RMESH Algorithms for Parallel String Matching
	Recommended Citation

	RMESH algorithms for parallel string matching

