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An Automatically Tuning Intrusion Detection System
Zhenwei Yu, Jeffrey J. P. Tsai, Fellow, IEEE, and Thomas Weigert

Abstract—An intrusion detection system (IDS) is a security
layer used to detect ongoing intrusive activities in information sys-
tems. Traditionally, intrusion detection relies on extensive knowl-
edge of security experts, in particular, on their familiarity with
the computer system to be protected. To reduce this dependence,
various data-mining and machine learning techniques have been
deployed for intrusion detection. An IDS is usually working in
a dynamically changing environment, which forces continuous
tuning of the intrusion detection model, in order to maintain
sufficient performance. The manual tuning process required by
current systems depends on the system operators in working out
the tuning solution and in integrating it into the detection model.
In this paper, an automatically tuning IDS (ATIDS) is presented.
The proposed system will automatically tune the detection model
on-the-fly according to the feedback provided by the system
operator when false predictions are encountered. The system
is evaluated using the KDDCup’99 intrusion detection dataset.
Experimental results show that the system achieves up to 35%
improvement in terms of misclassification cost when compared
with a system lacking the tuning feature. If only 10% false pre-
dictions are used to tune the model, the system still achieves about
30% improvement. Moreover, when tuning is not delayed too long,
the system can achieve about 20% improvement, with only 1.3%
of the false predictions used to tune the model. The results of the
experiments show that a practical system can be built based on
ATIDS: system operators can focus on verification of predictions
with low confidence, as only those predictions determined to be
false will be used to tune the detection model.

Index Terms—Attack detection model, classification, data min-
ing, intrusion detection, learning algorithm, model-tuning algo-
rithm, self-organizing map (SOM).

I. INTRODUCTION

INTRUSION detection is a process used to identify abnor-
mal activities in a computer system. Traditional intrusion

detection relies on the extensive knowledge of security experts,
in particular, on their familiarity with the computer system to
be protected. To reduce this dependence, various data-mining
and machine learning techniques have been used in research
projects: Audit Data Analysis and Mining (ADAM) [1] com-
bined the mining of association rules and classification to
discover attacks from network traffic data. The Information
and Systems Assurance Laboratory (ISA) intrusion detection
system (IDS) employed multiple statistics-based analysis tech-
niques, including chi-square [2] and exponentially weighted
moving averages based on statistical process control [3], multi-
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variate statistical analysis based on Hotelling’s T 2 test [4], and
clustering [2]. Mining Audit Data for Automated Models for
Intrusion Detection (MAMAD ID) [5] applied association rules
and a frequent episodes program. The Minnesota INtrusion
Detection System (MINDS) [6] included a density-based out-
lier detection module and an association-pattern analysis mod-
ule to summarize network connections.

However, Julish pointed out that data-mining-based intrusion
detection usually relies on unrealistic assumptions on the avail-
ability and quality of training data [7], which causes detection
models built on such training data to gradually lose efficiency
in detecting intrusions as the real-time environment undergoes
continuous change.

The quality of training data has a large effect on the learned
model. In intrusion detection, however, it is difficult to collect
high-quality training data. New attacks leveraging newly dis-
covered security weaknesses emerge quickly and frequently. It
is impossible to collect all related data on those new attacks to
train a detection model before those attacks are detected and
understood. In addition, due to the new hardware and software
deployed in the system, system and user behaviors will keep
on changing, which causes degradation in the performance of
detection models. As a consequence, a fixed detection model is
not suitable for an IDS. Instead, after an IDS is deployed, its
detection model has to be tuned continually. For commercial
products (mainly signature/misuse-based IDS), the main tuning
method has been to filter out signatures to avoid generating
noise [8] and add new signatures. In data-mining-based in-
trusion detection, system parameters are adjusted to balance
the detection and false rates. Such tuning is coarse, and the
procedure must be performed manually by the system operator.
Other methods that have been proposed rely on “plugging in”
a special purpose submodel [9] or superseding the current
model by dynamically mined new models [10]–[12]. Training
a special-purpose model forces the user to collect and construct
high-quality training data. Mining a new model in real time
from unverified data incurs the risk that the model could be
trained by an experienced intruder to accept abnormal data.

In this paper, we present an automatically tuning IDS
(ATIDS). Our system takes advantage of the analysis of alarms
by the system operators: the detection model is tuned on-the-fly
with the verified data, yet the burden on the system operator is
minimized. Experimental results show that the system achieves
up to 35% improvement in terms of misclassification cost
compared with the performance of a system lacking the model-
tuning procedure. If only 10% false predictions are used to tune
the model, the system still achieves roughly 30% improvement.
When tuning is delayed only a short time, the system achieves
about 20% improvement with only 1.3% false predictions used
to tune the model. Selective verification on predictions with low

1083-4419/$25.00 © 2007 IEEE
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Fig. 1. System architecture of ATIDS.

confidence can further be used to improve efficiency by avoid-
ing verification of high-confidence (typically true) predictions.

We present system architecture and core system components
in Section II. To tune a model, two problems must be addressed.
The first problem is how to tune the model, which is addressed
by the algorithm presented in Section II-C. The second problem
is when to tune the model. We present experiments regarding
this issue in Section IV. Section III discusses the evaluation of
the performance of an IDS and introduces the dataset used in
our analysis. Experimental results obtained on this dataset are
shown in Section IV. Section V surveys related work.

II. SYSTEM ARCHITECTURE

An IDS is a monitoring system which reports alarms to the
system operator whenever it infers from its detection model
that abnormal conditions exist. The system operator must verify
the correctness of the reported alarms and execute defensive
actions against an intruder. Our IDS relies on the fact that
verified results provide useful information to further improve
the IDS. Fig. 1 depicts the system architecture of our pro-
posed ATIDS; we included the system operator to show the
interaction between the user and the system. The prediction
model is created in the training stage. The prediction engine
analyzes and evaluates each obtained data record according to
the prediction model. The prediction results are reported to the
system operator. The system operator verifies the results and
marks false predictions, which are then fed back to the model
tuner. The model tuner automatically tunes the model according
to the feedback received from the system operator. We discuss
these three components in detail, ignoring the data collector and
preprocessor familiar from conventional systems.

A. Prediction Model and Learning Algorithm

Different model representations have been used in detection
models presented in the literature, among them are rules
(signatures) [1], [5], decision trees [13], neural networks [14],
statistical models [2], [3], or Petri nets [15]. In order to allow
tuning parts of the model easily and precisely without affecting
the rest of the model, we choose rules to represent the
prediction model. In an earlier study, this model has demon-
strated a good performance [16]. Our model consists of a set
of binary classifiers learned from the training dataset by the
simple learner with iterative pruning to produce error reduction
(SLIPPER) [17], a binary learning algorithm. The initial
creation of the detection model is shown in the block diagram
in Fig. 2. The preprocessor prepares all binary training datasets
from the original training dataset. The algorithm capturing this

Fig. 2. Creation of initial model for ATIDS.

Fig. 3. Example of binary classifier.

preprocessor and the details of creating the prediction model
have been described in [16].

The binary SLIPPER learning algorithm proposed by Cohen
and Singer [17] is a general-purpose rule-learning system based
on confidence-rate boosting [18]. A weak learner is boosted
to find a single weak hypothesis (an IF–THEN rule), and
then, the training data are reweighted for the next round of
boosting. Unlike other conventional rule learners, data covered
by learned rules are not removed from the training set. Such
data are given lower weights in subsequent boosting rounds. All
weak hypotheses from each round of boosting are compressed
and simplified, and then combined into a strong hypothesis,
constituting a binary classifier. An example of a binary classifier
is shown in Fig. 3. This example is part of a binary classifier of
the initial model in our system described below. Each rule starts
with a predictive label (such as “r2l” or “unknown” in Fig. 3),
followed by two parameters used to calculate the confidence
in predictions made by this rule. The keyword “IF” introduces
the conditions of the rule. These conditions are used to check
whether the rule covers a data sample.

In SLIPPER [17], a rule R is forced to abstain on all data
records not covered by R and predicts with the same confidence
CR on every data record x covered by R

CR =

{
1
2 ln

(
W+
W−

)
, if x ∈ R

0, if x �∈ R.
(1)

W+ and W− represent the total weights of the positive and
negative data records, respectively, covered by rule R in the
round of boosting the rule, which was built in. For example,
for the first rule in the binary classifier shown in Fig. 3, W+

is 1775.6 and W− is zero. In order to avoid “divide by zero”
errors when W− is zero, (1) is transformed to (10) by adding a
small value ε. Although the data are reweighted in each round
of boosting during the training phase, the confidence value
associated with a rule will remain unchanged once the rule has
been included in the final rule set.
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Fig. 4. Prediction on new data in ATIDS.

In SLIPPER, an objective function such as (6) from [17] is
used to search for a good rule with positive confidence during
each round of boosting. The selected rule with positive confi-
dence is compared with a default rule with negative confidence
to determine the result of boosting. A default rule covers all data
records and, thus, does not have conditions; all default rules are
compressed into a single final default rule. For example, the last
rule in Fig. 3 is a final default rule.

SLIPPER is a time-efficient learning algorithm. For example,
it took 2 h to learn a model from roughly half million training
records on a Pentium IV system with a 512-MB RAM running
at 2.6 GHz.

B. Prediction Engine

Binary learning algorithms can only build binary classifiers.
For intrusion detection, the minimal requirement is to alarm
in case intrusive activity is detected. Beyond alarms, operators
expect that the IDS will report more details regarding possible
attacks, at least the attack type. We group attacks into categories
such as denial-of-service (dos), probing (probe), remote-to-
local (r2l), and user-to-root (u2r). Correspondingly, we con-
structed five binary classifiers from the training dataset. One
binary classifier (“BC-Normal”) predicts whether the input data
record is normal. The other four binary classifiers (“BC-Probe,”
“BC-Dos,” “BC-U2r,” and “BC-R2l”) predict whether the input
data record constitutes a particular attack. For example, the
binary classifier “BC-Probe” predicts whether the input data
record is a probing attack. The prediction engine in our system
consists of five binary prediction engines together with a final
arbiter, as shown in Fig. 4. We refer to this multiclassifier
version of SLIPPER as MC-SLIPPER. The training procedure
used to construct the initial model for MC-SLIPPER is de-
scribed in detail in [16]. Each binary prediction engine outputs
a prediction result on the input data according to its binary
classifier, and the final arbiter determines and reports the result
to the system operator.

The binary prediction engine is the same as the final hypoth-
esis in SLIPPER [17], which is

H(x) = sign

( ∑
Rt:x∈Rt

CRt

)
. (2)

In other words, the binary prediction engine sums up the
confidence values of all rules that cover the available data. A
positive sum represents a positive prediction. The magnitude
of the sum represents the confidence in the prediction. For
example, if some rules in the binary classifier shown in Fig. 3
cover a data record and the sum of confidence values of these

rules is 10.0, then the corresponding binary prediction engine
will output the result “r2l, 10.0.” This result means that the
data are r2l attack and the confidence in the prediction is 10.0.
If some other rules in this classifier cover another data record
but the sum of the confidence values of those rules is −5.0,
then the corresponding binary prediction engine will output the
result “unknown, 5.0.” This result means that the corresponding
binary prediction engine does not think that this data record
represents a r2l attack and its confidence in this prediction is
5.0. But, the prediction engine does not know whether this data
record is normal or belongs to a different attack type.

Obviously, conflicts may arise between the results of the
different binary prediction engines. For instance, there might
be more than one positive prediction on a single data record,
or there may be no positive prediction. We implemented three
arbitration strategies to resolve such conflicts [16]. In the first
strategy (“by confidence”), we compare the prediction con-
fidence (PC) obtained from all binary classifiers and choose
the prediction with the highest confidence as the final result
[see (3)]

i = {j|PCj = MAX{PC1, PC2, . . . , PCn}} . (3)

PC1, . . . , PCn stands for the PC values from binary prediction
engine 1 through n. The result i indicates the ith class label
(normal or attack type) representing the final result.

A comparison is made between PC values from different
binary classifiers. Such comparison may not be fair because
each binary classifier has its distinct rule set. Our second
arbitration strategy (“by confidence ratio”) compares the PC
ratios (PCR), which are relative values

i = {j|PCRj = MAX{PCR1, PCR2, . . . , PCRn}} . (4)

PCRj = PCj/MAX{PC1
j , PC2

j , . . . , PCm
j }, where PCj

stands for the PC of prediction engine j on the data record in
the test dataset and PCm

j stands for the PC values of prediction
engine j on all data from the mth example in the training
dataset.

For the third arbitration strategy, we built a three-layer back-
propagation (BP) neural network [19] with five input, seven
hidden, and five output nodes, which takes confidence ratios as
inputs and selects the class with the highest output as the final
class, as shown in (5)

i={j| NNOj =MAX{NNO1, NNO2, . . . , NNOn}} . (5)

NNOj =
∑

k(ωjk ·∑(ωkl · PCRl)) stands for the output of
the neural network via the output node j. ωjk and ωkl are
weights on the connection between output node j and hidden
node k and the connection between hidden node k and input
node l, respectively.

C. Model-Tuning Algorithm

Each classifier in MC-SLIPPER is a set of rules. As shown
in (2), only rules that cover a data record contribute to the final
prediction on this data record. This property ensures that, if we
change a rule, the prediction on data records not covered by this
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rule will not be affected. Having only minor side effects during
tuning is essential to ensure performance improvement from
tuning. We do not change rules; new rules can be learned using
other methods, such as incremental learning techniques, should
such are proven to be necessary. During tuning, we change the
associated confidence values to adjust the contribution of each
rule to the binary prediction. Consequentially, tuning ensures
that, if a data record is covered by a rule in the original model,
then, it will be covered by this rule also in the tuned model and
vice versa. To limit possible side effects, we only change the
associated confidence values of positive rules as a default rule
covers every data record.

When a binary classifier is used to predict a new data record,
two different types of false predictions may be generated ac-
cording to the sum of confidence values of all rules that cover
this data record. When the sum is positive, the binary classifier
predicts the data record to be in the positive class. If this
prediction is false, it is treated as a false positive prediction
and labeled “P.” When the sum is negative, the binary classifier
predicts the data record to be in the negative class. If this
prediction is false, it is considered a false negative prediction
and labeled “N.” We use the label “T” to indicate a true predic-
tion. The sequence of prediction results can then be written as:
. . . {P}l{N}i{T}j . . . where l > 0, i and j ≥ 0, and i + j > 0.
Obviously, when the classifier makes a false positive prediction,
the confidence values of those positive rules involved should be
decreased to avoid the false positive prediction made by these
rules on the subsequent data. When the classifier makes a false
negative prediction, the confidence values of the positive rules
involved should be increased to avoid false negative predictions
made by these rules on the successive data. Formally

C ′
R =

{
p · CR, if R ∝ P
q · CR, if R ∝ N

(6)

where p < 1, q > 1, and R ∝ P imply that a positive rule R
contributes to a false positive prediction. We multiply a pair
of relative values (p and q) with the original confidence values
to adjust these values, rather than adding or subtracting a
constant, for the following two reasons. For one, in SLIPPER,
all rules except the default rule have positive confidence values.
Using relative values, we can ensure that new confidence values
remain positive, although they may be very small when the
adjustment procedure is repeated many times in the same
direction. Further, confidence values are quite different for each
rule. Without additional information, it is difficult to choose a
reasonable constant for all rules.

If the updating is performed n times, the sum of the confi-
dence values of the positive rules will be

∑
C ′

R =
{

pn ·∑CR, if R ∝ P
qn ·∑CR, if R ∝ N.

(7)

Because p < 1, q > 1, and the confidence value of the default
rule is unchanged, trivially, there exists a number n, such that,
after updating the confidence values n times, the sign of the sum
of the confidence values of all rules (both positive rules and the
default rule) will be changed. That means the tuned classifier
could make a true prediction on the data where the original

classifier made a false prediction. Formally, ∃n, ({P}n)o ⇒
({P}n−1T)t, where ()o represents the sequence of prediction
results based on the original classifier and ()t stands for the
sequence of prediction results from the tuned classifier.

Because confidence values are updated after the user identi-
fies a false prediction and the tuned classifier cannot be used to
predict the data again when the original classifier made a false
prediction, the benefit of such tuning depends on the subsequent
data. Note that (PN)o ⇒ (PN)t as the classifier decreases the
confidence values after it makes a false positive prediction. We
only discuss the tuning after a false positive prediction; tuning
after a false negative prediction is similar. Assume that tuning is
aggressive by setting appropriate values for p and q in (6). After
tuning on a false positive prediction, the classifier would make
a true prediction on the data over which the original classifier
made a false positive prediction, but it might still make a false
negative prediction on the data over which the original classifier
made a true prediction. This assumption can be written as

(PP)o ⇒ (PT)t

(PT)o ⇒ (PN)t. (8)

Tuning improves performance when the misclassification
cost decreases. We consider the benefit of tuning Bt to be
the change in misclassification cost. If tuning corrects a false
prediction, then we shall say that it gains benefit (+1); if
tuning incorrectly changes a formerly true prediction, it loses
benefit (−1). For any general sequence of prediction results
. . . {P}l{N}i{T}j . . ., where l > 0, i and j ≥ 0, and i + j > 0,
the following are observed.

1) If l = 1 and i �= 0, then (PN)o ⇒ (PN)t, tuning will
be performed on a false negative prediction, and tuning
neither gains nor loses benefit.

2) If l = 1 and i = 0, but j �= 0, then (PT)o ⇒ (PN)t,
tuning loses benefit (−1), and further tuning will be
performed on a false negative prediction.

3) If l = 2 and i �= 0, then (PPN)o ⇒ (PTN)t, tuning gains
benefit (+1), and further tuning will be performed on a
false negative prediction.

4) If l = 2 and i = 0, but j �= 0, then (PPT)o ⇒ (PTN)t,
tuning neither gains nor loses benefit, and further tuning
will be performed on a false negative prediction.

5) If l = 3 and i �= 0, then (PPPN)o ⇒ (PTTN)t, tuning
gains benefit (+2), and further tuning will be performed
on a false negative prediction.

6) If l = 3 and i = 0, but j �= 0, then (PPPT)o ⇒ (PTTN)t,
tuning gains benefit (+2), and further tuning will be
performed on a false negative prediction.

7) When l > 3, ({P}l)o ⇒ (P{T}l−1)t, tuning gains benefit
(+(l − 1)).

The total benefit of tuning on all false predictions is calcu-
lated by

Bt = −
∑

(PT)o +
∑

(PPN)o + 2 ·
∑

(PPP)o + · · ·

+(l − 1) ·
∑({P}l

)
o

+ · · · (9)

where l > 3 and
∑

(. . .)o is the count of pattern (. . .) in the
sequence of prediction results of the original classifier. The
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total benefit of tuning depends on how many continuous false
positive predictions the original classifier made on the dataset.

In SLIPPER, each rule has two parameters, W+ and W−.
They are computed from the training dataset in the round of
boosting when the rule is constructed. In practice, the con-
fidence value is “smoothed” by adding ε to avoid extreme
confidence values

CR =
1
2

ln
(

W+ + ε

W− + ε

)
. (10)

The number of choices for the pair of values p and q is
large. For example, we might choose 0.75 and 1.5 to adjust the
confidence values conservatively, or we might choose 0.25 and
4 to adjust the confidence values more aggressively. Confidence
values could also be adjusted by relying on dynamic relative
values. In this paper, we set p = 0.5 and q = 2. According to
(6), p can be any value greater than zero but less than one.
We choose the middle value for p to avoid aggressive updating
yet keep tuning efficient. We set q to be 1/p to ensure that
the original confidence value is restored when it turns out
that tuning had led to an incorrect prediction and the rule is
subsequently tuned again to yield the original prediction.

When a false positive prediction is made on a data record,
from the point of view of training, this is a negative data record
for those rules that cover the data but misclassified it as a
positive data record. Therefore, we can move some weights
from W+ to W− while keeping the sum of weights unchanged
as follows:

C ′
R =

1
2

ln
(

W+ + ε

W− + ε

)

= p · CR =
1
2
· 1
2

ln
(

W+ + ε

W− + ε

)
W ′

+ + W ′
− =W+ + W−. (11)

By solving (11), we get new values for W ′
+ and W ′

−

W ′
+ =

√
W++ε√

W++ε+
√

W−+ε
(W++ε+W−+ε)−ε

W ′
− =

√
W− + ε√

W++ε+
√

W−+ε
(W++ε+W−+ε)−ε. (12)

Similarly, if a false negative prediction is made on a data record,
the data can be considered a positive data record for those rules
that cover it but misclassified it as a negative data record. Again,
we can move some weights from W− to W+ while keeping the
sum of the weights unchanged

C ′
R =

1
2

ln
(

W ′
+ + ε

W ′− + ε

)

= q · CR = 2 · 1
2

ln
(

W+ + ε

W− + ε

)
W ′

+ + W ′
− = W+ + W−. (13)

Solving (13) yields new values for W ′
+ and W ′

−

W ′
+ =

(W++ε)2

(W++ε)2+(W−+ε)2
(W++ε+W−+ε)−ε

W ′
− =

(W−+ε)2

(W++ε)2+(W−+ε)2
(W++ε+W−+ε)−ε. (14)

III. PERFORMANCE EVALUATION

In this section, we will examine how to assess the perfor-
mance of an IDS and how to improve the system based on
the experimental data. We will rely on the KDDCup’99 dataset
provided by Defense Advanced Research Projects Agency
(DARPA) as this dataset contains several weeks of attack data
and has been used to assess the performance of a number of
IDS. While this dataset contained labeled data, in order to
mitigate the burden of manually labeling training data in real-
life situations, we developed a supporting tool. We will use
the total misclassification cost (TMC) as the primary indicator
of system performance. In order to be able to improve our
system based on the experimental results, we also develop a
methodology of studying the performance of individual rules.

A. Dataset

A proper dataset must be obtained to facilitate experimen-
tation. In our experimental environment, it was difficult to
obtain real-life datasets due to limitations of network size
and limited external access. Unfortunately, usable datasets are
rarely published as these involve sensitive information such as
the network architecture, security mechanisms, and so on. Thus,
in this paper, we rely on the publicly available KDDCup’99
intrusion detection dataset. This dataset was collected from a
network simulating a typical U.S. Air Force LAN and also
reflects dynamic change within the network.

The KDDCup’99 intrusion detection dataset was developed
based on the 1998 DARPA intrusion detection evaluation
program, prepared and managed by the MIT Lincoln Laborato-
ries. The objective of this program was to survey and evaluate
intrusion detection research. Lincoln Laboratories set up an
environment to acquire nine weeks of raw TCP data for a local-
area network (LAN) simulating a typical U.S. Air Force LAN.
This LAN was operated as if it is a true Air Force environment,
and it was subjected to multiple attacks. The raw training data
dump was about 4 GB of compressed binary TCP data from the
first seven weeks of network traffic alone. The data dump was
processed into roughly five million connection records. The test
data were constructed from the network traffic in the last two
weeks, which yielded around two million connection records.

In the KDDCup’99 dataset, each record represents a TCP/IP
network connection with a total of 41 features. Domain experts
derived some of the features related to content [5]. Statistical
features were generated using a 2-s time window. Five classes
of connections were identified, including normal network con-
nections. The four classes of abnormal connections (attacks)
are dos, probing (probe), r2l, and u2r. Each attack class is
further divided into subclasses. For example, class dos includes
subclass smurf, neptune, back, teardrop, and so on, representing
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TABLE I
DATA DISTRIBUTION IN THE KDDCUP’99 DATASET

popular types of dos attacks. Two training datasets from the
first seven weeks of network traffic are available. The full
dataset includes about five million records and a smaller subset
containing only 10% of the data records but with the same
distribution as the full dataset. We used the 10% subset to train
our binary SLIPPER classifiers.

The labeled test dataset includes 311 029 records with a
different distribution of attacks, then the training dataset (see
Table I). Only 22 out of the 39 attack subclasses in the test data
were present in the training data. The different distributions
between the training and test datasets and the new types of
attacks in the test dataset reflect the dynamic change of the
nature of attacks common in real-life systems. Sabhnani and
Serpen analyzed the dissimilarity between the training dataset
and the test dataset [20].

B. Labeling Tool

As a supervised learning system, the binary SLIPPER [17]
requires labeled training data. The KDDCup’99 dataset con-
tains both labeled training and test data, and we can easily learn
a model by running SLIPPER on the labeled training data and
verifying the model on the labeled test data. However, to build
a detection model for a particular network, the training data
should be collected from that network and labeled before it is
used to learn a model. We developed a tool to automatically
label the data and thus reduce the effort required to manually
verify the training data, while keeping the mislabeling rate
low. We use the labeled 10% subset of training data in the
KDDCup’99 dataset to demonstrate the performance of our
labeling tool.

The labeling tool attempts to cluster data using self-
organizing map (SOM) unsupervised learning [21], which does
not require labels on the input data. A SOM consists of an array
of nodes. Each node contains a vector of weights of the same
dimension as the input data. Given a set of data, training a SOM
is a procedure to adjust the weights of the nodes. For any input
data, the best matching node is selected according to its similar-
ity to all other nodes. Then, the radius of the neighborhood of
the best matching node is calculated, which will decrease as the
training procedure proceeds. Only the weights of the neighbor-
ing nodes are adjusted to make them more similar to the input
data. All training data will be grouped into multiple clusters
after the training procedure has been repeated many times.

Usually, similarity is measured as the Euclidean distance
between the input data and the nodes in the SOM, which
works only on numerical features. However, nine out of the
41 features in the KDDCup’99 dataset are symbolic. Six of the
symbolic features are binary and can be coded with “1” or “0.”
We adopt a perfect match policy on the remaining symbolic
features (“protocol type,” “service,” and “flag”) and treat them
as numeric also. All training data are split into 210 sets based

TABLE II
INITIAL SETTING OF SOM SIZE

on the values of these three symbolic features; only data with
identical values for these three features will be in the same set.
The set size varied from 1 to 281 400. The values of the numeric
features were normalized to a range between zero and one. The
data in every set of size greater than ten were trained using a
SOM (a total of 139 sets). The size of each SOM (in terms of
the number of nodes) depends on the amount of data in the set.
The number of nodes in a SOM is around 10% of the number
of data elements in a set. To limit training time, we restrict the
largest SOM to 400 nodes. Table II shows the initial settings of
SOM size in this paper.

After training a SOM, we calculate the following parameters
for every input data element: the best matching node, the
distance between the input data and the best matching node,
the lowest distance to each node, and the average distance of
all input data in the set. In this paper, 82 out of the 139 average
distances are less than 0.01, 107 out of the 139 average dis-
tances are less than 0.02, and 127 out of the 139 average
distances are less than 0.1. To improve the performance of the
SOM in assigning labels to the input data, the average distance
of all input data in a set is used to determine whether a new
SOM should be trained for that dataset. To build a new SOM,
we can increase its size or/and iteration number or just use
different initial random weights.

Once we obtain a satisfying SOM, all the input data are
clustered around some nodes. The input data with the lowest
distance to its node must be verified and labeled manually. This
label is then assigned to all other input data in the same cluster.
We assume that, when input data are verified manually, the
label is correct. In order to reduce error, additional input data
could be verified and labeled manually. In this paper, we also
manually labeled all data in a cluster whose distance is over
ten times of its lowest distance when the lowest distance for
that cluster to its node is over two times the average distance
of all data in that set. We verified and manually labeled all
data in the datasets of size less than 10. In this paper, 5205
out of the 494 021 input data in the KDDCup’99 10% training
dataset (about 1.05%) was verified and labeled manually. Only
462 (about 0.094%) input data elements were mislabeled.

C. System Performance

We evaluated our system on the KDDCup’99 dataset and
compared it with other systems, including a system built from
PNrules [22], the KDDCup’99 winner [23] and runner-up
[24], a multiple-classifier system [25], and a system based on
repeated incremental pruning to produce error reduction
(RIPPER) [26]. More details on these systems can be found in
Section V.

An IDS generates alarms whenever it detects an attack while
ignoring normal behavior. That is, any classification of network
connection into an attack class will generate an alarm, while
a classification as normal will not. Security officers will pay
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TABLE III
PERFORMANCE COMPARISON OF VARIOUS IDS

TABLE IV
STATISTICAL DATA FOR MC-SLIPPER RULES ON TEST DATASET

different levels of attention to different types of alarms. For
example, probe alarms will typically be ignored, but an r2l
alarm will be investigated and will result in counter measures,
should it be determined to be true. To reflect the different
levels of seriousness of alarms, a misclassification cost matrix
defining the cost of each type of misclassification is used to
evaluate the results of the KDDCup’99 competition. The TMC,
which is the sum of the misclassification costs for all test data
records, is the key measurement differentiating the performance
of each system. Table III compares the performance of each
evaluated system. We examine three systems based on MC-
SLIPPER, considering the three arbitration strategies [16].
The TMC of our systems is 72 494, 70 177, and 68 490,
respectively. All three are better than the KDDCup’99 contest
winner, whose TMC is 72 500 [27]. MC-SLIPPER using BP
neural network arbitration shows the best performance among
the compared systems.

As shown in Table III, the MC-SLIPPER systems achieved
excellent TMC. However, TMC does not tell us how well each
rule performs on the test dataset. To assess system performance
along this dimension, we first extract the sequence of prediction
results for each rule from the experimental data. Table IV
shows the statistical data for individual rules from different
binary classifiers. For space reasons, we only show data for
those 19 rules whose false prediction rates are greater than
20% and which cover more than 1% of all test data. These
19 rules contribute to 262 193 out of the 299 471 false positive
predictions (87.55%) and have the biggest negative impact on
the overall performance of our MC-SLIPPER system when
tested on the KDDCup’99 test dataset. In Table IV, the name

of rule “xxxx_29” stands for the rule 29 in binary classifier
“xxxx.” The column titled “P#” shows the false positive predic-
tions to which a rule contributes. Similarly, columns “N#” and
“T#” show the false negative predictions and true predictions
for each rule, respectively. As can be seen from this table,
the number of false negative predictions is small compared
to the number of false positive predictions. The last column
titled “FPR” is the overall false prediction rate, computed by
(P# + N#)/(P# + N# + T#). The l in the column titles refers to
the number of successive false positive predictions. When l is
equal to one, this false prediction is an isolated false prediction.
We particularly examine the situations where long sequences of
false positive predictions occur.

Table IV exhibits the following two properties of the perfor-
mance of rules in MC-SLIPPER.

Property 1: Isolated false predictions exist for most rules
and can amount to about 25% of all false predictions (see
column titled “l = 1”).

Property 2: Often, false predictions come in long successive
prediction sequences (see the columns titled “l ≥ 3,” “l ≥
100,” and “l ≥ 1000”). Long successive false prediction se-
quences provide an opportunity for our system to benefit from
model tuning.

Table IV does not show the data for every pattern where
the length of successive false positive prediction sequences l
is greater than or equal to three. Therefore, we cannot apply (9)
to evaluate the benefit of tuning. Compared to the large number
of false positive predictions shown in column “P#,” the small
number of false negative predictions shown in column “N#”
can safely be ignored. To estimate the benefit of tuning from
the data in Table IV, we first transform (9) to

Bt = −
∑

(PT)o −
∑

(PN)o + 2 ·
∑

(PPP)o + · · ·

+(l − 1) ·
∑({P}l

)
o

+ · · · (15)

where “+
∑

(PPN)o” is removed from (9) and “−∑(PN)o” is
added. Then, combine (PT)o and (PN)o to (P)o

Bt =−
∑

(P)o+2 ·
∑

(PPP)o+· · ·+(l−1)·
∑({P}l

)
o
+· · · .

(16)
Equation (16) can be rewritten to

Bt = −n1 +
2
3
n3 + · · · + l − 1

l
nl + · · · (17)

where l > 3 and nl is the number of false positive predictions
which are in the pattern ({P}l)o. Obviously

Bt > −n1 +
2
3
(n3 + · · · + nl + · · ·). (18)

The column titled “l = 1” shows the percentage of n1, which
is the number of false positive predictions in the pattern (P)o,
among all false positive predictions; the column titled “l ≥ 3”
shows the percentage of n3 + · · · + nl + · · · among all false
positive predictions.

To analyze the performance for an individual rule, we logged
the data coverage and false rates of each rule on every 500 data
records. The entire test dataset was divided into 623 sequential
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Fig. 5. Test performance of rule 29 of binary classifier “BC-Normal.”

segments of 500 data records. We analyze the test performance
of each rule and observe another property.

Property 3: The false rate of a rule might change dramati-
cally even in adjoining segments.

We will explain these three properties by an example. The
test performance of rule 29 in binary classifier “BC-Normal”
on a subset of the data is shown in Fig. 5. The left vertical
coordinates showing data coverage uses logarithmic scale. The
test data start from segment 230 and run to segment 294. Rule
29 covers 71 205 out of the 311 029 test data records (22.89%),
which are distributed among 267 segments out of all the
623 segments (42.86%). In this paper, 17 343 out of the 71 205
(24.36%) final predictions on the corresponding data records
covered by rule 29 are false predictions. Rule 29 covers 20 987
out of the 32 500 (64.58%) test data records in the 65 segments
shown in Fig. 5. In this paper, 11 750 out of the 20 987 (55.98%)
final predictions on the corresponding data records covered by
rule 29 in these 65 segments are false predictions.

We first examine segments 230 through 232. The false rates
on these three successive segments are 0%, 33%, and 0%,
respectively. Only three data records are covered by rule 29 in
segment 231. The false prediction in this segment is an isolated
false prediction. Note that isolated false predictions exist in
many segments but cannot easily be shown in Fig. 5.

Property 2 states that the false predictions made on the data
records covered by most of the rules are not distributed evenly
on the entire test dataset; instead, they come in clusters. For
rule 29, 11 750 out of the 17 343 (67.75%) false predictions are
made on the data records in these 65 segments. The fact that
67.75% false predictions occur within 65 successive segments
out of the 267 (24.34%) segments also demonstrates Property 1
and is explicit in Fig. 5 by the extreme high false rate
(99%–100%) in the segments 254 through 262. Property 2 is
helpful for model tuning to reduce false predictions. Using our
tuning algorithm, the model is able make true predictions on
the data records in segment 254 after a few rounds of tuning
rule 29. Once the updated model makes true predictions, the
model will keep making true predictions on all subsequent data
records until it makes a false prediction on a data record that the
original model made a true prediction on.

Fig. 5 also exhibits Property 3. Although the overall false
prediction rate is 55.98% in these 65 segments, the false rate on
a segment varies from 0% to 100%. For instance, the false rate
drops from 92.12% for segment 263 to 27.60% for segment 264
and increases to 87.33% for segment 265.

Fig. 6. Pseudocode for ATIDS with full and instant tuning.

TABLE V
PERFORMANCE OF ATIDS WITH FULL AND INSTANT TUNING

IV. EXPERIMENTS AND RESULTS

In ATIDS, the model is tuned with feedback from the last
false prediction, and the updated model will be used to make
predictions on the new data. Whether the tuning will yield more
accurate predictions, it depends on the next covered data. If
the next covered data are the same as or similar to the last
covered data the original model made the false prediction on,
the updated model must yield at least the same or a more
accurate prediction (Property 2). But in the case of isolated false
predictions, the next covered data will be sufficiently different
from the last covered data where the original model made a true
prediction that the updated model might make false predictions
on the new covered data (Property 1). In this case, it would be
better to stop tuning the model to maintain prediction accuracy.
Unfortunately, the system cannot know whether the original
model will predict correctly on the next covered data. In the
following, we examine the performance of ATIDS with respect
to how soon tuning is performed to avoid situations where
tuning may lead to deterioration of performance.

A. Full and Instant Tuning

In the first experiment, we assume that the user has enough
time to verify the result of every prediction, and every false
prediction is identified and fed back to the model tuner. Before
the system makes a prediction on the next data record, the
model will be tuned instantly. The behavior of the system and its
operator are summarized in a pseudocode notation in Fig. 6. In
practice, prediction and verification can occur simultaneously
as long as new data are not covered by a rule being verified. As
long as tuning due to a false prediction by a rule is performed
before new data covered by that rule are considered, tuning
behaves as if instantaneously, although there is some delay.

We evaluated ATIDS with full and instant tuning on the
KDDCup’99 test dataset. The results of ATIDS with full and
instant tuning when compared with the original MC-SLIPPER
system are shown in Table V.

Compared with the results of MC-SLIPPER, the TMCs of
ATIDS drop roughly 35%, and the overall accuracy increases
between 2.3% and 3.5%. When comparing the accuracy of each
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TABLE VI
PREDICTION PERFORMANCE OF BINARY CLASSIFIERS

binary classifier, almost all binary classifiers benefit from model
tuning. Table VI summarizes the performance of each rule for
each binary classifier both in ATIDS and MC-SLIPPER.

The model-tuning procedures in ATIDS are effective by
taking advantage of Property 1. Especially for binary classifiers
“BC-Probe” and “BC-R2l,” almost one third of the rules of
MC-SLIPPER have over 50% false rates, and more than two
thirds of the rules have over 20% false rates. But in ATIDS,
none of the rules have false rates over 20%. For binary classifier
“BC-Normal,” only one rule has over 50% false rate. Three
other rules have over 20% false rates. The false rate for rule
29 in binary classifier “BC-Normal” drops from 24.34% to
6.64%. However, we notice that four rules exhibit worse perfor-
mance after the tuning procedure. Rule 16 in binary classifier
“BC-Normal” covers 22 data records, and the false rate in-
creases from 4.55% to 9.09%. Rule 25 in binary classifier
“BC-Normal” covers 123 data records, and the false rate in-
creases from 5.69% to 12.20%. Rule 36 in binary classifier
“BC-Normal” covers three data records, and the false rate
increases from 33.33% to 66.67%. Rule 9 in binary classifier
“BC-U2r” covers 62 data records, and the false rate increases
from 24.19% to 29.03%. We analyzed the predictions on
the data records covered by those four rules and found that
Property 3 could be used to explain the degraded performance
of rule 16 and rule 25 in binary classifier “BC-Normal.” In the
predictions made by MC-SLIPPER, the sole false prediction
on the data covered by rule 16 is an isolated false prediction,
and all the seven false predictions on the data covered by
rule 25 are isolated false predictions. After tuning on rules
16 and 25, the tuned model makes a new false prediction on
the next data record covered by rules 16 and 25, respectively,
while MC-SLIPPER predicted correctly. For rule 36 in binary
classifier “BC-Normal,” ATIDS makes a false prediction on the
first data record covered by rule 36 and the other three rules
discussed, while MC-SLIPPER made a true prediction on that
data record. The reason here is that the other three rules were
tuned in ATIDS before they encountered this data record.

Model tuning using full and instant tuning is effective in
improving system performance, but certainly not perfect. In any
case, in practice, it is almost impossible for the user to verify
every prediction due to the huge amount of data the system
processes.

B. Partial But Instant Tuning

In the next experiment, ATIDS will again be tuned instanta-
neously, but only some false predictions are fed back to tune the
model. For example, if only 20% of the false predictions can be
caught in time and their corrections fed back into the detection

Fig. 7. Pseudocode for ATIDS with partial and instant tuning.

Fig. 8. Performance of ATIDS with partial tuning.

model, will model tuning provide any benefit? The pseudocode
for ATIDS with partial tuning is shown in Fig. 7. All predictions
are verified, but only some of the false predictions are used
to tune the model. All other false predictions are ignored,
simulating false predictions which are not caught.

In this paper, we control the percentage of false predictions
used to tune the model. We performed a set of experiments,
letting the portion of false predictions used to tune the model
range from 10% to 100%. The results are shown in Fig. 8. The
labels show the ratio of TMC, comparing ATIDS with MC-
SLIPPER. The TMCs of ATIDS with 10% partial tuning drop
about 30% compared to MC-SLIPPER. The detection model
is tuned with feedback from the last false prediction. Whether
the tuning will yield more accurate predictions, it depends on
the subsequent covered data. If the model is tuned according to
a false prediction that is at the beginning of a false prediction
cluster (made by the original detection model), then the tuning
could reduce many false predictions. But if the model is tuned
on an isolated false prediction, the tuned model might make a
new false prediction on the next covered data where the original
model made a true prediction. The extreme examples are the
four rules discussed at the end of the previous section, which
have worse performance after tuning. With partial tuning, some
isolated false predictions might be skipped to tune the model,
which could reduce the new false predictions made by the
tuned model. Therefore, a higher tuning percentage does not
guarantee a lower TMC, as clearly visible in Fig. 8.

C. Delayed Tuning

In practice, the system operators will take some time to
verify a false prediction, yet the positive rules that contributed
to the false prediction might cover subsequent data records.
Consequentially, tuning will be delayed. In a third experiment,
ATIDS with delayed tuning is examined.
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Fig. 9. Pseudocode for ATIDS with delayed tuning.

TABLE VII
PERFORMANCE OF ATIDS WITH DELAYED TUNING

Fig. 9 shows the pseudocode for the ATIDS enhanced with
delayed tuning. Prediction and verification are now independent
of each other (as represented by the two separate threads in
Fig. 9), and delay may be incurred between prediction and
the consideration of the feedback from verification. In this
paper, the verification thread is simulating the system operator
verifying the predictions, and the delay can be controlled.
For example, if the verification thread waits 1 s after every
prediction, only the first 19 800 data records (about 6.37% of
all records) are verified.

The results of the ATIDS with delayed tuning are shown in
Table VII. The experimental results show that the performance
of ATIDS with delayed tuning depends on the amount of the de-
lay. When tuning is not delayed too long, the impact of tuning is
positive, and the system gains performance improvement from
tuning. In delayed tuning, the percentage of false predictions
used to tune the model is low. For example, in the experiment
with 4–10-s delay, only 230 false predictions are used to tune
the model, which is only 1.3% of all false predictions. But
when tuning is delayed too long, the overall impact of tuning
is negative, as demonstrated by the experiment with 10–20-s
delay. Property 3 stated that the false rate of a rule might change
dramatically even in adjoining segments. In this paper, it will
take 20–40 s to predict the 500 records in one segment. If tuning
is delayed 20 s in a segment with high false prediction rate,
after tuning is complete, the system might predict on the data
record in the next segment. If the original false prediction rate in
the second segment is low, the updated model could then make
many false predictions. A small delay in tuning, however, has
positive impact on system performance. In the experiment with
4–20-s delay, 129 false predictions are used to tune the model,
and in 71 instances, feedback is delayed more than 10 s, yet
ATIDS still has a lower TMC. Some negative tuning could be
avoided. If it takes too much time to identify a false prediction,
the tuning on this false prediction could be skipped as long as
the prediction result is not fed back to the model tuner.

The experimental results show that the performance of
ATIDS with delayed tuning depends on the amount of the delay.
When tuning is not delayed too long, the impact of tuning is
positive, and the system gains performance improvement from

TABLE VIII
STATISTICS FOR SELECTIVE VERIFICATION

tuning. In delayed tuning, the percentage of false predictions
used to tune the model is low. For example, in the experiment
with 4–10-s delay, only 230 false predictions are used to tune
the model, which is only 1.3% of all false predictions. But
when tuning is delayed too long, the overall impact of tuning
is negative, as demonstrated by the experiment with 10–20-s
delay. Property 3 stated that the false rate of a rule might change
dramatically even in adjoining segments. In this paper, it will
take 20–40 s to predict the 500 records in one segment. If tuning
is delayed 20 s in a segment with high false prediction rate,
after tuning is complete, the system might predict on the data
record in the next segment. If the original false prediction rate in
the second segment is low, the updated model could then make
many false predictions. A small delay in tuning, however, has a
positive impact on system performance. In the experiment with
4–20-s delay, 129 false predictions are used to tune the model,
and in 71 instances, feedback are delayed more than 10 s, yet
ATIDS still has a lower TMC. Some negative tuning could be
avoided. If it takes too much time to identify a false prediction,
the tuning on this false prediction could be skipped as long as
the prediction result is not fed back to the model tuner.

The 1–3-, 4–10-, 10–20-, and 4–20-s delays reported in
Table VII refer to the actual time taken in our experiment.
Remember that the test data were constructed from the network
traffic of two weeks, which yielded around two million connec-
tion records. The 4–20-s delay in our experiments is equivalent
to a 0.5–3-min delay in real time.

Although the system operator could catch all false predic-
tions if every prediction is verified, this is inefficient because
most predictions should be correct. Note that, in real life, the
system operator will develop trust in the predictions of the
IDS and verify only suspect predictions. Selective verification
on the predictions could improve the efficiency of catching
false predictions. We can trust that most false predictions have
low confidence values. Thus, PC can be used to block those
predictions that have high confidence values from being sub-
mitted for verification, that is, the system operator verifies only
predictions with low confidence values and ignores all others.

Table VIII compares selective verification with different
conditions on the results obtained from delayed tuning with a
random 4–10-s delay.

In Table VIII, PC stands for prediction confidence, and TVP
indicates the total number of verified predictions. Looking at
the first row, the condition “PC < 0.0” indicates that only
predictions with negative confidence values were verified. In
this paper, 37 430 out of the 311 029 predictions (12.03%) are
verified, and 79.45% (14 072 out of 17 712) of all types of
false predictions were caught. The efficiency of verification has
improved greatly, and 37.60% (14 072 out of 37 430) of the
verified predictions are false predictions. In the experiment with
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4–10-s delay, about 90.78% false predictions that were fed back
to tune the model have PC values less than 4.0. In our exper-
iment with 4–20-s delay, about 84.50% false predictions that
were fed back to tune the model have PC values less than 4.0.

Note that, usually, one might want to rely on the confidence
ratio introduced in Section II-B rather than the confidence
values as these are scaled into the range between −1 and 1
based on the training data and thus easier comparable. However,
since the data are scaled based on the training data, it could be
possible that when encountering new data with extreme values,
the confidence ratio may still fall outside of this range.

V. RELATED WORK

Sabhnani and Serpen [25] built a multiclassifier system using
multilayer perceptons, K-means clustering, and a Gaussian
classifier after evaluating the performance of a comprehensive
set of pattern recognition and machine learning algorithms
on the KDDCup’99 dataset. The TMC of this multiclassifier
system is 71 096, and the cost per example is 0.2285. However,
the significant drawback of their system is that the multiclas-
sifier model was built based on the performance of different
subclassifiers on the test dataset. Giacinto et al. [28] proposed a
multiclassifier system for intrusion detection based on distinct
feature representations: content, intrinsic, and traffic features
were used to train three different classifiers, and a decision fu-
sion function was used to generate the final prediction. The cost
per example is 0.2254. No confusion matrix of the prediction
is reported in their study. Kumar [26] applied RIPPER to the
KDDCup’99 dataset. RIPPER is an optimized version of incre-
mental reduced error pruning (IREP), which is a rule-learning
algorithm optimized to reduce errors on large datasets. The
TMC is 73 622, and the cost per example is 0.2367. Agarwal
and Joshi [22] proposed an improved two stage general-to-
specific framework (PNrule) for learning a rule-based model.
PNrule balances support and accuracy when inferring rules
from its training dataset to overcome the problem of small
disjuncts. For multiclass classification, a cost-sensitive scoring
algorithm was developed to resolve conflicts between multiple
classifiers using a misclassification cost matrix, and the final
prediction was determined according to Bayes optimality rule.
The TMC is 74 058, and the cost per example is 0.2381 when
tested on KDDCup’99 dataset. Pfahringer constructed an en-
semble of 50 × 10 C5 decision trees as a final predictor using a
cost-sensitive bagged boosting algorithm [23]. The final predic-
tion was made according to minimal conditional risk, which is a
sum of error cost by class probabilities. This predictor won the
KDDCup’99 contest. The TMC is 72 500, and the cost per ex-
ample is 0.2331. Levin’s kernel miner [24] is based on building
the optimal decision forest. A global optimization criterion was
used to minimize the value of the multiple estimators, including
the TMCs. The tool placed second in the KDDCup’99 contest.
The TMC is 73 287, and the cost per example is 0.2356.

There are two approaches in updating the detection model:
Add a submodel or supersede the current model. Lee et al. [9]
proposed a “plug-in” method as a temporary solution. When
new intrusion emerges, a simple special-purpose classifier is
trained to detect only the new attack. The new classifier is

plugged into the existing IDS to enable detection of the new
attack. The main existing detection models remain unchanged.
When a better model or a single model that can detect the new
intrusion as well as the old intrusions is available later, the
temporal model can be replaced. This method takes advantage
of the fact that training a new specific classifier is significantly
faster than retraining a monolithic model from all data, and
thus, it enables detection of new attacks as soon as possible.
However, before the new classifier can be trained, high-quality
training data should be collected. For a very new attack, it is not
an easy task to collect the appropriate training data. Training
then becomes the job of the system operators who usually lack
the knowledge to train a model. Having the newly mined model
supersede the current detection model was presented in various
systems [10]–[12]. The study in [10] and [11] proposed an
architecture to implement adaptive model generation. In this
architecture, different detection model generation algorithms
have been developed to mine the new model on real-time data.
The new model can supersede the current model on-the-fly.
The study in [12] deployed incremental mining to develop new
models on real-time data and update the detection profile in
an adaptive IDS. The profile (model) for the activity during
an overlapping sliding window is incrementally mined, and the
similarity between the recent and base profiles is evaluated. If
the similarity stays above a threshold level, the base profile is
taken to be a correct reflection of the current activities. When
the similarity falls below the threshold, the rate of change
is examined. If the change is abrupt, it is interpreted as an
intrusion. The base profile will not be updated. Otherwise, it is
treated as a normal change, and the base profile will be updated.
However, this system cannot deal with situations where both
intrusive and normal behavior changes occur within the sliding
window. Because those models are mined on real-time data, an
experienced attacker could train the model gradually to accept
intrusive activity as normal.

VI. CONCLUSION

Because computer networks are continuously changing, it
is difficult to collect high-quality training data to build intru-
sion detection models. In this paper, rather than focusing on
building a highly effective initial detection model, we propose
to improve a detection model dynamically after the model is
deployed when it is exposed to new data. In our approach, the
detection performance is fed back into the detection model, and
the model is adaptively tuned. To simplify the tuning procedure,
we represent the detection model in the form of rule sets,
which are easily understood and controlled; tuning amounts
to adjusting confidence values associated with each rule. This
approach is simple yet effective. Our experimental results show
that the TMC of ATIDS with full and instant tuning drops about
35% from the cost of the MC-SLIPPER system with a fixed
detection model. If only 10% false predictions are used to tune
the model, the system still achieves about 30% performance
improvement. When tuning is delayed by only a short time,
the system achieves 20% improvement when only 1.3% false
predictions are used to tune the model. ATIDS imposes a
relatively small burden on the system operator: operators need
to mark the false alarms after they identify them.
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These results are encouraging. We plan to extend this system
by tuning each rule independently. Another direction is to adopt
more flexible rule adjustments beyond the constant factors
relied on in these experiments. We have further noticed that if
system behavior changes drastically or if the tuning is delayed
too long, the benefit of model tuning might be diminished or
even negative. In the former case, new rules could be trained
and added to the detection model. If it takes too much time
to identify a false prediction, tuning on this particular false
prediction is easily prevented as long as the prediction result
is not fed back to the model tuner.
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