
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2002

Controlling Web Query Execution in a Web Warehouse Controlling Web Query Execution in a Web Warehouse

Sanjay Kumar Madria
Missouri University of Science and Technology, madrias@mst.edu

Sourav S. Bhowmick

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
S. K. Madria and S. S. Bhowmick, "Controlling Web Query Execution in a Web Warehouse," Proceedings of
the 13th International Workshop on Database and Expert Systems Applications, 2002, Institute of
Electrical and Electronics Engineers (IEEE), Jan 2002.
The definitive version is available at https://doi.org/10.1109/DEXA.2002.1045996

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229136277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/DEXA.2002.1045996
mailto:scholarsmine@mst.edu

Controlling Web Query Execution in a Web Warehouse

Sourav S Bhowmick
Nanyang Technological University
School of Computer Engineering

Singapore 639798
assourav@ntu.edu.sg

Sanjay Madria
University of Missouri-Rolla

Department of Computer Science
Rolla 65409

madrias@umr.edu

Abstract

Most of the contemporary web query systems have lim-
ited capabilities in controlling web query execution. Such
query facility is important as it gives us an opportunity to
optimize the evaluation of a web query. In this paper, we ad-
dress this issue in the context of our web warehousing sys-
tem called WHOWEDA (Warehouse Of Web Data). Specif-
ically, we investigate different types of constraints (related
to query execution) which may be imposed on a web query
such as number of query results, time of execution, restrict
the evaluation of a query to specified set of web sites, etc..
An important feature of our approach is that it attempts to
address the query evaluation issues which may arise due to
the existence of broken links and forms in the Web.

1 Introduction

The exponential growth of the Web in the last few years
had a significant impact on the techniques used for query-
ing Web data. One of the significant issue with respect to
web queries is the execution of the query on the Web data.
In contrast to the conventional database systems, we believe
that it is important to investigate mechanisms to control the
execution of a web query. The primary motivation is to ad-
dress some of the limitations of the Web. Because the Web
is large and the content and structure of relevant informa-
tion may not be completely determined ahead of time, a
web query can take considerable amount of time. Typically,
the execution time of a web query depends on many factors
such as number of instances satisfying the web query, com-
plexity of the query, network traffic, locality cost [5] etc.
The combine effect of these factor can adversely affect the
time taken to retrieve the query results from the Web. Sec-
ondly, in conventional database, a user may wish to deter-
mine the complete results for his needs. For example, a user
may wish to find details of all the employees whose salary
is more than 50K. However, this computation of complete

results may not always be necessary in the context of the
Web. A user may not be looking for complete results of a
query but a portion of it which is sufficient to satisfy his/her
needs. For instance, suppose we wish to retrieve informa-
tion related to the treatments of AIDS from the Web. There
are numerous sites which provides information related to
treatments of AIDS. Consequently, information from differ-
ent sites overlap with one another as there are finite set of
treatment procedures for AIDS. Thus, retrieving all docu-
ments related to treatments of AIDS may not be meaningful
to a user. A user may only download a small portion of
these documents that is sufficient for information related to
treatment for AIDS. Thus, a user may ask a query with a
condition set on the time allowed to answer the query. This
condition may also be expressed by a condition on the num-
ber of query results returned, number of documents and so
on. Observe that if we do not control the query processing,
then the query may retrieve large number of results many of
which are similar to one another.

Although the importance of investigating mechanism for
controlling web query execution is undeniable, most of the
web query systems support very limited [3] form of such
mechanism, if any. A limited form of control mechanism
which involves the variability of the depth of traversal of a
query can be expressed by these languages. Only NetQL
[4] provides a set of mechanisms to control the complex-
ity of query processing. In NetQL, it is controlled in two
levels. First, users are given various choices to control run
time. For example, they can specify a more exact path if
they have partial knowledge of the structure of the searched
site or simply limit the evaluation of queries to local data or
a fix ed number of returned results. Second, an optimizing
technique, which is based on semantic similarity, is devel-
oped to guide the search to the most promising direction.

In this paper, we explore various mechanisms for con-
trolling the execution of a web query. Compared to NetQL
[4], we focus on developing various choices to control
the query processing. We provide much richer variety
of choices compared to NetQL. For instance, our con-

Proceedings of the 13th International Workshop on Database and Expert Systems Applications (DEXA’02)
1529-4188/02 $17.00 © 2002 IEEE

trol mechanism attempts to address issues which may arise
when a web query fails to traverse due to existence of forms
or broken links.

2 Framework

We use as a starting point the WHOWEDA system
(Warehouse Of Web Data), a data warehousing system for
managing and manipulating relevant data extracted from the
Web [1]. In WHOWEDA, a web query is specified using a
coupling query [2]. A coupling query is used to populate
the web warehouse by querying a set of interlinked HTML
or XML documents. Coupling query can be visualized as
a directed connected acyclic graph. Some of the impor-
tant features of our query mechanism are ability to query
metadata, content, internal and external (hyperlink) struc-
ture of Web documents based on partial knowledge, ability
to express constraints on tag attributes and tagless segment
of data, ability to express conjunctive as well as disjunc-
tive query conditions compactly, ability to control execution
of a web query and preservation of the topological struc-
ture of hyperlinked documents in the query results. Infor-
mally, the results of a coupling query is a set of directed
connected acyclic graph containing node and link objects.
These graphs are called web tuples. Intuitively, the set of
documents and hyperlinks in a web tuple satisfies the con-
straints defined in a coupling query. Each web tuple pre-
serves the inter-document structure of the relevant web doc-
uments.Note that our purpose is not to discuss about another
powerful web query system. Instead, we focus on the prob-
lem mentioned above. Coupling query attempts to over-
come the problems unsolved by most of the contemporary
query languages. Specifically , coupling query predicates in
a coupling query enables us to control the execution of a
query. These components are specified by a user while for-
mulating a coupling query. Coupling query predicates can
be used to enforce a query to traverse a specified set of Web
sites. It can also be used to control the number of query
results, time of execution etc.. Note that it does not impose
constraint on the content and structure of Web documents
and hyperlinks.

3 Query Attributes

We now focus our discussion on the components which
enables us to control execution of a coupling query, i.e.,
coupling query predicates. Query attributes in a coupling
query predicate are a set of attributes associated with a cou-
pling query over which one may impose additional con-
straints. We now elaborate on the motivation and syntax
of each query attributes.

3.1 Polling Frequency

The attribute polling frequency is used to enforce
a coupling query to be executed periodically. An ordi-
nary coupling query is evaluated over the current state of
the WWW, the results are then stored in a web table. An
example of an ordinary web query is “find a list of side-
effects and uses of drugs for various diseases”. In contrast,
a polling coupling query is a coupling query that repeatedly
scans the Web for new results based on some given criteria.
An example of polling web query is “every 15 days, find a
list of side-effects and uses of drugs for various diseases”.
The polling frequency indicates the time at which the Web
sources are to be polled.

3.2 Host

Sometimes it is required to restrict the execution of a web
query to a particular host, e.g., rex.nci.nih.gov. The
execution of web query only follow the links inside a web
server. We restrict the execution of a web query to a par-
ticular host by imposing predicates on the coupling query
itself in lieu of specifying predicates on the node type iden-
tifiers in the coupling query. The coupling query predicate
is imposed on the attribute host to achieve this.

3.3 Number of Tuples

Unlike conventional database, one may wish to restrict
number of instances returned by a coupling query or the
time taken to execute a query for the following reasons:

• The execution time of a coupling query depends on
many factors such as number of instances satisfying
the coupling query, existence of free node or link type
identifiers in the coupling query, complexity of the
query, network traffic, locality cost [5] etc. The com-
bine effect of these factor can adversely affect the time
taken to retrieve the query results from the Web.

• In conventional database, a user may wish to deter-
mine the complete results for his needs. For example,
a user may wish to find details of all the employees
whose salary is more than 50K. However, this com-
putation of complete results may not always be nec-
essary in the context of the Web. A user may not be
looking for complete results of a query but a portion
of it which is sufficient to satisfy his/her needs. For in-
stance, suppose we wish to determine the treatments of
AIDS from the Web. There are numerous sites which
provides information related to treatments of AIDS.
However, these information from different sites over-
lap with one another as there are finite set of treatment
procedures for AIDS. Thus, retrieving all documents

Proceedings of the 13th International Workshop on Database and Expert Systems Applications (DEXA’02)
1529-4188/02 $17.00 © 2002 IEEE

related to treatments of AIDS may not be meaningful
to a user. A user may only download a small portion
of these documents that is sufficient for information
related to treatment for AIDS.

The query attributes number of tuples,
total nodes, host tuples, host nodes and
time discussed next are used to provide the fle xibility to
control the execution time of a query. In this section, we
discuss number of tuples. In the subsequent sections
we discuss the remaining attributes.

The attribute number of tuples restrict the search
to a certain number of returned web tuples. If the specified
number of tuples is exceeded, the search stops. For instance,

q(G) ≡ G.number of tuples LT "100"

The above predicate specifies that the coupling query should
stop executing as number of web tuples exceed 100.

3.4 Total Nodes

Note that the coupling query attribute
number of tuples indirectly affect the number of
instances of node type identifiers. However, the user does
not know ahead of time the precise number of instances of
each node type identifier . Sometimes it may be required
to control these instances of node type identifiers. For
example, suppose instances of node type identifier d in
a coupling query are pages containing treatment related
information for a particular disease, say AIDS. As men-
tioned earlier there may exist thousands of pages in the
Web containing information related to treatments for AIDS
that satisfies the predicate defined on d. A user may wish to
limit the number of web tuples returned by a query by spec-
ifying maximum number of instances of d to be retrieved.
If the specified number of instances exceed, the execution
of the coupling query stops. The attribute total nodes
is used to control the total number of instances of a node
type identifier . Let G = 〈Xn, X`, C, P,Q〉 be a coupling
query. Then, the syntax of the coupling query predicate
containing total nodes attribute is given below where
x ∈ Xn and:

q(G) ≡ G.(total nodes::x) op "V"

The node type identifier whose total number of instances is
to be controlled is specified by the identifier x and is sepa-
rated from the query attribute total nodes by the sym-
bol "::". An example of such coupling query predicate is
given below:

q(G) ≡ G.(total nodes::d) LT "100"

The above predicate specifies that the coupling query G
stops executing when the number of instances of d exceeds
100.

3.5 Host Nodes & Host Tuples

A coupling query may return relevant set of documents
from one or more Web sites. Although the attributes
number of tuples and total nodes may be used to
limit the number of results of a query but it has some limita-
tions. When a coupling query retrieves information from a
single Web site (that is, all nodes in the query result belongs
to the same Web site), the attributes number of tuples
and total nodes may provide the user fle xibility to con-
trol the instances of query result. However, when a cou-
pling query retrieves result from multiple heterogeneous
Web sites these query attributes are not always the most ef-
ficient way of controlling the number of instances retrieved
from each Web site. These attributes are useful in control-
ling the total number of web tuples or node instances but
they are not an accurate mechanism for controlling number
of web tuples and node instances from each Web site. Note
that this problem does not arise when the query results con-
tain information from a single Web site only. We elaborate
this with the following examples.

Suppose a coupling query retrieves web tuples from
three Web sites, say h1, h2 and h3. Suppose we wish to
control number of instances retrieved from each Web site.
For instance, we wish to retrieve maximum 50 tuples from
each of these three Web sites. That is, the total number of
tuples retrieved from h1, h2 and h3 will be less than 150.
However, the predicate

q(G) ≡ G.number of tuples LT "150"

may retrieve 150 tuples from h1 and no tuples from h2 and
h3. It may also retrieve 50 tuples from h1, 100 from h2 and
none from h3. Similarly, if we wish to control the instances
of a node type identifier , say d for each Web site, then the
attribute total nodemay not be the most efficient way of
doing it. Suppose from each Web site h1, h2 and h3 we wish
to gather at the most 20 instances of d. Thus, the maximum
number of instances of d in the query results from these
three Web sites must not exceed 60. The coupling query
predicate used to impose this constraint is as follows:

q(G) ≡ G.(total nodes::d) LT "60"

However, the coupling query may retrieve 60 instances of d
from h1 and none from h2 and h3. It may also retrieve 30,
25 and 5 instances of d from h1, h2 and h3 respectively.

In order to resolve the above limitation for query results
containing tuples or nodes from multiple Web sites we in-
troduce coupling query predicates containing the attributes
host tuples and host nodes. These attributes are
used to control the number of web tuples and specified node
objects from each Web sites respectively. The syntax of
the coupling query predicate involving host tuples is

Proceedings of the 13th International Workshop on Database and Expert Systems Applications (DEXA’02)
1529-4188/02 $17.00 © 2002 IEEE

as follows:

q(G) ≡ G.host tuples SATISFIES "V"

where V = n where n is an integer i.e, 100, 200 etc. or it is
of the form V = {(h1 op n1), (h2 op n2), . . . , (hk op nk)}
where hi is a string and indicates host name, ni is an in-
teger and op is relational operators such as =,≤,≥, >,<.
Note that V = n specifies that each Web site should sat-
isfy the constraint imposed by the coupling query predi-
cate. Some examples of coupling query predicates contain-
ing host tuples attribute are:

q(G) ≡ G.host tuples SATISFIES "50"
q(G) ≡ G.host tuples SATISFIES

"(ntu.edu.sg ≤30,nus.edu.sg ≤20)"

The first predicate indicates that number of tuples from
each Web site must not exceed 50 and the second predi-
cate specifies that number of web tuples from the Web sites
ntu.edu.sg and nus.edu.sg must not exceed 30 and
20 respectively.

Similarly, the syntax of coupling query predicate con-
taining the attribute host nodes is as follows:

q(G) ≡ G.(host nodes::x) SATISFIES "V"

where x ∈ Xn, p(x) ∈ P , Xn ∈ G and syntax of V is
identical to that in predicates containing host tuples.
Some examples of this type of coupling query predicate are:

q(G) ≡ G.(host nodes::d) SATISFIES "20"
q(G) ≡ G.(host nodes::d) SATISFIES

"(ntu.edu.sg ≤20,nus.edu.sg ≤10)"

The first predicate indicates that number of instances of d
from each Web site must not exceed 20 and the second pred-
icate specifies that number of instances of d from the Web
sites ntu.edu.sg and nus.edu.sg must not exceed 20
and 10 respectively.

3.6 Time

The attribute time enables us to restrict the processing
of web query to a specified amount of time. When the time
reaches its limit, the execution stops and returns the web
tuples found so far. For instance, consider Example 1. The
predicate q1 specifies that the coupling query G1 will be
executed for 20 minutes only.

3.7 Broken Link Mode

While traversing the Web, the execution of a coupling
query may often encounter “Document Not Found” error
(Error 404) (also called as broken links). A broken link

prevents a query to traverse further. Hence, it may seem
that whenever a coupling query encounters a broken link it
should ignore the corresponding nodes and links as it does
not satisfy the coupling query. However, including broken
links in the web tuples has the following advantages:

Existence of relevant Web sites: If the results of a query
does not contain tuples containing broken links, the user
will not be aware of the existence of the corresponding Web
site or Web pages which may provide useful information.
Note that the broken link does not necessarily indicate that
the Web site does not exist anymore. It may indicate that
the address of the Web site has changed or it is temporarily
removed from the Web or it may also suggest that the value
of the HREF attribute of the link may contain typographical
errors. Thus, awareness of the user about the existence of
the Web site may result in inspection of neighbouring doc-
uments or modification of the coupling query by the user
to locate the valid address of this Web site. However, if the
query result ignores web tuples containing broken links then
it may not be possible for a user to modify his/her query to
locate the valid addresses of the Web sites or Web docu-
ments simply because he is not aware of it.

Appropriateness of Web sites for relevant information:
Identifying number of broken links in a query result also

helps us to determine the currency of relevant Web site(s)
with respect to the information the user is looking for. For
instance, suppose we wish to retrieve information I from a
set of Web sites. If the query results contains large number
of web tuples that has encountered broken links then it may
suggest that the Web sites considered for retrieving I may
not be the “best” collection of sources for information re-
lated to I . Note that a user may only be able to determine
these issues if he/she is aware of the existence of web tuples
containing broken links in the query result.

Determining currently unavailable information using
polling coupling query: Observe that a broken link may
occur if a Web document or Web site is temporarily re-
moved from the Web. That is, it may not be available at time
t1, but may be globally accessible at time t2 where t2 > t1.
If we allow web tuples containing broken links in the query
results then a user may be able to modify the query and exe-
cute it periodically to retrieve the set of relevant documents
which were not previously available. However, a user may
not be aware of these information if web tuples containing
broken links are disregarded in query results. Thus, he/she
may not find the need to re-execute the query periodically
to retrieve these relevant web tuples which previously con-
tained broken links.

The attribute broken link mode is used in the cou-
pling query predicate to provide the fle xibility to material-

Proceedings of the 13th International Workshop on Database and Expert Systems Applications (DEXA’02)
1529-4188/02 $17.00 © 2002 IEEE

ize web tuples containing broken links. The value of such
attribute is set to "on", if we wish to retrieve web tu-
ples that encountered broken links. On the other hand, the
"off"mode will not retrieve and materialize in the web ta-
ble those web tuples that encountered 404 error. By default,
the broken link mode is set to "off".

3.8 Form Mode

While traversing the Web, the execution of a coupling
query may often encounter Web pages containing forms.
A query may encounter the following two types of Web
pages containing forms: (1) Hyperlink-free form: A Web
page containing form with no local or global hyperlinks
to other Web pages is called a hyperlink-free form. (2)
Non-hyperlink-free form: A Web page containing form
as well as hyperlinks to other Web documents is called a
non-hyperlink-free form. A non-hyperlink-free form does
not hinder a query to navigate further from the hyperlinks
contained in the page to determine the satisfiability of the
coupling query. However, this is not true for hyperlink-free
forms. To elaborate further, consider a Web page contain-
ing hyperlink-free forms. A query fails to navigate further
from this Web page. Consequently, a web tuple contain-
ing hyperlink-free form may not satisfy a coupling query
due to navigational failure. Thus, it may seem that when-
ever a coupling query encounters a hyperlink-free form it
should ignore the corresponding web tuple from the query
results. However, not including web tuples that encountered
hyperlink-free form in the query result has some disadvan-
tages. If the query results ignore web tuples containing
hyperlink-free forms then the user will not be aware of the
existence corresponding nodes which may provide relevant
information. These information are in Web pages that are
generated by programs given user inputs (in the forms) and
are therefore not accessible to crawling. In order to retrieve
data from such documents one has to be aware of the exis-
tence of these hyperlink-free forms. Thus, query results that
include web tuples containing hyperlink-free forms enables
us to further manipulate these forms to harness relevant in-
formation.

We impose a predicate on the attribute form mode
of the coupling query for retrieving web tuples contain-
ing hyperlink-free forms. If the form mode is "on" then
the coupling query will retrieve web tuples containing
hyperlink-free forms. Otherwise, the "off" mode will ig-
nore web tuples that encounter these forms. By default, we
set the value to "off".

4 Conclusions & Future Work

In this paper, rather than developing another powerful
web query system, we focus on the problems ignored by

most of the other query languages. We discussed a query
mechanism called coupling query which supports various
mechanisms to control the execution of a web query. Cur-
rently, we have implemented a preliminary version of the
coupling query. As part of our future work, we intend to do
the following: (1) We have seen that the query attributes like
number of tuples, total nodes enables us to har-
ness a small portion of query results when information from
different sites overlap with one another. However, provid-
ing such constraints on the coupling query is not sufficient
to address this issue as it does not guarantee the retrieval
of restricted set of results against information loss. We are
exploring ways to minimize information loss while access-
ing only restricted set of results. (2) Investigate the per-
formance of coupling queries containing non-empty set of
coupling query predicates. (3) Perform a cost-benefit anal-
ysis of query processing with respect to the usage and non-
usage of coupling query predicates. (4) Finally, we intend
to optimize coupling query processing and adapt it in such a
way that it can emulate browsing behaviour. One of the is-
sues we wish to investigate is how to guide the search to the
most promising direction so that the expected web tuples
can be obtained as soon as possible. The queries restricted
by time and the number of results will be benefited directly.
We wish to use semantic information on hyperlink labels
for heuristic search.

References

[1] S. S. BHOWMICK. WHOM: A Data Model and Algebra
for a Web Warehouse. PhD Dissertation, Available from
www.ntu.edu.sg/home/assourav/pub.htm,
School of Computer Engineering, Nanyang Technological
University, Singapore, 2001.

[2] S. S. BHOWMICK, W.-K. NG, S. MADRIA. Anatomy of
a Coupling Query in a Web Warehouse. To appear in Inter-
national Journal of Software and Information Technology,
Elsevier Science, 2002.

[3] D. FLORESCU, A. LEVY, A. MENDELZON. Database Tech-
niques for the World-Wide Web: A Survey. SIGMOD
Records, 27(3):59-74, 1998.

[4] M. LIU, T. GUAN, L. V. SAXTON. Structured-Based
Queries Over the World Wide Web. Proceedings of the 17th
International Conference on Conceptual Modeling (ER’98) ,
pp. 107-120, Singapore, 1998.

[5] A. O. MENDELZON, G. A. MIHAILA, T. MILO. Query-
ing the World Wide Web. Proceedings of the International
Conference on Parallel and Distributed Information Systems
(PDIS’96) , Miami, Florida,

Proceedings of the 13th International Workshop on Database and Expert Systems Applications (DEXA’02)
1529-4188/02 $17.00 © 2002 IEEE

	Controlling Web Query Execution in a Web Warehouse
	Recommended Citation

	Controlling Web query execution in a Web warehouse

