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Abstract – We study the electrical resistivity in the quantum Griffiths phase associated with
the antiferromagnetic quantum phase transition in a metal. The resistivity is calculated by means
of the semi-classical Boltzmann equation. We show that the scattering of electrons by locally
ordered rare regions leads to a singular temperature dependence. The rare-region contribution to
the resistivity varies as Tλ with temperature T , where λ is the usual Griffiths exponent which takes
the value zero at the critical point and increases with distance from criticality. We find similar
singular contributions to other transport properties such as thermal resistivity, thermopower and
the Peltier coefficient. We also compare our results with existing experimental data and suggest
new experiments.

Copyright c© EPLA, 2011

Introduction. – Quantum phase transitions [1] occur
at zero temperature when an external parameter such
as magnetic field, pressure or chemical composition, is
varied. They are driven by quantum rather than thermal
fluctuations. At continuous quantum phase transitions,
i.e., quantum critical points, the quantum fluctuations
driving the transition diverge and become scale invariant
in space and time. These fluctuations dominate the mater-
ial’s properties in the vicinity of the quantum critical point
at low but non-zero temperatures. In metallic systems,
they can cause strong deviations from the conventional
Fermi-liquid behavior of normal metals [2].
Impurities, defects or other kinds of quenched disorder

can significantly modify the low-temperature behavior of
quantum many-particle systems. The interplay between
dynamic quantum fluctuations and static disorder fluc-
tuations leads to much more dramatic effects at quan-
tum phase transitions than at classical thermal phase
transitions, including quantum Griffiths singularities [3–5],
infinite-randomness critical points featuring exponential
instead of power-law scaling [6,7] and the smearing of
the phase transition [8]. These unconventional phenom-
ena are caused by large spatial regions (rare regions)
that are devoid of impurities and can show local order
even if the bulk system is in the disordered phase. The
fluctuations of these rare regions are very slow because

they require changing the order parameter in a large
volume. Griffiths showed that this leads to a singular free
energy in a whole parameter region which is now known
as the Griffiths phase. The probability P(Ld) for find-
ing an impurity-free rare region with linear size L in a
disordered system is exponentially small in its volume Ld,
P(Ld)∼ exp(−cLd) with c being a constant that depends
on the disorder strength. In systems in which the char-
acteristic energy ε of such a rare region decays expo-
nentially with its volume, ε∼ exp(−bLd), the resulting
density of states is of power-law type, ρ(ε)∝ ελ−1, where
λ= c/b is the non-universal Griffiths exponent. It varies
systematically within the Griffiths phase and vanishes at
the critical point. The power-law density of states ρ(ε)
leads to non-universal power-law quantum Griffiths singu-
larities of several thermodynamical observables including
the specific heat, C ∼ Tλ, and the magnetic susceptibil-
ity, χ∼ Tλ−1. The zero-temperature magnetization-field
curve behaves as M ∼Hλ (for reviews, see refs. [9,10]).
Quantum Griffiths phases have been predicted to

occur not only in localized magnets but also in metallic
systems [11–13], but clear-cut experimental verifications
have been absent for a long time. Only recently, quantum
Griffiths phases have been observed in experiment in
a number of systems such as magnetic semiconduc-
tors [14–16], Kondo lattice ferromagnets [17,18] and
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transition metal ferromagnets [19]. The lack of experi-
mental evidence for quantum Griffiths phases in metals
may be (at least partially) due to the theories being
incomplete: while the thermodynamics in quantum
Griffiths phases is comparatively well understood, very
little is known about the experimentally important and
easily accessible transport properties.
In this letter we therefore study the electrical resistivity

in the quantum Griffiths phase of an antiferromagnetic
metal by means of the semi-classical Boltzmann equation
approach. In the same manner, we also investigate other
transport properties such as the thermal resistivity, the
thermopower and the Peltier coefficient. We find that the
scattering of the electrons by spin fluctuations in the rare
regions leads to singular temperature dependences not
just at the quantum critical point but in the entire
antiferromagnetic quantum Griffiths phase. The rare-
region contribution to the resistivity varies as ∆ρ∝
Tλ with temperature T , the contribution to thermal
resistivity behaves as ∆W ∝ Tλ−1, and the thermopower
and the Peltier coefficient behave as ∆S ∝ Tλ+1 and ∆Π∝
Tλ+2, respectively.

Model and method of solution. – Let us now sketch
the derivation of these results. The transport properties of
the itinerant antiferromagnetic systems we are interested
in can be described by a two-band model consisting of s
and d electrons [20,21]. The Hamiltonian has the formH =
Hs+Hd+Hs-d, where Hs and Hd are the Hamiltonians
of s and d electrons, respectively. Hs-d corresponds to the
exchange interaction between s and d electrons. Only the
s electrons contribute to the transport properties. They
are scattered by the spin fluctuations of the d electrons
which are assumed to be in the antiferromagnetic quantum
Griffiths phase. The contribution to the resistivity from
the scattering by the spin fluctuations stems from the s-d
exchange interaction term of the Hamiltonian

Hs-d = g

∫
dr s(r) ·S(r), (1)

where g is the coupling between s and d electrons. s and S
are the spin densities of the s and d electrons, respectively.
Close to an antiferromagnetic transition in three-

dimensional space, transport properties can be treated
within a semi-classical approach using the Boltzmann
equation because quasiparticles are still (marginally)
well defined. For simplicity, we also assume that the
spin fluctuations are in equilibrium, i.e., we neglect drag
effects. This approximation is valid if the system can lose
momentum efficiently by Umklapp or impurity scattering
as is the case in a dirty antiferromagnetic system. The
linearized Boltzmann equation in the presence of an
electric field E and a temperature gradient ∇T , but zero
magnetic field can be written as [22]

−vk ∂f
0
k

∂T
∇T −vk ∂f

0
k

∂εk
E=

(
∂fk

∂t

)
scatt

, (2)

where f0k is the equilibrium Fermi-Dirac distribution
function. The first and second terms correspond to the
rate changes of the electron distribution function fk due
to the diffusion and electric field E, respectively. The last
one is the collision term. Let the stationary solution of the
Boltzmann equation be fk = f

0
k −Φk(∂f0k/∂εk), where Φk

is a measure of the deviation of the electron distribution
from equilibrium. Then the linearized scattering term due
to the spin fluctuations has the form [21,23]

(
∂fk

∂t

)
scatt

=
2g2

T

∑
k′
f0k′(1− f0k)n(εk− εk′)

×Imχ(k−k′, εk− εk′)(Φk−Φk′),
=
1

T

∑
k′
Pk′(εk− εk′)(Φk−Φk′) (3)

where n(εk− εk′) is the Bose-Einstein distribution func-
tion and χ is the total dynamical susceptibility of the spin
fluctuations of the d electrons.

Electrical resistivity. – In order to calculate the elec-
trical resistivity we consider Ziman’s variational princi-
ple [22]. The resistivity ρ is given as the minimum of a
functional of Φk [22]

1

ρ[Φk] =min


 1
2T

∫ ∫
(Φk−Φk′)2Γk′k dkdk′(∫
vkΦk

∂f0k
∂εk
dk
)2


, (4)

where

Γk
′
k =

∫ ∞
0

dω Pk′(ω)δ(εk′ − εk+ω). (5)

Quantum Griffiths effects in disordered metallic systems
are realized both in Heisenberg magnets [13,14] and in
Ising magnets. In the latter case, they occur in a transient
temperature range where the damping is unimportant [11].
In the following, we consider both cases.
As we are interested in the rare-region contribution to

the resistivity in the Griffiths phase, we need to find the
rare-region dynamical susceptibility which is simply the
sum over the susceptibilities of the individual rare regions.
The imaginary part of the dynamical susceptibility of a
single cluster (rare region) of characteristic energy ε in the
quantum Griffiths phase of a disordered itinerant quantum
Heisenberg antiferromagnet is given by

Imχcl(q, ω; ε) =
µ2γω

ε2(T )+ γ2ω2
F 2ε (q), (6)

where µ is the moment of the cluster and γ is the damping
coefficient which results from the coupling of the spin fluc-
tuations and the electrons. ε(T ) plays the role of the local
distance from criticality. For high temperatures γT � ε,
ε(T )≈ T and for low temperatures γT � ε, ε(T )≈ ε.
1We set Planck’s constant, electron’s charge and Boltzmann

constant �= e= kB = 1 in what follows.
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Fε(q) is the form factor of the cluster which encodes the
spatial magnetization profile. For random quantum Ising
models the imaginary part of the dynamical magnetic
susceptibility of a single cluster (rare region) is given by

Imχcl(q, ω; ε) = π
µ2

4
tanh

( ε
2T

)

×[δ(ε−ω)− δ(ε+ω)]F 2ε (q). (7)

To get the total rare-region susceptibility, we integrate
over all rare regions using the density of states ρ(ε),

Imχ(q, ω) =

∫ Λ
0

dερ(ε)Imχcl(q, ω; ε), (8)

where Λ is an energy cut-off. The precise functional form
of Fε(q) is not known, since every cluster has a different
shape and size. However, we can find it approximately
by analyzing the Fourier transform of a typical local
magnetization profile of the rare region. Consider a rare
region of linear size L (located at the origin). Following
Millis et al. [24], the order parameter is approximately
constant for r <L, while for large r >L, it decays as
e−r/ξ/r, where ξ is the bulk correlation length. Taking
the Fourier transform we find that Fε(q) depends on ε
via the combination |Q−q|3log(ε−1) only, where Q is
the ordering wave vector. Correspondingly, from eq. (8),
we find that the rare-region contribution to the zero-
temperature susceptibility in the quantum Griffiths phase
can be expressed as

Imχ(q, ω)∝ |ω|λ−1sgn(ω)X[(q−Q)3 log(ω−1)], (9)

where X is a scaling function. The precise form of the
logarithmic correction is difficult to find and beyond the
scope of this paper. For random quantum Ising models,
the susceptibility has the same structure as eq. (9) [11].
It is clear that the scaling function X will give only
logarithmic corrections to the temperature dependence of
the resistivity ρ in our further calculations.
To minimize the resistivity functional (4), we need

to make an ansatz for the distribution Φ. Close to an
antiferromagnetic quantum phase transition, the magnetic
scattering is highly anisotropic because χ(q, ω) peaks
around the ordering wave vector Q. However, since we
are interested in a strongly disordered system, the low-
temperature resistivity will be dominated by the elastic
impurity scattering which is isotropic and redistributes the
electrons over the Fermi surface. Correspondingly, we can
use the standard ansatz

Φk ∝ n ·k. (10)

where n is a unit vector parallel to the electric filed. Note
that any constant prefactor in Φk is unimportant because
it drops out in the resistivity functional (4) and in the
corresponding thermal resistivity functional (13). Then,

after applying standard techniques [22] the magnetic part
of the resistivity given in eq. (4) becomes

∆ρ∝ T
∫
d3q
(n ·q)2
q

∫ ∞
0

dω
∂n(ω)

∂T
Imχ(q, ω). (11)

Inserting the susceptibility (9) yields the rare-region
contribution to the resistivity in the antiferromagnetic
quantum Griffiths phase as

∆ρ∝ Tλ. (12)

Thus, the temperature dependence of the resistivity
follows a non-universal power law governed by the
Griffiths exponent λ.

Other transport properties. – In the same way,
we study other transport properties such as the thermal
resistivity, the thermopower, and the Peltier coefficient.
The variational principle for the thermal resistivity has
the form [22]

W [Φk] =min



∫ ∫
(Φk−Φk′)2Γk′k dkdk′(∫
vk(εk−µ)Φk ∂f

0
k

∂εk
dk
)2

, (13)

where µ is the chemical potential of the s electrons. As long
as impurity scattering dominates, we can use the standard
ansatz for the variational function,

Φk ∝ (εk−µ)n ·k. (14)

Then, following the calculation for the thermal resistivity
outlined in ref. [22] we obtain

∆W ∝ 1

T 2

∫
d3q

∫
dω
∂n(ω)

∂T
Imχ(q, ω)

×
[
ω2
(
1

q
− q

6kF
2

)
+
π2q

3kF
2T
2

]
. (15)

where kF is the Fermi momentum of the s electrons
2.

Inserting the susceptibility (9) into (15), the temperature
dependence of the thermal resistivity due to the spin
fluctuations in the Griffiths phase from the above equation
is given by

∆W ∝ Tλ−1. (16)

The existence of an electric field E in a metal subject
to a thermal gradient ∇T is called Seebeck effect and is
characterized by the thermopower S which is defined via
E= S∇T . To calculate the thermopower, we analyze the
Boltzmann equation (2) in the presence of both E and ∇T
using the trial function,

φk ∝ η1n ·k+ η2(εk−µ)n ·k, (17)

2Here, we have averaged over all directions of the vector n; this
is sufficient to get the temperature dependence.
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Fig. 1: (Color online) Schematic temperature-control parame-
ter phase diagram of an itinerant antiferromagnet close to the
quantum critical point. Our results apply in the Griffiths phase
at low temperatures.

where η1 and η2 are variational parameters. Elastic impu-
rity scattering leads to the usual linear temperature depen-
dence Simp ∝ T while the contribution due to the magnetic
scattering by the rare regions in the Griffiths phase reads

∆S ∝ Tλ+1. (18)

Another transport coefficient called the Peltier coeffi-
cient Π characterizes the flow of a thermal current in a
metal in the absence of a thermal gradient. It is related to
the thermopower by Π= ST . Correspondingly, the rare-
region contribution to the Peltier coefficient has the form

∆Π∝ Tλ+2. (19)

Discussion and conclusions. – In summary, we have
investigated the transport properties in the quantum
Griffiths phase close to an antiferromagnetic quantum
phase transition in a metallic system (see fig. 1). The
rare-region contributions to electrical resistivity, thermal
resistivity, thermopower, and the Peltier coefficient are
characterized by non-universal power laws in T which are
controlled by the Griffiths exponent λ.
Our results have been obtained using the semi-classical

Boltzmann equation approach. This approach is valid in
Griffiths phase in which the system consists of a few
locally ordered rare regions in a non-magnetic bulk where
the quasiparticles are well defined. Sufficiently close to
the actual quantum critical point (which is of infinite-
randomness type) the quasiparticle description may break
down, invalidating our results. A detailed analysis of this
question hinges on the fate of the fermionic degrees of
freedom at the infinite-randomness quantum critical point.
This difficult problem remains a task for the future.
We have used the standard isotropic ansatz (10), (14) for

the deviation of the electron distribution from equilibrium.
This is justified as long as the rare-region part ∆ρ(T ) of
the resistivity is small compared to the impurity part ρ0.
When ∆ρ becomes larger, the anisotropy of the scattering

needs to be taken into account. This can be done by
adapting the methods of Rosch [25] to the situation at
hand.
We emphasize that our results have been derived for

antiferromagnetic quantum Griffiths phases and may not
be valid for ferromagnetic systems. The problem is that
a complete theory of the ferromagnetic quantum Griffiths
phase in a metal does not exist. In particular, the dynam-
ical susceptibility still is not known. Correspondingly, the
transport properties in ferromagnetic quantum Griffiths
phases remain an open problem.
Non-universal power laws in a variety of observables

including transport properties can also arise from a differ-
ent physical mechanism far away from the magnetic quan-
tum phase transition. In Kondo-disordered systems, the
existence of a wide distribution of local single-ion Kondo
temperatures is assumed; this leads to the power-law
singularities [26,27]. This model was used to explain exper-
imental results in some heavy-fermion compounds such as
UCu4Pd and UCu3.5Pd1.5 [28,29].
Let us now turn to experiment. Unfortunately and

somewhat ironically, all clear-cut experimental obser-
vations of quantum Griffiths phases are in itinerant
ferromagnets rather than in antiferromagnets. However,
quantum Griffiths effects have been discussed in the
context of the antiferromagnetic quantum phase transi-
tion in heavy-fermion systems [30,31]. One of the most
striking predictions following from our theory is that the
exponent characterizing the electrical resistivity should
be less than one sufficiently close to the quantum phase
transition. There are several antiferromagnetic systems
such as CeCo1.2Cu0.8Ge2 and Ce(Ru0.6Rh0.4)2Si2 [30,31]
that show unusual power-law behavior of the electrical
resistivity with an exponent less than unity. The first
system’s resistivity increases with decreasing temper-
ature. This is incompatible with our prediction and is
described by the Kondo model. The resistivity of the
second compound decreases with decreasing temperature
in agreement with our prediction. However, it is not
clear whether this behavior is indeed caused by the
quantum Griffiths phase. To establish this, one should
measure various thermodynamics quantities as well as
the transport properties and relate their low-temperature
behavior.
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