
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Physics Faculty Research & Creative Works Physics 

01 Jan 2011 

Generation of High-Energy Photons with Large Orbital Angular Generation of High-Energy Photons with Large Orbital Angular 

Momentum by Compton Backscattering Momentum by Compton Backscattering 

Ulrich D. Jentschura 
Missouri University of Science and Technology, ulj@mst.edu 

Valery G. Serbo 

Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
U. D. Jentschura and V. G. Serbo, "Generation of High-Energy Photons with Large Orbital Angular 
Momentum by Compton Backscattering," Physical Review Letters, vol. 106, no. 1, pp. 013001-1-013001-4, 
American Physical Society (APS), Jan 2011. 
The definitive version is available at https://doi.org/10.1103/PhysRevLett.106.013001 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work 
is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229135839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/phys_facwork
https://scholarsmine.mst.edu/phys
https://scholarsmine.mst.edu/phys_facwork?utm_source=scholarsmine.mst.edu%2Fphys_facwork%2F970&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsmine.mst.edu%2Fphys_facwork%2F970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1103/PhysRevLett.106.013001
mailto:scholarsmine@mst.edu


Generation of High-Energy Photons with Large Orbital Angular Momentum
by Compton Backscattering

U.D. Jentschura1,2 and V.G. Serbo2,3

1Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
2Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

3Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
(Received 22 July 2010; published 5 January 2011)

Usually, photons are described by plane waves with a definite 4-momentum. In addition to plane-wave

photons, ‘‘twisted photons’’ have recently entered the field of modern laser optics; these are coherent

superpositions of plane waves with a defined projection @m of the orbital angular momentum onto the

propagation axis, where m is an integer. In this Letter, we show that it is possible to produce high-energy

twisted photons by Compton backscattering of twisted laser photons off ultrarelativistic electrons. Such

photonsmay be of interest for experiments related to the excitation and disintegration of atoms and nuclei, and

for studying the photoeffect and pair production off nuclei in previously unexplored experimental regimes.

DOI: 10.1103/PhysRevLett.106.013001 PACS numbers: 31.30.J�, 06.20.Jr, 32.30.Jc

Introduction.—An interesting research direction in mod-
ern optics is related to experiments with so-called ‘‘twisted
photons.’’ These are states of a laser beam whose photons
have a defined value @m of the angular momentum projec-
tion on the beam propagation axis where m is a (large)
integer [1]. An experimental realization [2] exists for states
with projections as large as m ¼ 200. Such photons can be
created from usual laser beams by means of numerically
computed holograms. The wave front of such states rotates
around the propagation axis, and their Poynting vector
looks like a corkscrew (see Fig. 1 in Ref. [1]). It was
demonstrated that micron-sized Teflon and calcite ‘‘parti-
cles’’ start to rotate after absorbing twisted photons [3].

In this Letter, we show that it is possible to convert twisted
photons from an energy range of about 1 eV to a higher
energies of up to a hundred GeV using Compton backscat-
tering off ultrarelativistic electrons. In principle, Compton
backscattering is an established method for the creation of
high-energy photons and is used successfully in various
application areas from the study of photo-nuclear reactions
[4,5] to colliding photon beams of high energy [6]. However,
the central question is how to treat Compton backscattering
of twisted photons, whose field configuration is manifestly
different from plane waves. Below, we use relativistic
Gaussian units with c ¼ 1, @ ¼ 1, � � 1=137. We denote
the electron mass by me and write the scalar product of
4-vectors k ¼ ð!; kÞ and p ¼ ðE;pÞ as k � p ¼ !E� kp.

Twisted photon.—We wish to construct a twisted photon
state with definite longitudinal momentum kz, absolute
value of transverse momentum ß and projection m of the
orbital angular momentum onto the z axis (propagation
axis). We start from a plane-wave photon state with
4-momentum k ¼ ð!; kÞ and helicity � ¼ �1,

A�
k�ðt; rÞ ¼

ffiffiffiffiffiffiffi
4�

p
e�k�

e�ið!t�krÞffiffiffiffiffiffiffi
2!

p ; (1)

where e�k� is the polarization 4-vector of the photon

(ek� � k ¼ 0 and e�k� � ek�0 ¼ ����0 , with � ¼ �1, 1).
The twisted photon vector potential A�

ßmkz�
ðr; ’r; z; tÞ is

obtained after integration over the conical transverse mo-
mentum components k? ¼ ðkx; ky; 0Þ of the wave vector

k ¼ ðkx; ky; kzÞ, with amplitude

aßmðk?Þ ¼ ð�iÞmeim’k

ffiffiffiffiffiffiffi
2�

ß

s
�ðk? � ßÞ: (2)

Here, ’k is the azimuth angle of k?, and

A�
ßmkz�

ðr; ’r; z; tÞ ¼
Z

aßmðk?ÞA�
k�ðt; rÞ

d2k?
ð2�Þ2

¼
ffiffiffiffiffiffiffi
4�

2!

s
e�ið!t�kzzÞ

Z
ek�aßmðk?Þ

� eik?r
d2k?
ð2�Þ2 : (3)

Furthermore, ! ¼ jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ß2 þ k2z

q
. For further analysis

we introduce the three four-vectors

�ð�Þ ¼ � 1ffiffiffi
2

p ð0; 1;�i; 0Þ; �ðzÞ ¼ ð0; 0; 0; 1Þ: (4)

The initial twisted photon is composed of wave vectors of
the form

k ¼ !ðsin�0 cos’k; sin�0 sin’k;� cos�0Þ; (5)

which for �0 ¼ 0 propagate in the negative z direction.
Here, � ¼ �� �0 and’k are the polar and azimuth angles
of the initial photon, and we have tan�0 ¼ k?=ð�kzÞ. The
polarization vectors can be expressed as

ek� ¼ �ð��Þei�’kcos2
�
�0

2

�
þ �ð�Þe�i�’ksin2

�
�0

2

�

þ �ffiffiffi
2

p �ðzÞ sin�0: (6)
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Integration leads to

Z
ek�amðk?Þeik?r d

2k?
ð2�Þ2 ¼

�ffiffiffi
2

p �ðzÞc ßmðr; ’rÞ sin�0 þ i��ð��Þc ß;mþ�ðr; ’rÞcos2
�
�0

2

�

� i��ð�Þc ß;m��ðr; ’rÞsin2
�
�0

2

�
; (7)

with the scalar twisted particle wave function

c ßmðr; ’rÞ ¼ eim’rffiffiffiffiffiffiffi
2�

p ffiffiffi
ß

p
JmðßrÞ: (8)

The vector field A�
ßmkz�

ðr; ’r; z; tÞ describes a photon
state with projections of the orbital angular momentum
on the z axis equal to m� 1, m, mþ 1. For large m, the
restriction to (m� 1, m, mþ 1) means that the twisted
state is a state with ‘‘almost defined angular momentum
projectionm’’ (see Fig. 1), and we denote it as jß; m; kz;�i.

The usual S matrix element for plane-wave (PW)
Compton scattering involves an electron being scattered
from the state jp; �i with 4-momentum p and helicity
� ¼ � 1

2 to the state jp0; �0i and a photon being scattered

from the state jk;�i to the state jk0;�0i,
SðPWÞ
fi � hk0;�0; p0; �0jSjk;�; p; �i: (9)

In view of Eq. (3), the S matrix element SðTWÞ
fi for the

scattering of a twisted (TW) photon jß; m; kz;�i into the
state jß0; m0; k0z;�0i needs to be integrated as follows,

SðTWÞ
fi � hß0; m0; k0z;�0;p0; �0jSjß; m; kz;�;p; �i

¼
Z d2k?

ð2�Þ2
d2k0?
ð2�Þ2 a

�
ß0m0 ðk0?ÞSðPWÞ

fi aßmðk?Þ: (10)

Compton scattering of plane-wave photons.—We inves-
tigate the collision of an ultrarelativistic electron with 4-
momentum p ¼ ðE; 0; 0; vEÞ, v ¼ jpj=E, and � ¼ E=me,
propagating in the positive z direction, and a photon of
energy ! and three-momentum given by Eq. (5). After the
scattering, the 4-momentum of the electron is p0, and the
scattered photon has energy !0 and three-momentum k0 ¼
!0ðsin�0 cos’0

k; sin�
0 sin’0

k; cos�
0Þ, where �0 and ’0

k are the

polar and azimuth angles of the final photon. From the
equation ðpþ k� k0Þ2 ¼ m2

e, we obtain

!0 ¼ m2
ex

2Eð1� v cos�0Þ þ 2!ð1þ cos	Þ ; (11)

where xm2
e ¼ 2p � k ¼ 2!Eð1þ v cos�0Þ and cos	 ¼

cos�0 cos�
0 � sin�0 sin�

0 cosð’k � ’0
kÞ. The S-matrix ele-

ment for plane waves is

SðPWÞ
fi ¼ ið2�Þ4�ðpþ k� p0 � k0Þ Mfi

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EE0!!0p ; (12)

where the amplitude Mfi in the Feynman gauge is

Mfi ¼ 4��

�
A

s�m2
e

þ B

u�m2
e

�
; (13a)

A ¼ �up0�0 ê�k0�0 ðp̂þ k̂þmeÞêk�up�; (13b)

B ¼ �up0�0 êk�ðp̂0 � k̂þmeÞê�k0�0up�; (13c)

and s�m2
e ¼ xm2

e, m
2
e�u¼2p �k0 ¼2!0Eð1�vcos�0Þ.

The bispinors up� and up0�0 describe the initial and final

electrons, and ek� and ek0�0 are the polarization vectors of
the initial and final photon. We denote the Feynman dagger
as p̂ ¼ ��p�. Using Dirac algebra, we may write A ¼
A1 þ A2 and B ¼ B1 þ B2 with

A1 ¼ � �up0�0 ê�k0�0 êk�k̂up�; (14a)

A2 ¼ 2ðek� � pÞ �up0�0 ê�k0�0up�; (14b)

B1 ¼ �up0�0 k̂êk�ê
�
k0�0up�; (14c)

B2 ¼ 2ðek� � p0Þ �up0�0 ê�k0�0up�: (14d)

Mfi as defined in Eq. (13a) can thus be written as

Mfi ¼ Mð1Þ
fi þMð2Þ

fi ; (15a)

Mð1;2Þ
fi ¼ 4��

�
A1;2

s�m2
e

þ B1;2

u�m2
e

�
: (15b)

For a head-on collision of a plane-wave photon and elec-
tron, the relativistic kinematics then imply the following
differential cross section, for the unpolarized cross section

FIG. 1 (color). The twisted photon vector potential component
A�

ßmkz�
ðt; x; y; zÞ is shown for � ¼ 2 (y component), ß ¼ 1,

m ¼ 5, kz ¼
ffiffiffiffiffiffi
24

p
, and � ¼ 1. The plot displays gðx; yÞ ¼

jA�
ßmkz�

ð0; x; y; 0Þj2 as a function of x and y. The complex

phase of the vector potential, which is a superposition of terms
proportional to e4i’r and e6i’r , is indicated by the variation of the
color of the wave function on the rainbow scale.
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(summation over the outgoing and averaging over the
incoming electron and photon polarizations),

d


d�0 ¼
2�2�2

m2
e

Fðx;nÞ; n� ��0; x¼ 4!E

m2
e

;

Fðx;nÞ ¼
�

1

1þ xþn2

�
2
�
1þ xþn2

1þn2
þ 1þn2

1þ xþn2

� 4
n2

ð1þn2Þ2þOð��1Þ
�
: (16)

According to Eq. (3), a twisted photon is a superposition of
plane-wave photons with the same energy and conical
momentum spread. We thus expect that the twisted and
plane-wave photon scattering cross section will be related.
Indeed, for the mixed (m) case where the initial photon is
twisted but the outgoing one is a plane-wave photon, one
finds

SðmÞ
fi � hk0;�0; p0; �0jSjß; m; kz;�;p; �i

¼
Z d2k?

ð2�Þ2 S
ðPWÞ
fi aßmðk?Þ; (17)

and the corresponding cross section is given by Eq. (16)
with the only replacement

x ¼ 4!E

m2
e

! 4!Ecos2�0

m2
e

: (18)

For strict backscattering geometry, the differential
Compton cross section (16) and the energy of the scattered
photon attain maxima, and additional simplifications are
possible because the azimuth angle of the photon ’0

k ¼ ’k

is conserved, as discussed in the following.
Compton backscattering of twisted photons.—For

twisted photons, the final m0 photon is a superposition of
plane waves with small transverse momentum k0? ¼ k?
and very small scattering angle �0 ¼ k0?=!

0 &
ð1þ xÞ=ð4�2Þ (see Fig. 2). In this limit, !0 ¼ xE=ð1þ xÞ.
For strict backward scattering, several quantum numbers in
Eq. (10) are thus conserved under the scattering for twisted
(TW) photons,

SðTWÞ
fi ¼ 2�im

0�mþ1�ðß� ß0Þ�ðEþ!� E0 �!0Þ
� �ðpz þ kz � p0

z � k0zÞ

�
Z 2�

0
eiðm�m0Þ’k

Mð1Þ
fi þMð2Þ

fi

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EE0!!0p d’k; (19)

where we have used the decomposition (15).
In order to carry out the integration over ’k, we have to

analyze the dependence of the polarization vectors ek� and
ek0�0 on the azimuth angle. To this end, we write the
polarization vector of the final photon in the scattering

amplitude Mfi in the form ek0�0 ¼ ��0ðeðx0Þ þ
i�0eðy0ÞÞ= ffiffiffi

2
p

, where the unit vector eðx0Þ ¼ ð0; eðx0ÞÞ is in
the scattering plane, defined by the vectors p k p0 and k0,

while the unit vector eðy0Þ is orthogonal to it: eðx0Þ k ðp�
k0Þ � k0 and eðy0Þ k ðp� k0Þ. As a result, we have in
4-vector component notation

ek0�0 ¼ � �0ffiffiffi
2

p
0

cos�0 cos’k � i�0 sin’k

cos�0 sin’k þ i�0 cos’k

� sin�0

0
BBB@

1
CCCA: (20)

Omitting terms of the order of �0, we obtain

ek0�0 ¼ � �0ffiffiffi
2

p ð0; 1; i�0; 0Þe�i�0’k ¼ �ð�0Þe�i�0’k: (21)

The polarization vector ek� of a ‘‘conical’’ component of
the initial twisted photon (as a function of ’k) is obtained
by setting �0 ¼ �� �0 in ek0�0 and coincides with Eq. (6).
Substituting the expressions for ek0�0 and ek� given in
Eqs. (21) and (6) into the definitions of A1 and B1 given
in Eqs. (14a) and (14c), we find for twisted photons,

A1 ¼ 2!
ffiffiffiffiffiffiffiffi
EE0p

½ð1���0 cos�0Þð1þ cos�0Þ
þ 2��sin2�0	���0�2�;��0 ; (22a)

B1 ¼ �2!
ffiffiffiffiffiffiffiffi
EE0p

½ð1���0 cos�0Þð1þ cos�0Þ
� 2��sin2�0	���0�2�;�0 : (22b)

One may write the neglected contribution Mð2Þ
fi as Mð2Þ

fi ¼
�4�� �up0�0 ê�k0�0up�ðek�Þz�=!. It is negligible for our rela-

tivistic kinematics (� 
 1), because

� ¼ !

�
pz

k � p� p0
z

k � p0

�
¼ xðxþ 2Þ

2�2ð1þ cos�0Þ2
� 1: (23)

Therefore, we have jMð2Þ
fi j � jMð1Þ

fi j for strict backward

scattering, and the S matrix element reads

FIG. 2 (color). Initial (above) and final (below) states for the
head-on Compton backscattering geometry of a twisted photon.
According to Eq. (24), the conical momentum spread ß of the
initial twisted photon is preserved (ß0 ¼ ß) during the scattering,

but the propagation energy increases: !0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02z þ ß02

q

 ! ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þ ß2
q

.
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SðTWÞ
fi � ið2�Þ2�mm0�ðß� ß0Þ�ðEþ!� E0 �!0Þ

� �ðpz þ kz � p0
z � k0zÞ

Mð1Þ
fi

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EE0!!0p ; (24)

withMð1Þ
fi given in Eqs. (15) and (22). This result states that

for strict backscattering, the angular momentum projection
m0 ¼ m and the conical momentum spread ß0 ¼ ß of the
twisted photons are conserved and confirms the principal
possiblity for the frequency upconversion of twisted pho-
tons under strict Compton backscattering. A technique for
the registration of electrons scattered at small (even zero)
angles after the loss of energy in the Compton process is
implemented, for example, in the device for backscattered
Compton photons installed on the VEPP-4M collider
(Novosibirsk) [4].

Certainly, it is interesting to estimate the admixture of
different m0 � m twisted photon states if the electron
carries away a small transverse momentum p0

? � ß under

the scattering. A solution of the relativistic kinematic
equations then implies that the azimuthal angle of the
scattered twisted photon component is not conserved but
acquires a phase slip,

’k0 ¼ ’k þ�; � � p0
?
ß

sin’k: (25)

Taking into account this phase slip we obtain a distribution
approximately given by Eq. (24) under the replacement

Z 2�

0

d’k

2�
eiðm’k�m0’k0 Þj’k0¼’k

¼ �mm0

!
Z 2�

0

d’k

2�
ei½ðm�m0Þ’k�m0�	 ¼ Jm�m0 ðm0p0

?=ßÞ:
(26)

This yields a distribution where the scattered twisted pho-
ton angular momenta m0 are displaced from the initial
twisted photon angular momentum m by �m �
jm0 �mj �mp0

?=ß. Finally, as the initial twisted photon

is obtained by an integration over a conical angular distri-
bution of plane-wave components, the energy of the final
twisted photon for the case of nonstrict backscattering can
be obtained from Eq. (11).

Conclusions.—The general convoluted invariant matrix
element (10) for Compton scattering of twisted photons,
which can be evaluated numerically for arbitrary scattering
geometry, is found to take a particularly simple form for
strict backscattering (see Fig. 2), according to Eqs. (15)
and (22). For that geometry, the energy of the final twisted
photon is increased most effectively (!0=!� �2 
 1).
According to Eq. (24), the magnetic quantum number
m0 ¼ m and the conical momentum spread ß0 ¼ ß are
preserved under strict backscattering. This implies that

the conical angle �0 of the scattered twisted photon is
very small, �0 � ß0=!0 � 1=�2.
High-energy photons with large orbital angular mo-

menta projections can be used for experimental studies
regarding the excitation of atoms into circular Rydberg
states, and for studying the photo-effect and the ionization
of atoms, as well as the pair production off nuclei. As ion
traps for highly-charge ions are currently under construc-
tion (e.g., Ref. [7]), one of the most interesting experiments
would concern the question of whether nuclear fission can
be achieved by the absorption of fast rotating nuclei, via
the absorption of one or more twisted high-m photons at
energies below the giant dipole resonances [8] which are
typically in the range of�10–30 MeV. Such a study might
reveal fundamental insight into the dynamics of a fast
rotating quantum many-body system.
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