
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Aug 2008 

Automated Code Generation for Industrial-Strength Systems Automated Code Generation for Industrial-Strength Systems 

Thomas Weigert 
Missouri University of Science and Technology 

Frank Weil 

Aswin van den Berg 

Paul Dietz 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/comsci_facwork/237 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
T. Weigert et al., "Automated Code Generation for Industrial-Strength Systems," Proceedings of the 32nd 
Annual IEEE International Computer Software and Applications, 2008. COMPSAC '08, Institute of Electrical 
and Electronics Engineers (IEEE), Aug 2008. 
The definitive version is available at https://doi.org/10.1109/COMPSAC.2008.26 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229135829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork/237
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/COMPSAC.2008.26
mailto:scholarsmine@mst.edu


Automated Code Generation for Industrial-Strength Systems

Thomas Weigert

Missouri Univ. of Science & Technology
Rolla, Missouri

Frank Weil, Aswin van den Berg, Paul Dietz,
and Kevin Marth

Motorola
Schaumburg, Illinois

Abstract
Model-driven engineering proposes to develop software sys-
tems by first creating an executable model of the system de-
sign and then transforming this model into an implementa-
tion. This paper discusses the design of an automatic code
generation system that transforms such models into prod-
uct implementations for highly reliable, industrial-strength
systems. It provides insights, practical considerations, and
lessons learned when developing code generators for appli-
cations that must conform to the constraints imposed by real-
world, high-performance systems. Automatic code genera-
tion has played a large part in dramatically increasing both
the quality and the reliability of software for these systems.

1. Introduction
Model-Driven Engineering (MDE) [1] focuses on a devel-

opment process that makes models the central development
artifacts. The final software that is delivered is derived from
these models and is never directly edited. Tools are able to
transform design models into implementations in target lan-
guages. Nevertheless, commercial software development has
not been able to fully capitalize on these advances yet. The
obstacles proved to be the code generators. While impres-
sive results were demonstrated in non-constrained domains
or with toy examples, automatic code generation has proven
elusive in many application areas, in particular, for embed-
ded, real-time systems.

In this paper, we discuss our experience in developing
commercial-strength code generators that have proven ef-
fective in highly constrained domains, in particular for the
development of telecommunications applications. We exam-
ine capabilities an automated code generation system must
possess for it to effectively support these domains.

We rely on the transformational implementation approach
to software development that uses automated support to ap-
ply a series of transformations which change a design model
into an implementation. Transformational implementation
enables the rapid realization of the model and the mainte-
nance of the product at the level of the model.

We begin by summarizing constraints on program trans-
formation systems that are implied by the constraints under
which industrial software products are developed. Many of
the difficulties in realizing a high-performance code genera-
tion system are due to these constraints. In order to support
the deployment of MDE at Motorola, we have implemented
the Mousetrap program transformation system. This sys-
tem accepts high-level models in domain-specific notations
geared at the development of real-time embedded systems

in the telecommunications domain: UML [2], SDL [3], and
PDU definition languages [4]. It generates high-performance
product code from these models. This system has been in
use in Motorola product organizations for roughly ten years,
and a significant portion of application code for Motorola
telecommunication network elements has been generated by
Mousetrap.

In Sections 2 and 3, we provide context and motivation
for this work based on results obtained for the telecommu-
nications domain, and we describe the constraints implied
by that domain. In Section 4, we give an overview of the
Mousetrap program transformation system, compare differ-
ent types of transformation rules, and describe the architec-
ture of the transformation process realizing high-level mod-
els in C target code. Finally, in Section 5, we describe the
transformation process itself. This paper summarizes our
experience and does not attempt to compare our approach
to other realizations of automated code generation.

2. Motivation and Benefits
Automated code generation (ACG) and MDE hold much

promise, including reduced defects and increased produc-
tivity. Achieving these benefits in a commercial environ-
ment, however, can be quite difficult when one takes into
account the various mitigating factors such as budgets, time-
to-market, legacy code, resistance to change, etc. Motorola
has implemented a development process based on MDE in-
cluding ACG, and has achieved the expected benefits. While
it is impossible to completely separate the benefits of MDE
from those of ACG alone, our experience shows that essen-
tially no benefits were gained until ACG was applied: We
found that in spite of demonstrated significant quality bene-
fits, many development teams resisted the use of MDE since
they felt that additional effort required to make their design
models operationally interpretable amounted to having to
“code twice”, first at the level of the design, and then when
they wrote the code based on that design. In our experience,
users will only create the lowest level artifact to which au-
tomation can be applied. This section describes the overall
benefits observed. Additional detail can be found in [5].

Much of the up-front benefits of ACG come from automa-
tion of the labor-intensive and error-prone coding tasks. Ad-
ditional benefits come from the separation of platform con-
cerns from product concerns. That is, development engi-
neers can focus on the requirements of their product, and
they can leave the platform details to experts in that area.

Pushing much of the development detail into the code
generator allows designs to be more abstract, which results

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 

464

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.26

464

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.26

464

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.26

464

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.



in models that are easier to produce and maintain. For ex-
ample, we have found that fewer inspections are required to
ensure the quality of the developed code than when using
hand-written code. On average, developers rely on three in-
spection cycles applied to the model instead of four applied
to the code. In addition, inspection efficiency is higher, hav-
ing increased from 100 source lines per hour to between 300
and 1000 source lines per hour. Thus, not only are fewer
inspections required, but also the remaining inspections are
much more efficient.

Productivity improvements in the development of features
on a core network element average 5X to 8X with MDE
based on ACG. The productivity improvement during the
development of typical protocol data marshaling code is
about 16X. The effort spent in the design phase increases,
but this is more than made up by the dramatic reduction in
coding effort.

ACG has also resulted in significant quality improvements.
Overall for MDE and ACG, metrics data shows that there is
approximately a 7X reduction in defect density. In addition,
defects are found earlier in the life cycle (roughly double the
rate of defects are found in the design phase following the
MDE approach) and no defects are introduced in the coding
phase. As the cost of fixing defects increases exponentially
with the distance between where a defect is introduced and
where it is discovered, this translates into large cost savings.

In addition, there are several back-end benefits. For exam-
ple, generated code does not become scattered with patches.
When enhancements or defect fixes are made, the code is re-
generated (and re-optimized) from scratch. Also, a fix made
in the code generator is universally applied, so overlooked
fixes do not occur. Our data shows that because of this,
defect-fix cycles have been reduced from 25-70 days to 24
hours in some cases.

The lack of platform detail embedded in a design means
that reuse of designs and tests between platforms or releases
is enabled. This yields greater savings than reuse by copy-
and-paste. For example, we moved a base site controller
application from a rack of MC6809 cards with distributed
memory to a shared-memory computer. All changes re-
quired to the software architecture were performed by the
code generator. In another example, an application was mi-
grated to a lower-cost platform. The effort was 10 staff days
to capture these differences in the code generator as com-
pared to an estimated 80 days for hand porting the code.

While the cost of creating and maintaining a code gen-
eration system are high, the applicability and overall sav-
ings possible make the effort well worthwhile. For example,
some of our network element teams have used ACG for 70%
to 80% of their application code. ACG rates are lower for
systems with a large amount of legacy code.

We have analyzed the source code for each of the com-
ponents of a telecommunications system release and cate-
gorized the modules of source code by the design elements
from which they are typically derived: (i) Code that is spec-
ified by state machines, (ii) code that is highly algorithmic
or manipulates data, (iii) code that is low level and not cap-
tured in designs, and (iv) code that is described by other
means, such as GUI layout or database design tools.

The distribution of the four categories varies between net-
work elements. Our experience is that all of the state-

machine oriented code can be derived from designs, as can
most or all of the algorithmic code. The low-level code
is unlikely to be generated automatically. Use of ACG in
the “other” category varies, but this code comprises a rel-
atively small percentage of the overall application. Rolling
up the data for various telecommunication systems reveals
that the potential for MDE and ACG is between 75% and
95%. The individual percentages are less important than
the message: a significant portion of a telecommunication
system is amenable to ACG from high-level designs.

3. Domain Constraints
Current ACG techniques often either do not scale to the

size needed for real applications or generate code that does
not meet the constraints of the environment in which the
applications are embedded. What differentiates the theory
of program transformation from its practical application is
the set of constraints under which a real system must be
developed. There are several characteristics of industrial-
strength systems that are applicable to ACG:

System size. Most applications on a telecommunications
network element are composed of hundreds of thousand lines
of code. Further decomposition typically comes with the
penalty of decreased performance of the overall component
due to increased context switching and interprocess commu-
nication.

Performance. Performance requirements relate to execu-
tion speed, memory use, throughput capacity, latency of re-
sponses, etc. Even with the increasing power of processors
and the lowering cost of memory, these requirements are
not being relaxed significantly. The amount of work that
the applications are required to do is increasing at a pace
often faster than the capabilities of the underlying process-
ing hardware.

Platform Interaction. Systems have increasingly sophisti-
cated interaction with other applications and the underly-
ing target platform. Systems must also be “well behaved”
on the target platform, e.g., being able to answer health
probes in a timely manner, honoring and properly handling
OS-level signals, using the dictated inter-process communi-
cation mechanisms and middleware layers, and linking with
supplied library files.

Reliability. Applications operate in a hostile environment
where malevolent users try to gain control of a system. At-
tempts at exploiting system weaknesses such as buffer over-
flow are common in every domain. In addition, there are
often severe penalties for system failure, and field debugging
must be facilitated. An infrastructure component often can-
not fail for any reason without far-reaching consequences.

System Life. Typically, systems are long-lived, are part
of product families, and are incrementally enhanced for suc-
cessive releases. Rarely are systems developed in isolation
and then never used again.

From the above characteristics, the following constraints
can be derived both on the code that is generated and on
the ACG system itself.

– Transformation algorithms must scale well.
– Transformation memory must be wisely managed.
– Overall transformation time must be minimized.
– The ACG system must be robust in the presence of

465465465465

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.



design problems and be able to provide useful feedback
to the designer.

– It is very important to generate highly optimized code.
Generated code rarely looks like hand-written code, so
often compilers are not able to optimize that code well.

– For both performance and footprint, application mem-
ory must be well managed, with dynamic allocation
kept at a minimum.

– Run-time interpretation must be kept at a minimum.
– Selection of concrete implementations of abstract data

types is very important.
– With certain simplifying assumptions, additional op-

timizations can be made, but it requires the user to
abide by the simplifying assumptions.

– The generated code must use a chosen platform API.
– System interfaces must be accommodated, including

callback functions, asynchronous events, etc.
– It must be possible to trace the generated code back

to the design.
– Security aspects outside of the scope of the design it-

self must be accommodated (e.g., prevention of buffer
overflows, validation of input data, etc.).

– Reliability aspects outside of the scope of the design it-
self must be accommodated (e.g., recovery from mem-
ory allocation failures).

– Designs must be as free as possible from platform de-
tails since it is almost guaranteed that they will change
as the application evolves over its life.

These constraints set the framework for why industrial-
strength ACG systems are structured the way they are and
why they perform the transformation steps that they do.

4. Automatic Code Generation
A design should be as free from platform considerations

as possible. One would ideally like to target a given model
to widely disparate platforms with no changes to the model
itself. This tenet implies that considerations such as com-
munication protocol implementations, error handling, timer
and memory interfaces, and platform-generated events (such
as interrupt signals) should be outside of the model itself.
These considerations are, however, critical to the generation
of correct and optimized code.

Figure 1 provides an overview of the ACG process, high-
lighting the additional information needed to generate the
code. The cylinders in the figure represent manually cre-
ated inputs to be transformed into code and information to
be used during the transformation. The document symbols
represent generated outputs from the transformation pro-
cess. The thick arrows represent transformation processes,
and the thin arrows represent items that are used as is.

As can be seen from Figure 1, the actual model is only
one of several inputs necessary for ACG. The other inputs
play an equally important role:

Compiler and platform specifics. Some aspects of target
languages are left unspecified. For example, the C standard
does not define the size of integers. The most effective strat-
egy is to automatically generate types that can be used in
the model, but there are other implications. For example,
C compilers do not handle a literal of the most negative
integer intuitively. If this literal is in the model, how it is

Platform-Independent Model

Model code +
Marshaling stubs +

Platform code +
Customizations

Code
generation

details

Compile / Interpret

Compiler /
Platform
specifics

External
libraries

External
headers

PDU specs

ENV funcs
& data 
types

IPC msgs
& data 
types

Marshaling
code

Figure 1: Automatic Code Generation Overview

translated to code will depend on the integer size on the
target platform.

External headers. If functions or constants from outside of
the model are used, the proper external declarations should
be automatically generated. This includes not only the dec-
larations themselves, but also the closure of all the related
declarations.

External libraries. It is critical that the declarations used
in the models be consistent so that the calls in the generated
code exactly match the library functions.

PDU specifications describe the messages that are sent
to and from the component as well as the data they carry.
These specifications should be used to automatically gen-
erate both the messages and data types used in the model
as well as the corresponding marshaling code for the target
platform.

Code generation details describe the special instructions
needed to generate efficient code that does not violate any
platform constraints. Typical information declared here in-
cludes middleware APIs, details of the inter-process commu-
nication mechanism, details of error handling, and logging
and debugging information that should be added to the re-
sultant code.

4.1 Mousetrap
The Mousetrap program transformation system manip-

ulates a source program by the successive application of
transformation rules [6, 7]. A transformation rule describes
a semantic relation between two program fragments, typ-
ically weakened versions of equivalence. For example, a
correctness-preserving transformation rule states that two
programs produce identical output given the same input,
ignoring erroneous inputs, undefined situations due to non-
termination, or the like.

The language used to express transformation rules con-
sists of a means of defining grammars and abstract syntax
trees, as well as forms for constructing, inspecting, match-
ing, and traversing the trees. Mousetrap transformation
rules are expressed in an extension of Common Lisp, the im-

466466466466

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.



plementation language of the transformation system. In this
way, it is possible to intermingle rule-based and procedural
forms to express program transformations. Mousetrap then
applies these rules to an input program or program fragment
and yields the parse tree of the resultant program.

A transformation rule has an optional variable declara-
tion section, a pattern part, and a replacement part. Both
pattern and replacement are descriptions of a class of parse
trees (we will refer to these as terms). In their simplest
form, terms are written as source text in either the source
or target grammars. They consist of the name of the gram-
matical class of a production of the respective grammar and
some source text enclosed in quotes. A term is constructed
by parsing this source text as deriving from the specified
grammatical class in the respective grammar. Source and
target grammars are not necessarily the same.

A term may simply be a literal description of a parse
tree, or it may be the description of a parse tree with some
subtrees (or the whole tree) left unspecified but restricted
to a given grammatical class. Subtrees are left unspecified
through the use of variables standing for subtrees of a par-
ticular grammatical class.

Applying a transformation rule means replacing a pro-
gram fragment by another program fragment: If the pat-
tern matches a term of the input program, its variables are
bound to the respective subterms matched and a replace-
ment term is constructed from the replacement part of the
rule and the bindings for the variables previously created.
Then the resultant replacement term is inserted into the in-
put program in place of the matched term. The pattern
and replacement must both derive from the same grammat-
ical class for this replacement to be meaningful. Terms are
matched against patterns modulo equational theories that
hold for the language in which the source text is parsed.
Equational matching, in particular modulo a theory of lists,
is often useful, but care must be taken in writing patterns
to avoid non-scalable rules.

The Mousetrap system itself consists of several compo-
nents: a rule compiler; a facility that produces parsers, term
compilers, unparsers, and definitions from an EBNF nota-
tion; and an engine providing order-sorted, conditional term
rewriting, term identities, and flexible evaluation strategies.

4.2 Transformation Rules
Transformation rules can be categorized by their general

purpose:
Translation Rules replace constructs in one form or lan-

guage with the equivalent construct in another form or lan-
guage. Examples of these rules are “flattening” of inheri-
tance features, inlining of packages, translation of state ma-
chines into nested loops, etc.

Canonicalization Rules render all uses of a construct into
a single form. These steps minimize the number of rules
that need to be written in other phases by reducing the
number of forms that must be matched against. Different
from translation rules, they do not help the progress of the
overall transformation, but instead mitigate how complex it
is to write the rules themselves. For example, if statements
which do not have an else part are converted to normal
form in which the else part is present but empty.

A more substantial canonicalization transformation is ex-

pression lifting. After this transformation, the program has
the property that all expressions that have side effects are ei-
ther the top-level expression of expression statements or the
right-hand side of assignment statements. All more deeply
nested expressions are side-effect free.

Information Rules collect information used by other rules,
but do not in themselves transform the code. Examples of
this type of rule are determination of the lexical scope of
all identifiers, analyzing alias usage and expression side ef-
fects, or propagation of type information and variable range
bounds.

Semantic Analysis Rules perform both static and dynamic
semantic analysis on a program to look for potential defects.
Examples of static semantic errors to be caught include
decision statements without an answer part for all possible
values (and where there is no else part) or decision state-
ments in which there are overlapping answer parts. Exam-
ples of dynamic semantic errors are out-of-bounds indexes,
dereferencing a null pointer, or assigning a value that is out
of range to a variable.

Optimization Rules create code that is semantically equiv-
alent but performs better in some aspect such as execution
speed or memory utilization. Generally, these rules are ap-
plied until either the term stops changing or a fixed number
of iterations of the optimizer have occurred. The order of
transformations and the number of iterations of optimiza-
tions were worked out by experience to both maximize the
efficiency of the generated code and minimize the space and
time used by the transformations.

Examples of optimizations include those that are standard
in compiler technology such as constant folding, function in-
lining, and common subexpression elimination. Other exam-
ples are more specific to higher-level model transformation
such as state-machine simplification, compile-time garbage
collection, and reduction of variable bounds.

An extensive group of optimizations involves simplifica-
tion of expressions according to various algebraic laws. At
this stage, canonicalization has ensured that no subexpres-
sion can have side effects. This fact enables a wide variety
of algebraic laws to be used without regard for the order of
occurrence of subexpressions. Expressions may also be elim-
inated entirely if this is algebraically allowed. Mousetrap has
more than 400 transformations for expression simplification.

A set of optimizations that are particularly important in-
volves the elimination of unnecessary copying of values. In
a language with value semantics, such as SDL, large aggre-
gate objects (records, arrays, sequences, etc.) are implicitly
copied at each assignment, function call, or built-in opera-
tion. These copies can be very expensive, even changing the
complexity of the algorithm being expressed if not removed.

Transformations must also recognize common idioms. For
example, accessing elements of a list sequentially in a loop
can be transformed into accesses using an auxiliary pointer
that is moved down the list in step with the index variable.

4.3 Layered Approach
The transformation from the input language to the target

language is performed in several stages (see Figure 2). This
layered approach has two main benefits: it allows the modu-
lar addition of input and output languages, and it maximizes
the reuse of the rule base by allowing the majority of the

467467467467

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.



Input Target
Languages Mousetrap Languages

UML −→ −→ C

SDL −→ CFSM −→ UML

ASN.1 −→ Pre Core Post −→ SDL

ISL −→ PDU
−→ TTCN-2

−→ TTCN-3

Figure 2: Transformation Process Overview.

transformation work to be done on one common language.
Each stage of transformation has one or more languages as-
sociated with it. The translations between these languages
are relatively simple syntactic changes and are independent
of the main transformations within the stage.

The first transformation stage (Pre) is a preprocessing
stage that converts an input language into a simpler and
more uniform representation by using single forms to repre-
sent variations of constructs and by requiring or eliminating
optional elements as appropriate.

The second transformation stage has two related parts:
one that deals with the main behavior of a design (named
CFSM for the concept of communicating finite-state ma-
chines) and one that deals with protocols (named PDU for
protocol data units). This stage is responsible for under-
standing the semantics of the input languages. The main
purpose of these rules is to transform the constructs that
are specific to a given language or protocol into the set of
common, or “core”, programming features. It is at this stage
where the domain-specific constructs of the input language
are eliminated and realized in terms of the more generic Core
constructs.

In practice, CFSM is a family of languages that share
a common grammar. Transformation rules successively re-
move parts of the syntax while maintaining the same seman-
tics. For example, the rules replace communication con-
structs such as channels, signal routes, gates, connectors,
etc., with simple direct addressing; replace state machines
with loops and decision statements; replace import/export
with global variables, etc. Going from Core to C, the rules
perform primarily syntactical transformations, such as re-
placing various loop forms with do, while, or for state-
ments, or replacing decision statements with case state-
ments or if statements.

Since the first two stages are most similar to the input
language, most semantic checking is done in those stages. It
is important not to assume that the input will be defect free.
Transformations must be structured to be able to handle
syntactically correct inputs that contain violations of both
the static and dynamic semantics.

In addition, designers should be informed when constructs
are encountered that are probably wrong because they cause
transformations that would not likely be intended. For ex-
ample, consider code that declares a variable to be in the
range of 0 to 10, and then later checks if the value of that
variable is greater than 10 (e.g., as a loop bound check).
Transformation rules can easily detect that it will never
be valid for the variable to be greater than 10, and that,
therefore, the code is dead. It is unlikely, however, that the

designer deliberately put in dead code, so an appropriate
message should be generated. If this is not done, it may be
very difficult to determine in the generated code why the
expected code is not present, especially if there is a snow-
ball effect where successively larger parts of the code are
removed because the dead code causes subsequent parts of
the code to become unreachable.

Care must also be taken to ensure that messages presented
to the user actually represent language issues and are not
artifacts of the transformation process. For example, when
putting the code in canonical form, all decision statements
are given a default branch. If a later optimization step
removes empty branches, it would be ill-advised to present
information to the user that the system removed a branch
that the user has no knowledge of and no way of understand-
ing if there is any practical effect.

The Core stage uses a domain-independent internal lan-
guage as a common form for the multiple input languages.
Core contains constructs relevant to the typical target lan-
guages generated. In particular, Core provides pointers (ref-
erences to memory locations).

The majority of the transformational work is performed in
Core. After optimizations are performed, a separate phase
implements processes via functions operating on structures
containing the part of the process state that may persist
across the points where the process execution may block.
This may sufficiently obfuscate the control flow of the pro-
cess to the point that optimizations may no longer be pos-
sible. This is one reason that those optimizations are not
left to the C compiler. The final stage of transformation
performs post-processing in what is essentially the target
language. These are relatively simple translations such as
applying rules related to specific compilers. As a final step,
the resulting term is pretty-printed in the surface syntax of
the target language.

4.4 Platform-Specific Interface
Transformation rules are able to embody sufficient knowl-

edge of the target platform so that the application engineers
are required to specify only simple and concise choices that
will parameterize the code generated for a specific platform.
Among the capabilities that must be provided by the trans-
formation system to implement the constructs and features
used within a design model, either explicitly or implicitly,
are the following:

Task / Thread / Process Management. Various operating
systems treat tasks, threads, and processes disparately, and
the code generator must tailor the generated platform inter-
face to them. When the target is a general-purpose operat-
ing system such as Linux, an application is typically mapped
to a process with multiple cooperating threads of execution.
Other real-time operating systems may provide only coop-
erating tasks without the benefits of process-based memory
protection or may provide a process abstraction without an
additional fine-grained thread abstraction. These parame-
ters are not reflected in the input language but are handled
by the code generator.

Memory Management. The delegation of responsibility
for memory management to the code generator contributes
to the enhanced software quality associated with MDE. The
memory management implemented by the code generator ul-

468468468468

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.



timately relies upon the platform memory services (e.g., the
POSIX memory API), but efficient memory management
may require that memory be allocated and partitioned into
pools with specified numbers of fixed-size blocks at applica-
tion startup. When appropriately configured using capacity
requirements, memory pools ensure that an application will
obtain the memory it requires as it executes regardless of
the behavior of other applications on the same processor.

Timer Management. Applications may require thousands
of concurrent timers, but the underlying platform may not
be able to directly support that many active timers. Experi-
ence with timer management has suggested the compromise
of employing a single platform timer to dispatch from an
internal queue that manages the timers utilized within the
design model. Thus, the number of timers that can be sup-
ported in the design model is constrained only by the size
of the internal timer queue (if statically allocated) or the
available memory (if the queue is dynamically allocated) and
is not subject to potential limitations within the platform
timer service itself that might be encountered if a one-to-one
mapping of platform timers to model timers is assumed.

Interprocess Communication. Common platform middle-
ware and operating systems support a formidable number
of abstractions and mechanisms for interprocess communi-
cation (IPC), including TCP and UDP sockets, message
queues, mailboxes, ports, remote procedure calls, signals,
and callback-based message services involving registration
and subscription. The platform interface must strive to en-
able maximally portable designs while accommodating de-
signs in which IPC is exposed when necessary. When dy-
namic behavior is required within a design, a PDU may be
augmented with an additional field dedicated to platform-
specific detail, and the generated platform interface code
will utilize the dedicated field appropriately.

5. Transformation Process
When transforming a design from the input language into

the target, the transformations occur in stages:

– Traverse the input to generate an equivalent design
in a simpler and more uniform syntax, simultaneously
checking for some of the simple-to-find semantic de-
fects and filling in derived information.

– Annotate the term with type and scoping information.
– Analyze the annotated term to detect semantic errors.
– Put the resulting design in canonic form.
– Optimize and transform state machines.
– Choose concrete representations of abstract data types.
– Translate the resulting term to Core.
– Perform canonicalization and optimization.
– Implement all data types.
– Perform further optimization on the canonic terms.
– Implement processes.
– Translate from Core to the target language.
– Perform final polishing of the resultant code.

5.1 Initial Translation
The first step is to construct a term that can be manipu-

lated by the rule engine. In this transformation stage, as in
every stage, the system must ensure that the transformed
code conforms to the target language. This constraint im-
plies that the rule system must respect the keywords, punc-

tuation, and lexical structure of the target language. For
example, if the input language has a variable named for,
but that is a keyword in the target language, it must be
renamed.

5.2 Annotations
Once the term has been constructed, it can be annotated

with additional information that will aid in the further anal-
ysis and transformation. Two of the most useful annotations
are the type of every expression and the scope path of every
identifier. The scope annotations can be easily derived in
a top-down traversal of the term by keeping a stack of the
scoping units that are encountered during traversal. When
an identifier is encountered, the associated name table en-
try is annotated with the full stack of scope units. The
type annotations are more complicated to derive. The ba-
sic algorithm is to traverse the term, annotating expressions
that are initially known, such as the types of unique literals
and constants. From these known points, the surrounding
subterms are annotated with their types and the process is
repeated until there is nothing else to annotate.

At this point, it is also possible to insert runtime checks
into the code for many of the potential semantic problems.
Later optimization stages remove those checks that can be
statically determined to be unnecessary. However, experi-
ence has shown that not only does this significantly increase
the code size since a large portion of the checks cannot be
removed, but there is also no single answer on what should
be done when the check fails at runtime. It is typically more
effective to report such problems back to the designer so that
the underlying cause can be fixed.

5.3 Design-Level Optimizations
For code performance, it is important to minimize the

amount of runtime processing. For code size, it is important
to minimize the amount of supporting run-time infrastruc-
ture. An example that combines both of these involves the
interprocess communication mechanism in SDL and UML.
The semantics of a signal send require that the receiver of
the signal be determined at runtime by following the path
that the signal takes to its destination process. Not only
does this resolution take extra time during execution, but
also the entire resolution mechanism as well as the signal
path mechanism must be represented in the code.

It is far better to statically determine the receiver at trans-
formation time by analyzing the communication structure of
the design. If it is not possible to statically determine the
receiver, either the signal is being sent directly to a process
using the unique handle of the process (in which case the
receiver is a simple lookup in the process table at runtime)
or the send is nondeterministic (which is rarely, if ever, what
the requirements intended).

Other design-level optimizations are performed on state
machines. For example, grouping common transitions to-
gether based on the number of signals involved can minimize
the number of cases that need to be searched at runtime. It
is also simple to detect the cases that can be further op-
timized. For example, if a state machine consists of only
one state but that state has several inputs, then the state
itself does not need to be explicitly represented. Alterna-
tively, if there are multiple states but only one input signal,

469469469469

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.



then the infrastructure that matches on the signal type can
be removed. Another case that can be optimized is a state
machine with multiple states and multiple signals, but each
state only handles one signal and no signal is handled in
more than one state. In that case, it is only the sequencing
of the signals that is relevant and the states themselves do
not need to be transformed.

5.4 Abstract Data Types
The concrete implementations of abstract data types must

be selected. General trade-offs can be made between min-
imizing the space required and minimizing execution time,
and the final implementation choice must often be made by
supplying additional information resulting from profiling the
executing code. A viable scheme to handle the selection of
the concrete implementation is to have several implemen-
tations available for each abstract data type. The specific
implementation can be chosen based on heuristic rules re-
lated to the expected performance of the implementation.

For example, designs typically require the use of a data
type that provides map (hash-table-like) functionality. Two
additional pieces of information are needed to produce high-
performance code: (i) Size bounds, as often the maximum
number of mappings to be stored is significantly smaller than
the size implied by the domain type. (ii) Mapping density,
i.e., the maximum number of elements compared to how
many there are typically. With this additional information,
it can be determined how to implement the map (e.g., as
a sparse array, a hash table, a regular array, etc.). Only
knowing the domain and range types, the transformation
system would be forced to choose a concrete data type that
would allow a potentially very large number of tuples, such
as a hash table created through dynamic memory allocation.

To help choose among candidate implementations, analy-
sis determines which operations on the data type are used
(or not used) in the model. For example, suppose that the
transformation rules determine that the tuples of a map are
never accessed directly through the domain values except for
a single delete call, but instead the data type is frequently
iterated over. This would indicate that a concrete imple-
mentation that favors iteration, such as a linked list, would
be preferable over one that requires extra steps to determine
the next value.

5.5 Translation to Core
As the final stage in the process of translating from the

PDU/CFSM stage to Core, the term is transformed in a
single pass that changes the types of the nodes in the term
into their direct equivalents in Core.

5.6 Canonicalization in Core
Core is a procedural language for which ease of transfor-

mation was a more important goal than ease of program-
ming. This led to a preference for uniform syntax over
syntactic sugar. For example, instead of providing an if

statement, conditional execution is always expressed using
a case statement.

An important aspect of Core is that it assumes that in-
tegers have an arbitrarily large but finite range. This range
information is part of the integer type. The types of integer
expressions, then, are typically different from the types of
the associated subterms. For example, if the variables x and

y have types int[0,10] and int[-100,200], then the ex-
pression x + y has the type int[-100,210], i.e., it can take
values between −100 and 210. Unlike C, arithmetic oper-
ations have the normal mathematical meaning in Core—
semantics dependent on word size, such as rounding and
overflow, do not exist in Core. As a result, it is easier to write
correctness-preserving transformations as well as to reason
about the types of expressions in a target-independent way.

Additionally constraining Core terms simplifies many of
the transformations. Terms that satisfy these constraints
are called “canonic”. Examples of these constraints include:

– All expressions are well-typed.
– All names not externally visible are distinct.
– All control flow through procedures must end in a

return statement, even for procedures that do not re-
turn values.

– Named constants do not appear in expressions.
– The only expressions that have side effects are either

expression statements or the top-level expression in the
right-hand side of an assignment statement.

The last constraint is important for at least two reasons.
First, C does not define a standard evaluation order for ex-
pressions in most cases. If one is translating a language such
as SDL that does have an order defined, it must be enforced
by the introduction of temporary variables.

Second, many subsequent optimizations may be more eas-
ily expressed if most expressions are guaranteed to be with-
out side effects. Many expression optimizations in Mouse-
trap either cause expressions to be moved with respect to
one another or cause the number of occurrences of the ex-
pression to change.

Enforcing this constraint while preserving the semantics
of a program requires that all subexpressions be “lifted”
(replaced with a temporary variable that is assigned in a
preceding statement) if the subexpression has side effects,
as well as any subexpression to their left whose value may
be changed by the lifted expressions. This is achieved by
annotating each expression with information on the set of
“abstract locations” that it may access and the set that it
may modify. With this information, it can be conservatively
determined if one expression can commute with another.

5.7 Optimizations
A large set of transformations in the Mousetrap system is

devoted to optimization.
One of the most complicated and expensive optimizations

is forward analysis. In this optimization, assertions about
the values of variables and other expressions are propagated
forward along paths of possible control flow. The optimiza-
tion makes use of side-effect information (attached as at-
tributes to statements) to remove assertions as they poten-
tially become invalidated. Propagated information includes:

– That a variable or expression has a constant value
(constant propagation).

– That a variable or expression is equal to another vari-
able or expression, and this was the result of assign-
ment of the second to the first (copy propagation).

– That a pointer is not null.
– That an object with nontrivial constructors is in an

initialized (“nullified”) state.

470470470470

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.



– That the value of an integer expression is in a proper
subrange of the range specified by its type.

A data structure is constructed that represents informa-
tion about the values of variables and other simple expres-
sions such that if an expression e is mapped to an expression
e′ in this data structure, then when e is encountered the op-
timization can rewrite it to e′. Whether or not this happens
depends on parameters controlling the complexity of e′ vs. e
(in order to avoid replacing inexpensive variable references
with more expensive expressions). This data structure is
propagated forward along the control flow, with merging
and fix-point computations occurring at transfers of control
and at loops. Substitution of these values is performed when
appropriate. In a sense, this transformation is the opposite
of common subexpression elimination. Mousetrap performs
a pass of limited common subexpression elimination after
the last pass through forward analysis in order to repair
performance problems that may have been introduced by
replicating code unnecessarily.

When a pointer is dereferenced, the assertion that this
pointer is not null is established. This assertion is propa-
gated forward to all case statements where the tested vari-
able is compared against null; this comparison and the case

statement itself can then be simplified away.
Destructors (“invalidate” expressions) are then partially

inlined to expose more opportunities for optimization. If
it is known that an object is non-null, destructors will be
transformed as follows: the object is invalidated first and
then its memory is freed. The main reason for performing
this change is to expose the opportunity to later combine
sequences of creation and destruction of memory to avoid
unnecessary allocation of new memory. Calling a destructor
on a null object has no effect, and the invalidate operation
immediately after an initialization can be removed.

Mousetrap also performs several kinds of interprocedural
optimizations. Most important is function inlining. If a
function is called in sufficiently few places, and is not “too
big” (i.e., if the term will not grow by more than a given
factor), the inlining transformation replaces each call with
an expression that contains a copy of the body of the func-
tion. The formal parameters become temporary variables
that are assigned the actual parameters. After the inlining
transformation has been performed, the term may no longer
be in canonical form, so unique renaming and a limited form
of expression lifting are again performed.

In another class of transformations, common idioms are
recognized and replaced with forms that are more efficient.
For example, the optimization recognizes that an SDL String
(a list data structure) is being traversed sequentially in a
loop. It performs strength reduction, introducing an itera-
tor variable. Because SDL strings are typically implemented
as linked lists, this optimization turns a quadratic time al-
gorithm into a linear time algorithm.

Another very important optimization transforms function
calls in which some arguments have expensive copy oper-
ations into calls where the arguments have only shallow
copies. This can be done by introducing pointers or by
changing the types of arguments to “demoted” types (for
which copy operation do not follow certain internal point-
ers, but instead continue to refer to the data structure being
copied). This optimization is safe only if the source data

structure and the copied data structure are not modified
during the function call, and if no references to the copied
data structure or its components can escape. Alias analysis
is used to verify the first of these preconditions, and patterns
on the function body are matched. Escape is ruled out by
determining that the formal parameter is never used in a
referenced L-value in the body of the function.

A similar transformation converts call-by-value on “ex-
pensive” types—that is, large structure, union, or array
types—into call-by-reference to these types. Side-effect in-
formation is used to confirm that this transformation is safe.
Linked-list types could be passed by reference as well, but
passing by demotion proves to provide better performance.
The reason is that variables that have had their addresses
taken are less amenable to other optimizations and com-
plicate alias analysis. Structure parameters can exploit a
scalarization transformation in which the fields of the struc-
ture are passed individually and eliminated if they are al-
ways passed constant or globally accessible values, or if they
are not used in the called function.

One can also reduce the cost of passing data structures
through “structure explosion”. In this optimization, vari-
ables and actual parameters that are structures and that
are not aliased are converted to a set of variables, one for
each field of the structure. Assignments to the variable are
changed to assignments to its fields, assignments from the
variable are changed to structure constructor expressions,
and formal parameters are replaced by a set of formal pa-
rameters for their fields.

Another means of reducing the cost of manipulating large
data structures is to reduce these data structures in size.
For example, a transformation looks for array variables that
are indexed by values that are in a proper subrange of the
declared range of indexes of the array. These arrays are
replaced by either smaller arrays of the same dimensionality
or arrays of reduced dimensionality (if one or more indexes
are always constant).

5.8 Implementation of Core Processes
Instances of a UML active class or an SDL process map

directly to instances of an associated Core process type. The
efficient and practical implementation of Core process types
requires knowledge of the target platform, including the rel-
ative costs of threading and synchronization. If a platform
provides extremely lightweight threading and synchroniza-
tion, it may be appropriate to assign each instance of a Core
process type to a dedicated thread. In this case, schedul-
ing of process instances reduces to the platform schedul-
ing of threads, and the state of a process instance can be
treated as thread-specific data. However, experience with
several popular operating systems and with design models
with thousands of process instances has shown that the cost
of task/thread synchronization eliminates the possibility of
one-to-one mapping of threads to process instances. Signif-
icant success has been achieved using the simple approach
of executing all instances of a Core process type within a
single thread.

It is very important to identify the relevant state that
must be preserved across the points at which a process in-
stance may block. The naive approach would simply save
the values of all process variables that are in-scope at the

471471471471

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.



points at which a process instance might block. With re-
alistic designs, however, the memory required to implement
this strategy can easily exceed hundreds of kilobytes for each
process type and overwhelm the capacity of the underlying
platform when these storage requirements are multiplied by
the thousands of processes that may be active simultane-
ously. It is therefore essential to minimize the preserved
state and to retain the values of only those process variables
that are actually “live” at the points at which a process
instance might block. Here, “live” means variables whose
values may be consumed when a process instance resumes
execution after potentially blocking.

Relevant process state is identified through liveness analy-
sis, which utilizes the alias and effects analysis based on sets
of abstract locations. The abstract locations that are live
prior to the execution of a statement are either the abstract
locations used by the statement or the abstract locations
used by a successor statement that are not defined (assigned-
to) by the statement. As with forward analysis, merging and
fixed-point computation must be executed when considering
liveness across conditional and loop statements.

5.9 Translation to C
Once optimizations are completed, Mousetrap begins the

process of transforming the internal representation to C.
One of the products of this transformation stage is a set
of header files containing declarations of the types, func-
tions, and global variables of the transformed code. One file
contains only the externally visible entities so that this file
can be included by anything that needs to invoke functions
visible in the external interface.

Integer subrange types are translated to the lowest enclos-
ing C type in the integer type hierarchy of C. This means,
for example, that the type int[0,100000] is translated to a
signed 32-bit integer type because signed types upgrade to
unsigned types in C. Appropriate upward casts are added
when implementing arithmetic operators. Arbitrary fixed
precision integer arithmetic is provided as well, but is much
more costly.

At times, it is known that certain branches in the code
are unlikely to occur. For example, code can be gener-
ated that tests each heap allocation to determine if the re-
quest succeeds and jumps to an error handling routine if it
failed. This presumably will occur rarely. In this situation,
C macros are introduced that inform the C compiler that the
relevant if statements usually branch in the common direc-
tion. Branch prediction is important for generating efficient
code on some modern processor architectures.

One peculiarity of C is the ambiguity of nested if state-
ments. Abstract syntax trees are syntactically unambigu-
ous, but distinct terms sometimes have the same printed rep-
resentation. Such terms are recognized by a set of cleanup
transformations and are rewritten to forms that print un-
ambiguously in C.

A final transformation pass is performed on the C code to
clean up or reduce the size of the generated code. These rules
are mostly cosmetic. Examples of cleanup transformations
include conversion of goto statements into break statements
or continue statements, elimination of unneeded casts, re-
placement of increment and decrement operations with ++

and --, and replacement of goto/label loops with for loops.

6. Conclusion
In this paper, we have described developing implementa-

tions by deriving them through the sequential application of
correctness-preserving transformations from high-level mod-
els. This technique has been successfully leveraged in the
Mousetrap program transformation system to develop ap-
plication code for Motorola network products.

In contrast to compilers or code translators, Mousetrap
performs the transformation from model to implementation
in a number of discrete steps that can be adjusted to the ap-
plication domain and expert user experience. Consequently,
program transformation systems such as Mousetrap have
been able to consistently meet or beat hand-written code
in terms of code quality and performance even in applica-
tion domains where other ACG approaches have failed: The
resultant object size of the generated code for infrastruc-
ture network elements has been reduced by as much as 30%
when compared with hand-written code; for subscriber de-
vices generated object size is within the same range as hand-
written code. Execution speed has met or exceeded perfor-
mance targets for each developed code generator. When
additional performance improvements are needed, transfor-
mation rules are easily added to the transformation system
to locate and optimize domain-dependent patterns.

In our experience, code generation based on program trans-
formation has reached a level of maturity that allows it to
be deployed for the development of performance-critical ap-
plications for real-time embedded systems.

7. References
[1] S. Kent, Model Driven Engineering, Proceedings of

Integrated Formal Methods: Third International
Conference 2002, Lecture Notes in Computer Science,
2335, pages 286–298, Springer-Verlag, 2003.

[2] Object Management Group, Unified Modeling Language
(UML), Superstructure,Version 2.1.1, 2007.

[3] International Telecommunications Union, Specification
and Description Language, ITU-T Rec. Z.100, 2000.

[4] T. Weigert and P. Dietz, Automated Generation of
Marshalling Code from High-Level Specifications, in
System Design, Lecture Notes in Computer Science,
pages 374–386, Springer Verlag, 2003.

[5] T. Weigert and F. Weil, Practical Experiences in Using
Model-driven Engineering to Develop Trustworthy
Computing Systems, in IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy
Computing, pages 208–217, Taichung, Jun 2006.

[6] J. Boyle, T. Harmer, T. Weigert, and F. Weil,
Knowledge-Based Derivation of Programs from
Specifications, in N. Bourbakis, Artificial Intelligence
And Automation, Advanced Series on Artificial
Intelligence, pages 315–347, World Scientific Publishers,
Singapore, 1996.

[7] T. Weigert, Lessons Learned from Deploying Code
Generation in Industrial Projects, Proceedings of the
International Workshop on Software Transformation
Systems, at International Conference on Software
Engineering, Los Angeles, 1999.

472472472472

Authorized licensed use limited to: University of Missouri. Downloaded on December 12, 2008 at 15:32 from IEEE Xplore.  Restrictions apply.


	Automated Code Generation for Industrial-Strength Systems
	Recommended Citation

	Automated code generation for industrial-strength systems Annual IEEE International Computer Software and Applications, 2008. COMPSAC '08. 32nd

