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Abstract 

The utilization of onsite generation system with renewable sources in manufacturing plants plays a critical role in improving the 
resilience, enhancing the sustainability, and bettering the cost effectiveness for manufacturers. When designing the capacity of 
onsite generation system, the manufacturing energy load needs to be met and the cost for building and operating such onsite system 
with renewable sources are two critical factors need to be carefully quantified. Due to the randomness of machine failures and the 
variation of local weather, it is challenging to determine the energy load and onsite generation supply at different time periods. In 
this paper, we first propose time series models to describe and predict the variation of the energy load of manufacturing system and 
the irradiation of solar energy. After that, a case study utilizing the predicted data is implemented. The case study includes different 
scenarios with respect to generation capacities, considering different predicted energy loads from manufacturing system. The cost 
for building and running such an onsite generation system and its corresponding service level are examined and discussed.  
 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Complex Adaptive Systems Conference with Theme: 
Engineering Cyber Physical Systems. 

Keywords: Renewable source; Manufacturing; Onsite generation 

 

 

 
* Corresponding author. Tel.: +1-573-341-7745; fax: +1-573-341-6567. 

E-mail address: sunze@mst.edu 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.09.008&domain=pdf


434 Xiao Zhong  et al. / Procedia Computer Science 114 (2017) 433–440
2 Xiao Zhong, Md Monirul Islam, Haoyi Xiong, and Zeyi Sun / Procedia Computer Science 00 (2017) 000–000 

1. Introduction 

With the increasing concerns of environmental protection and climate changes, the utilization of renewable sources 
in energy supply mix has drawn wide attention from industry, academia, and government. The penetration of 
renewable sources in electricity grid has witnessed a significant growth in recent years. It was reported that, in 2015, 
about 13% and 10% of total U.S. electricity generation and energy consumption are contributed by renewable sources, 
respectively [1]. This growth trend is expected to be maintained for next several decades, it is projected that renewable 
sources will account for approximately 80% of total electricity generation mix in the U.S. by 2050 [2]. 

One important application of renewable sources is to build onsite generation system to mitigate the disturbances 
of the utility grid because the onsite generation system can continue to operate while the utility grid is down. The 
primary benefits are the improved reliability, affordability, resilience, and security of energy supply to end use 
customers. Furthermore, the greenhouse gas (GHG) emissions can be reduced and the stress on transmission and 
distribution systems can be relieved. Therefore, some pioneer onsite generation system projects have been 
implemented in residential housing [5-7] and some critical facilities, such as medical centers, financial corporations, 
military bases, and jails [8-9]. 

Manufacturing is traditionally not considered a critical facility. However, the industrial sector accounts for one 
third of total energy consumption in the United States [10], and manufacturing activities dominate energy consumption 
and GHG emissions in the industrial sector [11]. In an age when it is impossible to conduct manufacturing activities 
in the absence of electricity, even a short power outage can cause detrimental impacts on manufacturing enterprises. 
Studies show that manufacturing has been one of the most-affected industries by power outages [14-17]. An outage 
can bring production lines to an abrupt halt. It may also break supply chains altogether, which leads to huge losses of 
productivity, material and revenue, as well as negative environmental and societal impacts. For example, the U.S. 
Northeast blackout on August 14, 2003, led to the shutdown of 19 manufacturing facilities and three parts warehouses 
of General Motors in Michigan, Ohio, and Ontario and idled more than 47,000 employees [15]. Also, Hurricane Sandy 
in 2012 destroyed many industrial businesses and left tens of thousands of New York and New Jersey residents 
unemployed [16]. Hurricane Katrina in 2006 led to a job loss of more than 10,000 workers in the manufacturing 
industry of New Orleans and Louisiana [17]. 

The economic effects are enormous because of loss of power for manufacturing enterprises, as shown in the 
previous analysis. The improved resilience by deploying onsite generation system with renewable sources for 
manufacturing facilities will greatly reduce such impacts. One challenge of deploying onsite generation system is the 
randomness of both manufacturing electricity demand due to unreliable manufacturing machines and renewable 
energy supply. In this paper, classical time series models are applied to the historical data of manufacturing system 
regarding the energy demand and solar irradiation in order to describe and predict these two stochastic processes from 
both demand and supply sides. Various scenarios with respect to generation capacities considering different predicted 
energy demands from manufacturing system are studied to examine the cost for building such an onsite generation 
system and its corresponding service level.  

 

2. Time Series Model 

The model we proposed to predict the future electricity demand is autoregressive-integrated moving average 
(�����) model. In order to illustrate this model, few concepts including the stochastic processes, time series, 
stationary time series, nonstationary time series, and autoregressive-moving average ������ processes are briefly 
introduced first in this section. 

Definition 2.1. Stochastic Process: A stochastic process is a family of random variables �X�, t ∈ T� defined on a 
probability space	��, �, ��, where T denotes an index set, which is usually a set of real numbers. If 	T denotes a set 
of points in time, then �X�, t ∈ T� is called a time series. In particular, if	�T � ��, then �X�, t ∈ T� is called a discrete 
time series. 

Note that 	�X���∈� is sometimes used in place of �X�, t ∈ T� to denote a time series. 
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Definition 2.2. Stationary Time Series: The time series	�X�, t ∈ ��, is said to be stationary if for all		t, r, s ∈ � , 
�i� E�|X�|�� � �; 
�ii� E�X�� � �; 
�iii� Cov�X�	, X�� � ���r, s� � ���r � t, s � t�. 

Such stationarity is sometimes referred as weak stationarity, covariance stationarity, stationarity in the wide sense, 
or second-order stationarity. Otherwise, the time series	�X�, t ∈ �� is nonstationary. 
 
Definition 2.3. Autoregressive-Moving Average �ARMA��, ��� Process: A real-valued time series �X���∈� is said to 
be an autoregressive-moving average (ARMA��, ��) process with mean μ if it is stationary and satisfies 
 

Φ�B��X� � μ� � θ�B�ε�, t ∈ �, 
where                                      	Φ�z� � � � ��z � ��z� �� ��z�  

and                                                             θ�z� � � � θ�z � θ�z� �� θ�z� 

are autoregressive and moving-average polynomials of orders � and q, respectively, with no common roots; �ε���∈� is 
a white noise error (innovations)  process with zero-mean and constant variance σ�; μ � E�X�� for all t; B is the back-
shift operator defined such that 	B�X� � X���   for all � ∈ �,  and B�X� � X�	.   If 		� � � , �X���∈�  is called a pure 
moving-average process of order 	�	(MA����,	 and if		� � �, the time series is termed a pure autoregressive process 
of order	� �AR����. 
 

Frequently, it is necessary to represent a given ARMA time series as an infinite order moving-average of the current 
and past innovations. When a time series can be represented in this manner, it is called a causal process. The 
ARMA��, ��	processes can be generalized to include nonstationary behaviors.  The traditional generalization of ARMA 
models leads to the ARIMA��, �, ��	process, which is defined below. 
 
Definition 2.4. Autoregressive-Integrated Moving Average (ARIMA��, �, ��) process: A real-valued process �X���∈�  
is said to be an Autoregressive-Integrated Moving Average �ARIMA��, �, ��� process if the process �Y���∈�  with 	
 

Y� � ���X� � μ�	, t ∈ �, 
 
is a causal ARMA��, ��	 process, where � = 1 − B and d ∈ N. Note that if d = 0, it is actually an ARMA process. 
 

In real life, many time series are nonstationary and hence the ARIMA processes are extensively used in various 
areas, including manufacturing industry. Therefore, in Section 3, we forecast the unknown electricity demand and 
solar irradiation using the ARIMA model explained above. 

 

3. Case Study 

3.1 Time series model for manufacturing load and solar irradiation 

The energy demand of a manufacturing system is obtained from a simulation model built on the simulation 
platform of Plant Simulation as shown in Figure 1. An auto component manufacturing system is built in the simulation 
model with real parameters. The machine parameters such as the cycle time, rated power, mean time between failures, 
mean time to repair, etc. are integrated in the model (due to confidentiality agreement, such parameters cannot be 
given in detail here). The values of power consumption for different working states, i.e., working, idle, failure, etc. 
are configured for each machine. In addition, the buffer parameters including the initial contents and respective 
capacities are also configured in the simulation model. Note that mean time between failures and mean time to repair 
for each machine are modeled by two random distributions. Weibull distribution is used for mean time between 
failures and exponential distribution is used for mean time to repair based on the actually historical data of each 
manufacturing machine in the plant. The remaining parameters are modeled as constants.  
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Figure 1. Snapshot of a Manufacturing System in Simulation Model 
 

 
The time series of monthly power consumption of this manufacturing system is obtained through running the 

simulation model for 30 days, with three 8-hour shifts per day using the real parameters. Every 15 minutes, the energy 
consumption is recorded. The format of this simulated high frequency data is shown in Table 1, where the first column 
is the index of 15-minute intervals and the second column is the average power (kW) consumption.  

A scatter plot of the entire data is given in Figure 2 to illustrate the high frequency feature of the data. It shows 
that the power demand of the manufacturing system fluctuates around a roughly constant mean, which matches the 
pattern of the real power consumption data of the plant. Thus, the time series model like ARMA can be a candidate 
tool to model the variation of power demand along the time horizon. 
 

          Table 1. A Sample of the Power Consumption Data
Time Interval Power (kW) 

1 190.96 
2 256.14 
3 259.63 
4 285.29 
5 244.87 
6 368.52 
7 294 
8 385.81 
9 360.86 
10 330.08 
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             Figure 2. A Scatter Plot of the Solar Irradiation Data 
 
 
Using MATLAB software, we model this power demand time series and predict the new power demand of the 

manufacturing system based on the following process. 

Step 1: Plot the sample ACF and PACF as shown in Figure 3 to examine the data autocorrelation to further determine 
if ARMA or ARIMA can be used to model this time series.     

      Figure 3. The ACF and PACF Plots of the Electricity Data
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Step 2: Since both the sample ACF and PACF decay relatively slowly, it is plausible to consider an ARIMA��, 0, ��	 
or ARMA��, ��	model. Although the ARMA lags, p and q, cannot be selected solely by looking at the ACF and PACF 
plots, it is fair enough to estimate them as: p is between 1 and 6, and q is between 1 and 6.

Step 3: To identify the best p and q, we fit total 36 models with different lag choices. That is, fit all combinations of 
p = 1, ..., 6 and q = 1, ..., 6 to the simulated data. Then choose the best model according to the Bayesian Information 
Criterion (BIC) and other criteria, such as the difference of the range, maximum, or minimum between the simulated 
data and their estimates. It turns out ARIMA�2,0,�� is the most appropriate model that can fit to the simulation data. 

Step 4: Forecast the new electricity demand for the next month using the trained ARIMA�2,0,�� model based on the 
30-days simulated data.  

     We assume that the electricity demand for different months has same pattern. Therefore, using the predicted 
monthly data repetitively, we can obtain the predicted demand for an entire year.  

Similarly, we use the same procedure aforementioned to model and predict the solar irradiation. The historical data 
of solar irradiation from May 2015 to May 2016 is obtained from the National Renewable Energy Laboratory (NREL) 
[18]. A scatter plot of this high frequency data is presented in Figure 4. Following the same steps illustrated above, 
we find that ARIMA�2,0,0�	or AR(2) model is the most appropriate one to describe this time series.  

 

                         Figure 4. A Scatter Plot of the Solar Irradiance Data
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3.2 Cost and service level comparison considering different system capacity 

Based on the predicted electricity demand, we consider two scenarios of onsite generation system capacity with 
maximum and average predicted demand, respectively. Considering the variation of solar irradiation along the time 
horizon, average value of irradiation is usually used in designing solar PV system [19]. Thus, in this case, the average 
predicted irradiation is used for both scenarios as shown in Table 2.  
 
                                              Table 2. Two Scenarios of Capacity of Onsite Generation System 

Scenario Capacity of onsite generation system (kW) Average predicted irradiation (W/m2) 
1 Maximum of the predicted demand 360.90 231.63 
2 Mean of the predicted demand 296.67 231.63 

 
For each scenario, the required area of solar panels is calculated by  
 

  1000
pv

T

PA
I 




 , 

 
where P is the capacity in kW of solar PV system; pvA  is the area of solar PV array in m2; TI  is the solar irradiation 
on the solar PV surface in W/m2; and   is the system efficiency. In this case,   is set as 0.225 [20]. The commercial 
solar PV installation cost is $2.13/W [21]. The unit electricity generation cost is $0.122/kWh [22]. Assuming that the 
lifetime of the onsite generation system is 20 years, the results of the annual cost and the probability that the demand 
can be met by the onsite generation system are calculated as shown in Table 3. 
 

Table 3. Cost and Service Level Comparison 
 Solar PV area (m2) Annuity of initial installation Annual generation cost Probability  
Scenario 1 6925 $42599 $334053 39.3% 
Scenario 2 5692 $35053 $274601 36.8% 

 
The results of the case shown in Table 3 match the common understanding regarding the relationships among the 

capacity, cost, and service level. The trade-off between the capacity/cost, and the service level could be further 
quantitatively modelled so that an optimal capacity can be identified.  

Also, it can be seen that the annual value of the initial purchase and installation cost is pretty high. It implies that 
purely employing the solar energy for the onsite generation system may not be economically optimal to the 
manufacturer. The probabilities that the demand is met by the onsite generation system with solar PV are less than 
40%. This is mainly due to the fact that the manufacturing system in this case runs three 8-hour shifts per day, which 
also implies that for such a 24-hour working schedule, other renewable sources, like the wind turbine should also be 
considered since wind energy can be, to some extent, complementary to the solar energy.  

 

4. Conclusion and future work 

In the paper, we present two classical stochastic time series models to estimate and forecast the potential demand 
of electricity based on a set of simulated data of energy load of a manufacturing system as well as the solar irradiation 
based on a set of true historical data. After that, using the predicted data of the demand and irradiation, we examine 
the cost and service level for the onsite generation systems with different capacities.  

For future work, we can study the predication analysis of high frequency data using Kalman filter or linear quadratic 
estimation with the consideration of seasonality and long-memory characteristics. In addition, some other sources like 
the wind turbine and battery system can be integrated into the onsite generation system. The cost items of purchasing 
the electricity from external grids can also be modeled in cost analysis. An analytical model that can quantitatively 
balance the trade-off between the capacity and service level can be another research direction. 
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