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Expectations for Associative-Commutative Unification 
Speedups in a Multicomputer Environment 

Ralph W. Wilkerson and Bruce M. McMillin 

Department of Computer Science 
University of Missouri-Rolla 

Rolla, MO 65401 

Abstract 

An essential element of automated deduction 
systems are unification algorithms which identify most 
general substitutions which, when applied to two 
expressions, make them identical. However, functions 
which are associative and commutative, such as the 
usual addition and multiplication functions, often arise 
in term rewriting systems, program verification, the 
theory of abstract data types, and logic programming. 
Unfortunately, the introduction of the associative and 
commutative equality axioms together with standard 
unification brings with it problems of termination and 
unreasonably large search spaces. One way around 
these problems is to remove the troublesome axioms 
from the system and to employ a unification algorithm 
which unifies modulo the axioms of associativity and 
commutativity. Unlike standard unification, the 
associative-commutative (AC) unification of two 
expressions can lead to the formation of many most 
general unifiers. This paper reports on a hybrid AC 
unification algorithm which has been implemented to 
run in parallel on an Intel iPSCI2. 

1 Introduction 

It has been shown that standard unification is an 
inherently linear process which does not significantly 
benefit from parallelization. Over the past 13 years, 
researchers have been attempting to improve the 
efficiency of AC unification with special attention to 
unification problems which arise in term rewriting 
systems and automated reasoning [ B u 8 8 ] .  With the 
recent development of such systems as parallel Prolog 
and parallel theorem provers, the necessity of doing 
AC unification in  parallel takes on greater significance. 
Fortunately, AC unification affords numerous 
opportunities to exploit parallelism from the basis 
generation to the calculation of unifiers. Two basic 
problems must be overcome in finding the complete 
set of AC unifiers of two expressions. First, a basis of 
solutions of a homogeneous linear diophantine 
equation must be determined and second, once the 
basis of solutions has been discovered, unifiers must 
be generated through a time consuming search 
process. The unifiers generated from one solution of 
the Diophantine equation are independent of any other 
solution to the equation. Therefore, once the 
Diophantine equation has been solved, the unifiers can 
be calculated from the solutions in parallel. In this 
This research has been supported in part by the National 
Science Foundation under Grant number CDA-8820714, the 
Intelligent Systems Center at the University of Missouri-Rolla. the 
McDonnell Douglas Corporation, Intel Scientific Computers, the 
Missouri Research Assistance Act, and the AMOCO faculty 
development program 

paper we describe the results of our implementation 
of AC unification, paying particular attention to 
unification problems which arise in theorem proving 
applications. For the purpose of completeness, we 
have included the necessary background material on 
AC unification. We begin by stating some basic 
definitions. 

Variables are designated by the names 
U ,  v ,  w ,  x ,  y ,  z ,  U,, v,, w,, x , , y ,  and z, for 1 2 0 .  
Function symbols are designated by the names 
+, x , f ,  g ,  h ,  6, g, and h, for i 2 0. Constants are 
designated by the names a ,  b ,  c,  d ,  e ,  a,, b,, c,, d, 
and e, for i 2 0. 

A term is defined recursively as follows: 
(1) 
(2) 
(3) 

(4) 

A variable is a term. 
A constant is a term. 
I f f  is a function symbol and t , ,  ... , t, are terms, 
f(t,, . , tn) is a term. 
Only those syntactic structures defined by 
(1)-(3) are terms. 

A substitution represented by the names 
8, E., 0, e,, E., and U ,  where i 2 0, is a function mapping 
variables into terms. It is written 
0 = { v ,  t t , ,  . . , v , t  t,} where n 2 0. Since a 
substitution is a mapping, the v,’s are distinct such that 
v, # vi for i # j .  The empty substitution is represented 
by E .  A substitution 0 is applied to a term t by 
simultaneously replacing every variable in t that is in  
the domain of 8 by the corresponding term. We write 
to to represent 0 applied to t. 

2 Unification 

Unification is a pattern matching process in which 
two or more terms are made equal by substitutions of 
their variables. A set of terms is said to be unifiable if 
there exists a substitution which, when applied to each 
of them, makes them equal. This substitution is called 
a unifier. A unifier p is called a most general unifier 
or mgu of a set of terms if, for every unifier U of the set, 
there exists a substitution E, such that pa). = U .  For 
example, i f  we let t, = f (x,  a )  t2 = f (y,  z )  then the 
number of unifiers is infinite and include: 

and 

(1) { x t a ,  y e a ,  z t a }  

Unifiers (3) and (4) are mgu’s and are, in fact, identical 
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modulo variable renaming. Since both x and y are 
replaced by the same variable, the name of the 
variable is arbitrary. 

The concept of unification dates back to the 
introduction of Herbrand’s theorem [He30]. 
However, it was not until Robinson [Ro65] presented 
his landmark paper on resolution as a theorem-proving 
tool that there was an efficient algorithm for finding a 
unifier. Almost all theorem-proving and term-matching 
systems to date use Robinson’s algorithm or some 
extension of it. 

Let A be a set of terms. We call 8 the 
disagreement set of A where 6 is the set of all 
subterms of the terms in A which begin at the first 
symbol position at which not all the terms of A have the 
same symbol. For example, let 
A = if@, g(x, Y)), f(x,z), f (x ,  h(a, b))} .  The 
disagreement set of A is (g(x, y), z ,  h(a, b)). We can 
see that the disagreement set of A is empty if and only 
i f  A is empty or a singleton. We extend the definition 
of applying a substitution to a set of terms such that 
{t,, ... , t,,}8 = {t$, ... , t#}. Hence, if 8 unifies A,  AB is a 
singleton. 

Simply stated, Robinson‘s algorithm begins with 
an empty unifier p.  If the set of terms A is a singleton, 
p is the most general unifier and the algorithm 
terminates. Otherwise, it scans the terms until it finds 
a symbol which is not the same in all the terms. It then 
considers the subterms beginning at this symbol. It 
chooses two such subterms. (There may or may not 
be more.) If one of these subterms V is a variable, it 
checks if the variable occurs in the second subterm 
U. If it does, there is no unifier and the algorithm 
terminates. This is called the occurs check. Otherwise, 
V is replaced by U in A and p is composed with 
{V+-  U}. If neither subterm is a variable, there is no 
unifier and the algorithm terminates. If the algorithm 
has not yet terminated, it repeats with A and p 
updated. Robinson’s algorithm will always terminate 
and, if a set of terms is unifiable, it will find the most 
general unifier. 

In theorem-proving and term-matching 
applications, we often work with functions which have 
properties such as associativity, commutativity, identity 
or idempotence. For instance, if the function f is 
commutative, the terms f(a, x) and f (b ,  y) will not unify 
under ordinary unification, although the substitution 
{x +- b,  y t a} will make the terms equal under the 
commutative property. One solution to this problem is 
to build into the rule base of the system, rewriting rules 
that will generate every equivalent expression for the 
terms with regard to the property or properties 
belonging to each function. Unfortunately, this strategy 
may generate an excessive amount of useless clauses 
which will impede the efficiency of the system. 

commutative only, or both associative and 
commutative. This type of unification is called 
€-unification where E represents the equations or 
axioms defining the property or properties. Hence, 
AC-unification is unification under the associative and 
commutative properties. In the context of E-unification, 
ordinary Robinson unification is called null-E 
unification. 

3 AC Unification 

Unlike ordinary or null-E unification, E-unification 
does not guarantee a single mgu. A set of unifiers {e, ___8,,>. is said to be complete if for any unifier Q, 

there exists 1 I i I n and E. such that 8 , O L  = Q. The set 
of unifiers is minimal if for 1 I i i n ,  1 ijI n and 
i Zj, there does not exist 1 such that 8 , O l  = 8,. It is not 
uncommon for a minimal, complete set of unifiers of 
two relatively short terms to contain hundreds or even 
thousands of unifiers. 

Consider the associative and commutative 
function f. The minimal, complete set of unifiers for the 
terms f(x, a) and f(u, b,  v) is 

v +- a, x +- f(u, b)  
u + -a ,  x +- f (b ,  v)\ 
+ f(a, 4, x +- f(z,, b, v )  

v +- f(a, 4, x + f(u, b, 2 2 )  

Here, z, and 2, are variables not in the original terms. 
These are called introduced variables. 

It should be noted that since f is associative, the 
term f(u, b, v) in the previous example could have been 
written as f(f(u, b), v) or f(u, f(b, v) ) .  Removing nested 
function symbols in this manner is called flattening. 

Stickel [StSl] presented an algorithm for unifying 
two terms whose function is associative and 
commutative. Because associative terms can be 
flattened, we assume the associative and commutative 
(AC) function can have an arbitrary number of 
arguments. AC unification is also known as bag 
unification and can be thought of as unifying two 
multisets since the terms can be flattened and are 
order-independent. To unify the terms, they are first 
flattened and arguments common to both are removed 
from both terms. Removing the common arguments 
may eliminate the generation of unifiers that, although 
correct, are less general than other unifiers. For 
instance, if the common argument g(x is not 
eliminated from the terms, f(g(x), g(a ) and f)g(y), g(x)) 
whose most general unifier is {y t a ] ,  unification may 
result in the additional generation of the unifier 
{ x t a ,  y t a } .  

Stickel first presents an algorithm for unifying two 
A more elegant solution is to these AC terms whose arguments are all variables. This 

properties into the unification algorithm. This method algorithm, solving the variable-only case, is used by 
has the advantage of unifying equivalent terms without Stickel’s general-case algorithm which unifies any two 
having rewrite the terms in a form in which they AC terms. In the case that all arguments are variables, 
unify under Ordinary This greatly to unify the terms f(x,, ... , xn) and f(yl, ... , ym) we assign 
decreases the number of intermediate clauses used in each variable a term of the form t, whose function 

a problem. A disadvantage is that for every 
be symbol is not f or a term of the form f(t,, ,,. , fk ) .  For 

such an assignment to be a unifier, each term t, must property Or set Of properties, a new algorithm 
developed. For instance, a separate algorithm is 
needed for functions which are associative onlvs appear an equal number of times in each term. Let 
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s, = f(x, x, Y) 
O = { x + a ,  y +  
unifier of s, and 

and s, = f(u, v ,  v ,  w) .  
f(b,b), u t a ,  v + b ,  w + a }  is a 
s, since s,O = s,O = f(a, a ,  b, b). 

Each term f, in the substitution must conform to the 
homogeneous linear Diophantine equation 

m n ca~x~ = x b k Y k  
/=1  k= 1 

in which a, and b, represent the number of occurrences 
of the j th  and kth variable in the first term and second 
terms, respectively, and x, and yk represent the number 
of times f, appears in the substitution of the j th and kth 
variable in the first and second terms, respectively. 

For instance, the equation corresponding to the 
terms s, and s, is 2x, + x, = y, + 2yz + y3. Nonnegative 
integral solutions to this equation can be used to 
represent unifiers since each variable can be assigned 
a nonnegative integral number of occurrences of each 
term. Although the number of solutions to a 
homogeneous linear Diophantine equation is infinite, 
we can find a finite set of basis solutions such that each 
solution is a linear combination of these basis 
solutions. Table I contains the basis solutions to the 
above Diophantine equation. 

Associated with each basis equation is an 
introduced variable z,. For each combination of basis 
equations such that there is at least one nonzero 
coefficient corresponding to each original variable, we 

Table I. BASIS OF SOLUTIONS TO DIOPHANTINE 
EQUATION 

X y u v w  

0 1 0 0 1 2 ,  
0 l l O O Z ,  
0 2 0 1 0 z 3  
1 o o o 2 z 4  
1 o o 1 0 z 5  
1 0 1 O 1 Z 6  
1 0 2 0 0 2 ,  

can construct a unifier. The term replacing each 
variable is made of the introduced variables associated 
with the basis equations. The coefficient 
corresponding to an original variable and an 
introduced variable determines the number of times 
the introduced variable is represented in the term 
replacing the original. For instance, the unifier 
generated from basis equations 3, 4 and 6 is 

The variable-only algorithm is shown more formally in 
figure 1. 

To find the unifiers for AC terms with arbitrary 
arguments (which may be AC functions, ordinary 
functions, constants or variables) we create two new 
terms called the variable abstraction of the original 
terms by replacing each distinct argument with a new 
variable. For instance, the variable abstraction of 

the substitution {x, t a, x, + x, y, t y, y, t b} .  

{x + f(z?! z6)> y f(z37 Z3)r 0 e z6, v z3, w f(z4, 2 4 ,  z!)}. 

f(a, a, x) and f (y ,  Y, b) is f (x , ,  xl, x,) and f(y,,  Y,, y2) with 

1. Eliminate common terms. 

2. Form an equation from the two terms where the 
coefficient of each variable in the equation is equal 
to the multiplicity of the corresponding variable in 
the term. 

3. Generate a basis of nonnegative integral 
solutions to the equation. 

I 4. Associate with each solution a new variable. 

5. For each sum of the solutions (no solution 
occurring in the sum more than once) with no zero 
components, assemble a unifier composed of 
assignments to the original variables with as many 
of each new variable as specified by the solution 
element in the sum associated with the new 
variable and the original variable. 

~~~~~ 

Figure 1. Stickel’s Variable-Only AC Unification 
Algorithm 

We next use the variable-only algorithm to find the 
unifiers to the variable abstraction. For efficiency, we 
introduce additional constraints for generating the 
variable-only unifiers. Any unifier which assigns a 
nonvariable to an argument corresponding to a 
nonvariable in the original terms is eliminated. 
Likewise any unifier which assigns the same variable 
to two arguments corresponding to arguments in the 
original terms that obviously will not unify are 
discarded. In the above example the unifiers are 

xz + z,, y1 - z4, Y2 + 211 
( l )  (2) Yl x, +z4t  +- z4, x, + f(Z1, ZZ,Z2), Y, + f(z2, Z4h Yz + z,> 

The last step is to unify each of these unifiers with 
the substitution corresponding to the variable 
abstraction. In this example, this is the unifier 
{x, t a ,  x, + x, Y, C-Y ,  Y, + b } .  

This gives us the following results. 
(1) x + b ,  v - a l  
(2d x + f (b,  z,, Z,), Y + f e z ,  all 

Figure 2 contains Stickel’s general AC unification 
algorithm. Note that this algorithm may be called 
recursively in step 3 for terms with AC functions and 
that Robinson’s unification algorithm is called for all 
other terms. 

Stickel’s AC unification algorithm requires a basis 
of solutions for a homogeneous linear Diophantine 
equation with integer coefficients of the form 

C a j x j  m = C~;Y, n . 

j=l ;=1 

Several algorithms have been developed to generate 
such a basis. Huet [Hu78] developed an algorithm 
which begins with the trivial (all zero) solution and 
generates basis solutions by enumeration. His 
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algorithm determines bounds which provide stopping 
conditions for the enumeration. 

Huet proves that any solution, such that some x, is 
greater than the largest b) or likewise some y, is greater 
than some a,, is nonminimal. Huet also shows that for 
any 1 I i I m  and 1 I j l n ,  where Icm,, is the least 
common multiple of a, and b), a solution such that 
x, = Icm,)/a, and y) = Icm,,/b, and all other coordinates 

1. Form generalizations (the variable abstraction) 
of the two terms by replacing each distinct 
argument by a new variable. 

2. Use the algorithm for the variable-only case to 
generate unifiers for the generalizations of the two 
terms. The variable-only-case algorithm may be 
constrained to eliminate the generation of unifiers 
assigning more than one term to variables whose 
value must be a single term, and the generation of 
unifiers which will require the later unification of 
terms which are obviously not unifiable. 

3. Unify for each variable in the substitution from 
step 1 and the unifiers from step 2 the variable 
values and return the resulting assignments for 
variables of the original terms. This is the complete 
set of unifiers of the original terms. 

Figure 2. Stickel‘s General AC Unification 
Algorithm 

0, is minimal. Therefore, any solution in which all 
coordinates are greater than or equal to the respective 
coordinates of any of these solutions is nonminimal. 
Using these constraints, Huet constructs bounds to 
limit the enumeration. Each potential solution within 
these bounds is checked whether it is a solution and 
that it is not greater than any solution already found. 

Lankford [La871 developed an algorithm which 
uses elementary row operations on a matrix to 
generate a basis of solutions. By keeping the matrix 
irredundant, Lankford ensures the basis formed is 
minimal. 

Lankford represents the homogeneous equation 
as 

m n 

C a i x i  - Ejyj = 0. 
,=I j=l 

The norm of an m+n-tuple S is defined as . 

We define A to be the set of all m+n-tuples S such that 
1 I i s m ,  s, = 1 and all other coordinates are 0. 
Likewise, B is the set of all m+n-tuples S such that 
m + 1 I i 5 m + n, s, = 1 and all other coordinates are 
0. 

Lankford’s algorithm iteratively finds the sets 
X k ,  P k ,  Nk,  and Zk. The initial conditions are 

X’ =the empty set, 

Z‘ =the empty set. 

The inductive definition of the subsequent generations 
is 

P‘ = A ,  
N’ = 8,  

Xk+’ = ( A  + Nk) U (B + Pk),  

Pk+’ = {S I s E X k + ’ ,  llSll > 0, 

and S is irreducible relative to Z k } ,  

and S is irreducible relative to Zk), 

Zkf’ = Z k  U {S I S E Xk+’ and llSll= O}. 

In the above definition, S is reducible relative to Zk if 
there exists some Z E Zk such that each coordinate of 
X is greater than or’ equal to the corresponding 
coordinate of S. 

The algorithm terminates when Pk and Nh are 
empty. When this occurs, Zk contains an irredundant 
basis. 

Zhang [Zh87] developed a v e y  efficient 
algorithm which finds the basis solutions to a 
homogeneous linear Diophantine equations in which 
several coefficients are 1’s. In practice, many of the 
Diophantine equations appearing in AC unification 
problems are of this form. The simple case solves 
Diophantine equations in which all the coefficients on 
one side of the equation are 1’s. This algorithm has 
the additional asset that intermediate results can be 
stored and need not be recalculated every time they 
are needed. The general case solves equations which 
have two or more I-coefficients regardless of where 
they are in the equation. Zhang’s algorithm reduces 
the equation to smaller equations with only one 
1-coefficient and uses some other algorithm (possibly 
Huet’s or Stickel’s) to solve them. The smaller 
equations will generally require less time to solve than 
the original equation. 

Zhang’s simple case algorithm considers 
Diophantine equations of the form 

m n c x i  = &fj. 

i=l  j=1 

Zhang defines a set 
C(m, k )  = { (k , ,  ... , k,,,) I k, + ... + k,,, = k )  and a vector e!, 
which is a vector of length n such that all components 
are 0 except the if* component is 1. The basis of the 
Diophantine equation is the set of vectors 
X = (x,, ... , x,) and Y = (y , ,  ... , y,) such that 1 I j  I n ,  
X E C(m, j), and Y = e!. Once C(m, j )  is computed, it 
can be stored and used in solving other equations. 
Zhang uses the same concept to simplify finding the 
basis solutions to Diophantine equations having more 
than one I-coefficient, with neither side containing all 
1-coefficients. For the details of this algorithm see 
[Zh87]. 
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Zhang’s simple-case algorithm is used to 
construct the basis solutions to the Diophantine 
equations when the coefficients on one side of the 
equation are all 1’s. Otherwise, Lankford’s algorithm 
is used. 

4 Implementation Details 

Terms are represented as trees where each node 
is a function symbol, constant, or variable. Only 
function symbols have children. The nodes are 
represented by type (function, constant, or variable) 
and an integer identifier. The identifiers are associated 
with character string names by a table. The names are 
used only for the user interface. Each node has a 
pointer to its first child, if any, and its next sibling. A 
flattened term is represented as a linked list of pointers 
to the term’s arguments. The AC function symbol is 
not a part of the data structure. This data structure 
allows the term to appear flat without changing any of 
the pointers in the term or having to make a copy of the 
subterms. Unifiers are represented as linked lists, 
where each list element consists of a variable identifier 
and a pointer to a term. A set of unifiers is a linked list 
of pointers to unifiers. 

Substitutions are not made directly to the terms. 
Instead, whenever a node is inspected, and the node 
represents a variable, the node’s identifier is 
compared to the variable identifiers in the substitution. 
If that identifier is found, the term pointed to by the 
substitution is used in place of the variable. If this new 
term is itself a variable, this process is repeated until 
either a nonvariable or a variable not in the 
substitution is reached. If the substitutions were 
applied to the terms, the terms could grow 
exponentially in size as multiple occurrences of 
variables are replaced with terms which may 
themselves contain repeated variables requiring 
substitution. 

Robinson’s algorithm had to be modified slightly 
to work in conjunction with AC functions. It is 
implemented recursively such that if the two terms to 
be unified are the same function and have the same 
number of arguments, the arguments are unified by a 
generic unification routine. This generic routine 
determines if the terms are the same AC function and, 
if they are, it uses Stickel’s algorithm, otherwise it uses 
Robinson‘s. 

Robinson’s algorithm was also modified to handle 
more than one unifier. Since the arguments of the 
terms may contain AC functions, more than one 
substitution may be returned by the generic unification 
routine. Subsequent arguments are unified 
independently for each of these substitutions. 
Substitutions resulting from these unifications are 
accumulated and likewise used in unifying subsequent 
arguments. Hence, this algorithm may return multiple 
unifiers. 

To prevent the occurs check from redundantly 
searching the same subterms for an occurrence of the 
same variable, a list is maintained of variables whose 
substitutions do not contain the target variable. The 
first time a variable is encountered that is in the 
substitution list, the associated term is searched. If the 
target variable is not found, the encountered variable 

is put on the list of searched variables. Otherwise, the 
occurs check fails. If a variable is encountered that is 
on the list of searched variables, it is immediately 
skipped. 

Our implementation of of Stickel’s algorithm varies 
from that presented in earlier. Rather than 
determining the complete set of unifiers for the 
variable abstraction and then unifying these with the 
substitution defining the variable abstraction, we 
create each variable-only unifier as we need it and 
unify it with the variable-abstraction substitution. It 
should be apparent that the variables representing the 
variable abstraction need not be used in either 
scheme. It is only the terms associated with these 
variables that are actually unified. 

We implemented the parallel version of the AC 
unification algorithm to run on an Intel iPSC/2. The 
master process runs on one node of the cube and a 
slave runs on the other nodes of the cube. The 
processes communicate via message passing. 

Our unification program presents several possible 
opportunities to exploit parallel processing. For 
instance, the occurs check in Robinson’s unification 
algorithm need not be sequential. Recall that the 
occurs check checks for an occurrence of some 
variable in a term. If the term being checked is a 
function with several arguments, each argument can 
be checked for the variable by a different processor. 
However, the overhead of message passing far 
outweighs the processing needed to perform the 
occurs check on one term. Hence, the grain size of the 
occurs check is too small to make efficient use of 
para1 le1 ism . 

The algorithms used to find the basis solutions to 
the Diophantine equations similarly can be designed to 
distribute the processing, but again, the grain size of 
the problem is rather small compared to the overhead 
inherent in our message-passing scheme. 

Since our implementation of Robinson’s algorithm 
allows multiple substitutions to be returned when 
unifying a terms arguments, subsequent arguments 
must be unified using each of the previous 
substitutions. Each of these unifications may be done 
by a different processor. Consider the terms 
f( + ( x ,  y ) ,  + ( x ,  z))  and f( + (a,  U ) ,  + ( b ,  v ) ) ,  where + is 
AC and f is not. Robinson’s unification algorithm 
would first unify + ( x , y )  and + (a,  U )  using the AC 
unification algorithm. Stickel’s algorithm will return 
four substitutions. The next pair of arguments are 
unified four times, once for each of these substitutions. 
These unifications may be each be distributed to a 
separate processor. 

Parallelism can be exploited similarly in the last 
step of Stickel’s algorithm when the subterms 
corresponding to the variable abstraction are unified 
with the introduced-variable terms. Another way to 
expl.oit parallelism in Stickel’s algorithm is to generate 
the unifiers corresponding to each particular solution 
of the Diophantine equation on a separate processor. 
This method is appealing since the generation of the 
unifier involves unifying all the arguments of the terms. 
The grain size of the distributed subtasks is larger than 
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in the previous methods in which each distributed 
subtask unified one argument. 

We decided to implement our program using this 
last plan. Our AC unification algorithm runs 
sequentially up to the point where the valid solutions 
to the Diophantine equation are determined. The 
master process then sends a solution to each slave, 
which finds the unifiers associated with that solution. 

The master process contains all of the elements 
of our sequential implementation with the exception of 
the sequential AC unification algorithm itself. The user 
interface and Robinson unification algorithm remain 
unchanged. The mainline was modified to create and 
terminate the slave processes. 

The slave processes consist of the distributed part 
of the AC unification algorithm and all routines 
necessary to unify the subterms. If additional 
unification is required in the slaves, either ordinary 
unification or AC unification, it is done sequentially and 
not in parallel. 

The processes exchange the following types of 
messages. 

Cc-unify 
Flatten both terms. 
Remove arguments common to both terms. 
For each distinct argument { 

Add it to variable abstraction. 
Determine its multiplicity. 

1 
Form Diophantine equation from multiplicities 

Find basis of solutions to Diophantine equation. 
Remove illegal basis vectors. 
Find all valid solutions to Diophantine equation. 
If no solutions exist 

Send TERMS to slaves. 
UNIFIERS = empty list. 
NUM-DONE = 0. 
Send several problems to each slave. 
While (NUM-DONE < number of slaves) { 

of arguments. 

Return(fai1). 

Receive message from slave. 
If (message = = SOLUTION) { 

Add solution to UNIFIERS. 
If (more problems to send) 

Else 
Send more problems to slave. 

Send DONE to slave. 
} 
Else if (message = = DONE) 

NUM-DONE = NUM-DONE + 1. 
1 
If (UNIFIERS = = empty list) 

ELSE 
Return(fai1). 

Return(success). 

Figure 3. AC Unification Algorithm - Master 

TERMS - sent from the master to the slaves. Contains 
the terms and a substitution representing the variable 
abstraction of the arguments of the terms being unified 
and the substitution calculated so far. 

PROBLEM - sent from the master to a slave. Contains 
the basis vectors that make up a particular solution to 
the Diophantine equation. 

SOLUTION - sent from a slave to the master. Contains 
unifiers corresponding to the problem sent to the 
slave. 

Figures 3 and 4 contain pseudocode for the 
master and slave components of the AC unification 
algorithm. 

,lave { 
message = READY. 
While (message != END-SIGNAL) { 

Receive message from master. 
If (message = TERMS) { 

Parse terms from message. 
Parse SUBSTITUTION from message. 
Send READY to master. 
message = PROBLEM 
While (message = = PROBLEM) { 

Receive message from master. 
If (message = = PROBLEM) { 

Determine variable-only unifier. 
OLD-UNIF = SUBSTITUTION. 
For each term in variable abstraction { 

NEW-UNIF = empty. 
For each substitution in OLD-UNIF { 

Unify variable-only, 
variable-abstraction terms. 

Append unifier (if any) to NEW-UNIF. 
} 
OLD-UNIF = NEW-UNIF 

1 
While (Too many partial unifiers for 

one message) { 
Send SOLUTION to master. 

1 
Send Solution to master. 

Else if (message = = DONE) 
1 

Send DONE to master. 
1 

1 
1 
Send END-SIGNAL 

\ 

Figure 4. AC Unification Algorithm - Slave 

Table II shows the running time comparison 
between the two implementatiohs in seconds of wall 
time for some representative problems. The functions 
+ and * are both associative and commutative. 
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Table I I .  AC UNIFICATION TIMES USING FIVE SLAVES 
Problem Terms being unified # sols seq time par time 

(1) + ( X A Y )  + (u,v,v,c) 18 .06 ,203 

Problem S ,  SL S ,  R, RL R, Prep Compile Slave Unify 

(1) 16 1336 ,004 16 5948 .011 .041 ,009 .015 ,003 

(2) 25 71564 ,037 128 5.47E6 .660 ,956 1.65 1.90 ,832 

(3) 16 2780 ,006 21 .120E6 ,320 ,012 ,010 ,415 ,379 

(4) 16 2264 ,007 232 4.26E6 12.28 ,058 2.97 10.5 8.66 

(5) 16 2580 .006 16 0 76.15 ,069 0 76.19 73.62 

(6) 45 .172E6 ,087 403 15.E6 ,540 3.04 6.33 4.56 1.80 

I 

51 1.05 S8 

4 -  

3 -  

2- 

1 -  

0 315.3 76.4 

I 

Table Ill. AC UNIFICATION TIME BREAKDOWN 

5 Expectations for the Multicomputer Environment 

The results indicated by Table II show mediocore 
parallel performance. Additional instrumentation of 
the processes showed where the time was being spent. 
This data is tabulated in Table Ill for five slave 
processes where S,  is the number of sends, S, is the 
length of all sends S ,  is the total time for all sends with 
receives R,, R,, RT similarly defined. Prep is the time 
to find the solutions to the Diophantine equation and to 
send the terms to the slaves. Compile is the overhead 
associated with receiving the results and managing the 
received buffers. Slave is the maximum total time 
spent by the five slaves and Unify is this time exclusive 
of the buffer management overhead. 

As is to be expected, very small problems, such 
as problem ( l ) ,  perform worse in the parallel 
environment than in the sequential environment, due 
to the overhead of message passing in 
distributing/collecting the results. Larger problems 
show a modest speedup as shown in Figure 5, limited 
primarily by the sequential collection of results in 
"compile". We expect this can be performed in parallel 
in log,n steps using n processors via a tree-reduction 
method. Problem number 4 also shows shortcomings 
in the implementation. Problem number 4 requires a 

I I I I 
1 3 5 7 

Number of Processors 
Figure 5. Parallel Speedup. 
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substantial amount of additional unification of 
subterms in the slave which, due to our 
implementation, is done sequentially. This, plus the 
overhead associated with message passing makes the 
parallel version run slower than the sequential version. 
The best speedup, obtained from problem 5 ,  results 
from the decomposition of the problem into six parts 
which also accounts for the limiting value of the 
speedup between 5 and 7 slaves. This work 
demonstrates that AC unification is amenable to 
parallel speedup. For problems with a large number 
of subproblems to be solved, such as in problems 2 
and 6 ,  the potential for massive parallel speedup 
exists. 

The significance of this result is that in an actual 
theorem proving application, we will be performing 
thousands of these problems. It is possible that these 
problems may be batched such that slave-host 
communication is reduced. Furthermore, some 
subproblems require considerable more work than 
others, consequently if we could determine those 
problems before distributing the workload, efficiency 
could be increased. The major problems encountered 
in our tests were the common difficulties of estimating 
the complexity of each slave task and the bottleneck 
formed by sequentially compiling the results. We are 
looking at ways of estimating the former and of 
implementing the latter efficiently. The end goal of this 
research is to embed this parallel unification function 
in a parallel theorem-proving environment. 
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