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LOCALIZING SENSOR NETWORKS IN
UN-FRIENDLY ENVIRONMENTS

Sriram Chellappan, Vamsi Paruchuri, Dylan McDonald and Arjan Durresi

Abstract— In this paper, we study the issue of defending
against a Wireless Sensor Network (WSN) that has been
deployed by a malicious enemy agent in an area of interest
to us. While there can be many approaches to defend against
maliciously deployed WSNs, we propose the design of a
localization centric approach. Specifically, the problem we
address is: Given an enemy deployed WSN in an area
of interest to us, how can we determine locations of the
sensors without co-operating with the sensors themselves
during localization. In our approach, we employ a physically
mobile agent called the localizer (e.g., a mobile robot) to
move in the sensor network and detect raw sensor-to-
sensor communication signals. However, the localizer has no
information on the message content or the sensor id of any
signal (possibly due to message encryption) since the sensors
belong to an enemy agent. Based on estimating the angle of
arrival and the received signal strength, we design a protocol
for the localizer to determine sensor positions. The salient
features of our protocol are efficient association of signals
with sensors, and filtering many likely false locations over
time. Sound theoretical analysis and extensive simulations
are used to demonstrate the performance of our protocol
from the perspective of localization accuracy.

Index Terms— Sensor Networks, Localization, Security.

I. INTRODUCTION

Wireless sensor networks (WSNs) have become a crit-
ical component of many military missions today. Some
canonical instances include battlefield monitoring, border
patrol, installations protection, seismic monitoring etc. A
vast amount of theory has already been invested in WSN
technologies, and numerous test-beds have been designed
and practically validated in military settings. The unifying
conclusion after all these efforts is the clear and patent
viability of WSNs to fulfill numerous military needs in
the near future and beyond. While this is clearly an
encouraging development, a view from the other side of
the military fence is still lacking today. In other words,
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the issue of how a network of sensors can be deployed
and operated by malicious adversaries, and how to defend
against such threats has so far lacked enough attention.

A. Our Contributions

1. A case for defending against maliciously operated
WSNs: Our first contribution in this paper is the illustra-
tion of the threat imposed by maliciously operated WSNs.
In many missions of late, military personnel are being rou-
tinely employed in enemy battlefields with minimal prior
knowledge of threats imposed in such fields. Traditional
threats included landmines, IEDs, sniper fires etc. How-
ever, with the advances in sensor network technologies,
and coupled with their wide dissemination and acceptance,
it is quite reasonable to envisage a wireless sensor network
employed as a threat against military personnel in terms
of monitoring their movements, triggering explosives,
notifying enemy agents etc. Another representative threat
occurs when enemy agents seize control over critical
infrastructures in war zones like oil-fields, airports, power
plants etc. and deploy a sensor network to guard such
infrastructures. How to defeat such types of maliciously
deployed WSNs is our focus in this paper.

We point out that there is more than one approach to
defeat a maliciously operated WSN. In simple terms, the
network can be bombed with missiles, hence destroying
the whole network. Alternative approaches include driving
a tank through the network to crush sensors, sending
soldiers to hand-pick sensors etc. Such approaches suffer
from two fundamental problems. First, there is a lack
of sufficient stealth during defense. Attempts to bomb
a network, or to physically destroy/ remove sensors can
be easily exposed to adversaries and may incur counter-
reactions which must be avoided. Secondly, bombing a
network incurs a large amount of physical force, which is
cost-prohibitive and also may cause irreparable damages
to the deployment field which we may need to protect
(e.g., oil-fields, airports, power-plants etc.). On the other
hand, a passive countermeasure is to listen to the mes-
sage content of the sensors and leverage it to design
subsequent defense strategies. However, it may be likely
that the sensors (that belong to an enemy agent) encrypt
their messages. Discovering keys and encryption protocols
must entail breaking into and capturing sensors which
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again violates the stealth requirement. The crux of this
paper is the design of a mechanism that can cause a high
degree of destructive potential to maliciously operated
sensor networks, while still maintaining a sufficient degree
of stealth during execution.

2. A localization centric defense approach: In this
paper, we design a localization centric approach to defend
against maliciously deployed sensor networks, where the
goal is to determine the locations of adversarial sensors in
the network. Many advantages are present when locations
of adversarial sensors are known. For instance, number
of nodes in the network can be estimated which can
help gauge adversary strength; optimal intrusion paths
involving minimal detection through the network can be
determined, the topology of the network can be estimated
which can assist in coordinated and maximal impact
counter-measures against the network.

In this paper, we employ a physically mobile agent
called the localizer (typically a mobile robot), which will
stealthily move in the network listening for sensor-to-
sensor communication signals. The localizer will attempt
to measure the Angle of Arrival (AoA) and the signal
strength of the sensor signals (RSSI). However, the local-
izer will have no information on the message content or
the id of the sensor sending the message (potentially due
to message encryption). Using this information, we design
a protocol for the localizer to estimate sensor locations in
the network. At the initial stages of the protocol execution,
crude location estimates are derived. Since, the localizer
does not know which sensor is sending which signal,
there will be many false estimates during localization. We
then incorporate a novel location scoring mechanism with
a corresponding score translation mechanism, such that
with the reception of more and more sensor signals, the
protocol will filter out many false positives and gradually
converge to real sensor locations.

3. Theoretical analysis and simulations: We conduct a
detailed theoretical analysis and extensive numerical sim-
ulations to demonstrate the performance of our protocol.
Our analysis demonstrates that the localization protocol
can effectively determine adversarial sensor locations.
Also, we demonstrate that when the localizer has addi-
tional information on network behavior like transmission
ranges and communication model, the localization accu-
racy dramatically improves.

The rest of our paper is organized as follows. In Section
II, we review important work most related to the work
in this paper. The sensor network and localizer model
are presented in Section III. In Section IV, we present
our localization protocol, and detailed theoretical analysis.
Our performance evaluations are presented in Section V.
We conclude our paper with final remarks in Section VI.

II. COMPARISON WITH EXISTING WORKS ON

SECURITY IN WSNS

As we can see, defending against maliciously deployed
WSNs clearly falls under the purview of security. A
pertinent question to ask here is how different are existing
works in sensor networks security from the work in this
paper. In all existing works on WSN security, the unifying
framework is that the sensor network belongs to benign
entities. The role of the adversary is to disrupt the network
operations. Typically, the standard attack model used in
existing WSN security works is where the adversary
captures a small percentage of network nodes that then
behave maliciously. How to harness the potential of a
relatively large number of benign sensor nodes to defeat
the malicious operations of a few compromised sensors
is the major theme in existing WSN security research.
Instances of works in the framework include secure key
management [1], [2], [3], [4], [5], [6], location verification
[7], [8], [9], [10], [11], secure localization [12], [13], [14],
[15], [16], secure routing [17], maintaining integrity of
sensor identities [18] etc.

Differences between the above works and ours:
In this paper, the sensor network under consideration
belongs to the adversary. Our problem is to defeat the
operations of an entire network of sensors and not just a
few sensors in the network. Furthermore, we will have
virtually no information on any aspect of the network
or its operation characteristics. Consequently, approaches
that leverage knowledge of the network behavior, and/ or
the presence of a large number of benign entities cannot be
leveraged as a defense mechanism. An added challenge is
the requirement of stealth in the defense mechanism which
makes our problem quite harder from existing problems
in WSN security.

Recently though, Yang et. al. in [19] have studied a
similar problem where the goal is to localize sensors in
a network deployed by an adversary. In their solution,
a set of monitors are deployed at the boundaries of the
network to receive sensor signals and localize sensors.
Deploying such monitors can be an expensive operation.
Furthermore, it is assumed that all monitors can listen
to all the communication signals of all sensors which is
impractical for large area networks. Furthermore, in [19]
it is assumed that the monitors are aware of the initial
transmission power of all sensors in the network. This
information is possible to obtain only if the monitors
have insider information on the sensor network (obtained
possibly by breaking into sensor nodes) which violates the
stealth concept that we believe is critical. In this paper, we
design a new approach for localizing maliciously deployed
sensors using a physical mobile agent moving in the
network, and collecting sensor signals. Our approach does
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not need any expensive equipment, global network view,
or insider information on the sensors/ the network.

III. LOCALIZER AND NETWORK MODEL

In our problem there are two competing entities: the
sensor network and the localizer. In this section, we
present the models of both entities from the perspective
of their features and capabilities.

A. Sensor Network model

In our problem, we consider a sensor network that
has been arbitrarily (not necessarily uniformly) deployed
with N sensors by an adversary in the area of interest.
For simplicity, we assume that the network is square
shaped of dimensions L×L. The sensors in the network
communicate with each other via encryption, with the
communication messages either being Hello messages
or other network activities. Each sensor is assumed to
transmit at the same initial transmit power, Ptx. Note that
Ptx is unknown to the localizer.

The traffic model of the sensors depends on the net-
work application and the behavior of sensed events. The
data reporting process in WSNs is usually classified
into three categories: event-driven, time-driven and query-
driven [20]. In the time-driven case, sensors send their
data periodically to the sink. Event-driven networks are
used when it is desired to inform the data sink about the
occurrence of an event. In query-driven networks, sink
sends a request of data gathering when needed. In this
paper, our main focus will be on the event-driven networks
with Poisson model for packet generation. Suppose that
the events are independent (both temporally and spatially)
and occur with equal probability over the area. In this case,
Poisson distribution can be used effectively to model the
generation of data packets [21]. When the average rate
of packet generation, λ, is known, the distribution of the
number of data packets, Z, generated by each node, from
time 0 to T is

P (Z = z) =
e−λT (λT )z

z!
(1)

where z is a nonnegative integer. In the case of the
packet generation distribution obeying the Poisson model,
the time duration between two consecutive packet trans-
missions, t, has an exponential distribution with mean 1

λ :

ft (x) = λe−xλu (x) (2)

where u(x) denotes the unit step function. We will
consider a Poisson sensors traffic model in this study.
In this paper, we assume that the sensors are all static.
Studying the issue of localizing mobile sensors is a part
of future work.

B. Localizer Model

The localizer in our problem is a mobile agent that
can physically move from one location to another. For
practical purposes a miniature robot serves this purpose.
The localizer is equipped with the capability to measure
angle of arrival (AoA) and received signal strength (RSSI)
of a source signal. Note that AOA measurements typically
require either an antenna array, or several ultrasound
receivers. This is currently available in small formats in
wireless nodes such as the one developed by the Cricket
Compass project [22] from MIT. We assume that the
localizer can detect any signal it receives provided the
received power level is ≥ P̄rx, the localizer’s receiver
threshold. We assume that the localizer is aware of the
network boundary within which it wishes to localize
sensors. In this paper, we assume that the sensors deployed
are not equipped to track mobile intruders. Localizing
sensors that are equipped with the ability to track intruders
is part of our future work.

IV. OUR LOCALIZATION PROTOCOL

In this Section, we present our localization protocol.
The protocol is executed in three phases: The estimation
phase, measurement phase and the localization phase.
Each phase is discussed in detail below. For reader’s
convenience, important notations and their terminologies
are presented in Table I.

TABLE I
IMPORTANT NOTATIONS AND TERMINOLOGIES

Term Description
θ Sensor angle of arrival measured by

Localizer in degrees

ε Error bound in angle of arrival
measured by Localizer in degrees

L× L Total network area in m2

M ×M The area to be localized m2

g × g Total number of grids in the network
d = M

g Grid size in m

N Number of Sensors
Tx Actual transmission range of sensor
T̄x Estimated transmission range of sensor
λ Packet inter arrival rate

A. Initiation phase

Without loss of generality, we assume that the localizer
has to localize a square area of size M ×M . Note that
when M = L, the area to be localized is the entire sensor
network deployment area. The localizer initially divides
the area of interest into a 2−D rectangular grid (g × g)
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where each grid is a square of dimension of size d = M
g .

The objective of the localizer is to eventually determine
those grids that contain atleast one sensor in them. The
size of the grid is an application parameter and is variable.
For high accuracy of localization, d can be set quite small,
while for lower accuracies, d can be set correspondingly
larger.

Observation time
The localizer traverses the entire network area, stop-

ping at each intersection of vertical and horizontal grid
lines. The time spent at each observation point (Tobs)
is chosen such that the localizer can observe at least
one transmission from each node in the neighborhood.
Thus, Tobs depends on the underlying traffic pattern. For
instance, for a Poisson model with rate λ, a Tobs = 10

λ
would ensure that the localizer is able to observe messages
from a particular sensor in the neighborhood with a
probability of atleast 0.99995 (from equation 1). Waiting
for longer durations improves this probability further. For
scenarios where λ is not know apriori, we outline a simple
method for obtaining a rough estimate. The localizer at
various random locations observes the packet intervals
from multiple sensors. This average packet interval mul-
tiplied by the average number of neighbors (which is
again an estimate at different locations using the AoA)
gives an approximate value for λ. We again note that
waiting for longer durations only improves the accuracy of
localization; thus, overestimating inter-packet arrival time
is more helpful than harmful and an accurate estimate is
not required.

Note that it is not compulsory that the sensor traffic
model is Poisson. In scenarios where the traffic model is
not Poisson, similar to the above approach, the localizer
can estimate mean (µT ) and standard deviation (σT ) of
inter-packet arrival times. We can then use Chebyshev’s
inequality, which states that ”in any data sample or
probability distribution, no more than 1

k2 of the values are
more than k standard deviations away from the mean”
[23]. Thus, the localizer waits for Tobs = µT + k × σT

(where k = 6), ensuring it observes a message from a
sensor in the neighborhood atleast 97.2% of the time,
where µT and σT are the means and standard deviations
of the distribution respectively.

Transmission power and Range of the sensors
Recall that the the Localizer is un-aware of the initial

transmission power (PTx) of the sensors. To estimate Ptx,
the following approach is used. The Localizer as usual
traverses the entire network, listens to various messages
and collects information regarding angle of arrival and
received power PRx. We note that the observation points
of the localizer are randomly chosen with respect to
the locations of the sensors. We compute the probability
of receiving a message from a node very close to the

localizer. We note that closeness here is relative to the
sensor’s transmission range Tx, which is again an un-
known. First, when a message is received, the probability
that the source is within 5% of Tx (again, Tx is unknown)
can be computed as

P5% =
π (0.05Tx)2

πTx
2 . (3)

Thus, the probability that the source is not within
5% of Tx is P̄5% = 1 − P5%. Further, if the localizer
receives m messages, then the probability that atleast one
message was transmitted by a node within 0.05Tx can be
computed as 1−P̄m

5%. For example, if 1000 messages were
observed during the entire process of localization, then the
probability that atleast one message was transmitted by a
node within 0.05Tx is 0.92. For a network of sufficient
scale, these many number of messages is actually quite
reasonable for the localizer to have listened to during the
entire process of localization. Finally, based on the above
reasoning, we use the maximum receiving power observed
over all the messages as approximate receiving power at a
distance of 5%Tx, based on which the transmission range
Tx can be estimated.

Once, the transmission power is estimated, the upper
bound of the transmission range (T̄x) of the sensors can be
estimated. We note that, in practice, wireless transmissions
are not circular and for several uncontrollable reasons, the
attenuation cannot be accurately estimated [24]. However,
from our protocol’s perspective, we are only interested
in the upper bound. Again, if the attenuation is varying
drastically, the upper bound might not be tight; however,
this will only cause a slight drop in protocol performance.
Further, to improve the performance, we propose to con-
sider only the messages received with a signal strength
above a given threshold. We elaborate on this later in this
Section.

B. Localization phase using only AoA

Our localization protocol is comprised of two phases: A
grid score assignment phase and a score translation phase,
as described in Algorithm 1.

First, the localizer starts by traversing the entire grid,
stopping at each intersection of vertical and horizontal
lines. At each stop, the localizer listens for messages. In
this paper, we propose the localizer to listen for a duration
of 10/λ to ensure that atleast one transmission from
each sensor in the neighborhood is observed with high
probability, where λ is the packet arrival rate assuming
Poisson distribution.

For each message received, the localizer stores the
following information: the angle of arrival, received signal
strength (RSS) and localizer’s location. Based on AoA
information (i.e., θ) and the estimated transmission range

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 21, 2009 at 13:04 from IEEE Xplore.  Restrictions apply.



5

(T̄x, as estimated earlier in the section), the localizer
computes the sector that would enclose the transmitting
node. We also refer to this sector as the zone that would
enclose the transmitting node.

Once a zone is computed, the localizer assigns grid
scores as follows: For each grid Gi,j that overlaps with
the zone Zk corresponding to a message transmission
k, the grid score pi,j,k is the probability that the node
corresponding to message k is located in the grid Gi,j

and is computed as

pi,j,k =
Area of overlap between Gi,j and Zk

Area of Zk
(4)

Finally, the cumulative score Pi,j represents the proba-
bility that a grid Gi,j consits of atleast one sensor. Initially,
Pi,j is set to zero. Subsequent values are computed using,

Pi,j = 1−
∏

∀k
(1− pi,j,k) . (5)

C. Improving accuracy by using RSS

Using only AoA information might generate several
false positives. For instance, consider a scenario where
the transmitting sensor is very close to the localizer. In
this case, the localizer wrongly assigns higher probability
to farther grid cells (since, farther the grid, the wider is
the sector/zone, and hence larger the area of overlap). To
reduce the number of false positives, we propose to use
RSS information. We note that RSS might vary signifi-
cantly even for messages from same node and hence, the
distance estimates using RSS might also vary significantly.
So, instead of using RSS directly, we propose to use RSS
only to filter some messages rather than for computing
distances. In other words, the localizer would consider a
message for score computation, only if the RSS for the
message is greater than a threshold - P̄Rx−Th. T̄Rx−Th

would then be the corresponding maximum distance a
transmitting sensor could be from the localizer, beyond
which the message would not be considered for localiza-
tion. This limits the width of the sector (hence decreasing
the numerator in Equation 4) and thus reduces the false
positives as illustrated through simulations. We also note
the tradeoff in choosing P̄Rx−Th: a high value would
mean that large fraction of messages are filtered out and
localizer might have to stop at several more locations
to ensure all sensors are localized; smaller values would
increase false positives. We further study the choice of
T̄Rx−Th through simulations.

D. Localization phase

Finally, the localizer uses the aggregate scores (i.e.,
Pi,j) for each grid cell to check if it consists a node or not.

Algorithm 1 Grid Score Assignment Algorithm executed
by the Localizer

1: for each grid Gi,j in the network do
2: Grid Score Pi,j = 0
3: end for
4: for each grid intersection point in the network do
5: Listen to messages for a duration of Tobs

6: for each received message k do
7: Measure AoA/ RSSI of k
8: Determine Localized Zone of k
9: Area of Localized Zone = Zk

10: for each grid (i, j) overlapped with
Localized Zone do

11: Ai,j,k = Area overlapped between grid Gij

and Zk

12: Pi,j = 1−
∏

∀k
(1− pi,j,k)

13: end for
14: end for
15: end for
16: Return Grid Score Pi,j for all grids

We propose a simple approach for score translation. A grid
cell is assumed to consist a sensor if its score is greater
than a certain threshold. If score is lesser, it is assumed not
to contain a sensor. For illustration, assume a grid cell size
of d = T̄x/5 = 1. Then, the maximum overlap area for a
grid cell is approximately 0.39 (when it is farthest from the
localizer). Thus, the maximum score is the overlap area
divided by the sector area i.e. 0.179. We note that during
every observation interval, at each corner of the grid cell
(total of four corners), the localizer receives an average
of 10 messages from each sensor, since it waits for 10/λ
duration. The localizer receives more than 40 messages
as it might receive messages from other locations as well.
Now, assuming an average score of around 0.09 (half the
maximum) and 40 messages, the aggregate score would be
1− (1− 0.09)40 ≈ 0.98. Thus, a grid containing a sensor
should get an aggregated score very close to 1. In this
paper, we assume a grid contains a sensor if Pi,j > 0.95.

V. PERFORMANCE EVALUATIONS

In this section we evaluate the performance of our
protocol. We developed a C++ simulator. Varying number
of nodes are randomly placed in an area of 1000m ∗
1000m and have no mobility. The transmission range
of the sensors is 100m and the transmission rate λ is
0.05. The observation time Tobs = 10

λ . For each set of
parameters, we repeat the experiment for 20 different
seeds for statistical reasons. We vary the number of nodes
from 250 to 1000. We categorize a grid cell to contain
a sensor if Pi,j > 0.95. Further, we introduce additional
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random attenuation/noise factor that could reduce the RSS
signal strength by up to 40% [24]. We also assumed an
error bound in angle of arrival degrees of ε = 6 deg [22].

We specifically study two metrics:
- Percentage of False Positives (Pfp): A grid cell is

treated as a False Positive (FP) if the protocol incorrectly
concludes that it contains a sensor while it does not. The
percentage of FPs is computed as number of FPs divided
by total number of grid cells i.e, g × g.

- Percentage of False Negatives (Pfn): A grid cell is
treated as a False Negative (FN), if the protocol concludes
that the cell does not contain a sensor while the cell indeed
contains atleast one sensor. The percentage of FNs is the
number of FNs divided by total number of grid cells.

We note that the aim to minimize both Nfp and
Nfn. First, we study the tradeoffs between the grid size
and false positives/negatives when only AoA is consid-
ered. Later, we analyze the performance for various RSS
Thresholds. To elaborate, we study the improvement in
the performance by selectively ignoring the messages with
RSS below P̄Rx−Th.

Figure 1 presents the performance of our localization
protocol for varying number of nodes in the network with
only AoA information. We simulated the performance for
various accuracies i.e., grid sizes (i.e., d). Firstly, we note
that the number of false negatives is very less than the
corresponding number of false positives. In other words,
if a node is present in a grid, the localizer correctly
identifies it to contain a sensor with high probability. On
the other hand, the localizer might incorrectly identify
grids as containing a sensor even though they do not.
We attribute this high number due to scenarios where
a sensor is located closely to the horizontal/vertical grid
lines, i.e., close to the border of a grid. In such cases,
most of the times, a false positive is produced. This is
because, the protocol cannot accurately identify in which
grid the sensor is located in, and assigns high scores for
multiple grids adjoining the borders of the grid where the
sensor is located. Furthermore, one can observe that FPs
reduce with increasing d, as higher d reduces number of
sensors that are close to grid borders.

Figure 2 presents the results for different P̄Rx−Th,
i.e., when we use RSS information to filter messages
received from farther sensors. Here d = 20m. For ease
of presentation, we use the term ‘maximum sensor dis-
tance threshold’ (T̄Rx−Th) to represent a corresponding
maximum distance the filtering would permit. In other
words, for a given P̄Rx−Th, T̄Rx−Th is the distance that
corresponds to a RSS of P̄Rx−Th. We can see that choos-
ing a high P̄Rx−Th that corresponds to a low T̄Rx−Th

drastically reduces the number of FPs. The reason for
this behavior (as explained in the previous section) is the
shrinking of sector widths (to minimize far away grids

(a)

(b)

Fig. 1. Percentage of False Positives and False Negatives for different
scenarios with only AoA

from receiving higher scores) with RSS information that
was not the case with pure AoA. This enforces better
fairness in eliminating far away unlikely locations, hence
reducing the percentage of False Positives. The number
of False Negatives does not change appreciably with
RSS, since RSS filtering only helps eliminate potentially
unlikely sensor locations; potentially correct locations are
still retained.

VI. FINAL REMARKS

This paper studies the problem of localizing maliciously
deployed sensor networks without cooperation from sen-
sors themselves. This is an important problem in scenarios
like battlefields to ensure safety of personnel, and military
installations. We employ a localizer to physically move in
the network and detect raw sensor communication signals,
while measuring AoA and RSS. Depending on desired
accuracy, our protocol can achieve very low false positives
and false negatives. Our on-going work addresses the issue
of extending our approach in cases where sensors are
deployed to specifically track mobile intruders. Another
on-going extension is the issue of localization when the
sensors are also mobile.
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(a)

(b)

Fig. 2. Percentage of False Positives and False Negatives for different
scenarios with AoA and RSS
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