
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Dec 2008

Implementation and Analysis of Practical Algorithm for Data Implementation and Analysis of Practical Algorithm for Data

Security Security

Willi Ballenthin

F. Kacani

Julia Albath

Sanjay Kumar Madria
Missouri University of Science and Technology, madrias@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
W. Ballenthin et al., "Implementation and Analysis of Practical Algorithm for Data Security," Proceedings of
the Fourth International Conference on Wireless Communication and Sensor Networks, 2008, Institute of
Electrical and Electronics Engineers (IEEE), Dec 2008.
The definitive version is available at https://doi.org/10.1109/WCSN.2008.4772690

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229135613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/WCSN.2008.4772690
mailto:scholarsmine@mst.edu

Implementation and Analysis of Practical Algorithm for Data Security

Willi Ballenthin, Foti Kacani, Julia Albath and Sanjay Madria
Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65401

madrias@mst.edu

In this paper, we present a complete implementation of the Practical Algorithm for Data Security (PADS) proposed by
Albath et al., an end-to-end security scheme employing symmetric key encryption. The implementation takes full advantage
of the modular design of the TinyOS environment. The simplicity of the algorithm allows for efficient implementation in
hardware, a requirement for resource constrained devices. The protocol adds only four bytes of data per packet, on par with
industry standards. Simulation and empirical results of the scheme are also provided. The analysis shows that the Practical
Algorithm for Data Security is superior to standard security schemes.

 I. INTRODUCTION

A wireless sensor network (WSN) is a system of
independent devices able to collaborate via radio on a set of
common tasks that often includes sensing local
environmental variables. Sensors, or motes, are provided
with a limited computing capacity in addition to a radio
communication stack. A network of such nodes is
commonly used to measure variables such as temperature,
barometric pressure, sunlight intensity, acoustic noise,
seismic activity, and local acceleration. The Mica2 sensors
[1] developed by Crossbow Technology is an extendable
sensing device often employed in WSNs. It features an
8MHz processor along with 128 kilobytes of program
memory and 4 kilobytes of random access memory. Its radio
stack is well suited for local two way communication and
supports a bandwidth of nearly 40 kilobits per second (see
table 1). The authors in [2] enumerate a number of WSN
applications such as terrain surveillance, troop monitoring,
forest fire or flood detection, sructural monitoring (i.e.
bridges), habitat monitoring [3], tele-monitoring of
physiological data of patients, tracking of doctors, nurses,
and patients in a care center among others.

Power efficiency is a prime design consideration both at
the hardware level (processor, radio, memory usage) and
software level (instruction count, memory footprint, radio
utilization). The network lifetime, being the life expectancy
of the network as a whole, is used as a network power
indicator. Network lifetime maximization involves several
aspects such as efficient routing and data aggregation.
Hence, researchers are looking into scavenging or
harvesting available energy from the environment [4].

Routing [5,6] is one of the main components of WSN, as
in any type of network. Routing algorithms need to be
computationally efficient and power aware in order to meet
the network constraints. Often, however, selecting the
shortest path does not result in reduced network lifetime.
Hence, routing algorithms which account for sub-optimal
paths need to be considered [7]. In-network aggregation, the
fusion of data from different sources promises to increase
network lifetime [8]. As shown in Figure 1, data from the
lower levels is combined at the higher levels. This approach
results in reduced overhead of packet exchanges throughout
the network while ultimately communicating the same
effective information.

A well designed sensor network is built with long term
goals in mind. Often times a limited opportunity exists in
which to deploy any sort of network and the initial setup
must be maintained throughout measurements. For example,
a network deployed on the seafloor by a research vessel is
not easily modified, yet may be expected to collect data for

each season. Resiliency and durability in hostile
environments is often accomplished by over-saturating the
test bed with sensors. A WSN must be a self organizing
structure, so as the topology of the network changes,
connections remain wherever possible. As motes begin to
fail, others are expected to step up and fill in. Similarly,
some devices may be programmed to wake up late in the life
of a network in order to extend its life. An ideal
implementation might take into account of battery power
and expected lifetime of each node to maximize
dependability.

 Table 1: Mica Specs

 Figure 1: Simple network

Security is another important aspect and its development

has enhanced widespread adoption of WSNs. The challenge
is two-fold; on one hand, security in the sense of data
integrity, confidentiality, and availability, needs to be
provided; on the other hand, the power resources of the
device and network as a whole are extremely limited. Data
integrity is a security feature in which a message sent at one
end of the communication channel is guaranteed to be the
same message received – imagine that a malicious attacker
may attempt to modify transmitted data, but each tampered
packet is rejected at reception. If a message cannot be
understood by an attacker then the message is said to be
confidential. Here, the content of such messages are known
only by the sender and the recipient. Finally, availability
requires that a message can be transmitted anytime,
anywhere, independent of a system. All the three
aforementioned characteristics of data communication

Processor Speed 7.37 MHz

Program Flash Memory 128 Kilobytes

EEPROM Storage 4 Kilobytes

Radio Frequency 869 or 916 MHz

Maximum Data Rate 38.4 Kbaud

Maximum Transmission Range 500 feet

Processor Current Draw Active 8 ma

 Sleep < 15uA

Radio Current Draw Transmit 27 mA

 Receive 10 mA

 Sleep < 15uA

978-1-4244-3328-5/08/$25.00 ©2008 IEEE 99

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 13:14 from IEEE Xplore. Restrictions apply.

introduce a significant overhead into wireless sensor
networks; the greater the overhead, the shorter the network
lifetime.

1.1. BACKGROUND

Security paradigms fall under two major categories: public
key based encryption and symmetric key encryption [9].
Symmetric key encryption is based on two principles: a
strong cryptographic algorithm and a secret key shared for
encryption and decryption. A strong cryptographic system
implies that adversaries with knowledge of the cipher text
and/or the plain text must not be able to deduce the
algorithm being used or its’ key. Symmetric key
cryptosystems can be subdivided into two broad categories:
block ciphers and stream ciphers [10]. A block cipher is a
cipher in which the block of plaintext is treated as a whole
to produce a block of cipher text of equal length. A stream
cipher is similar to a block cipher; however the
cryptographic algorithm is applied one bit or one byte at a
time. The Vernam cipher is a classical encryption scheme, in
which the key is bitwise XORed with the plaintext.

Security schemes can employ two different network
approaches end to end encryption and hop by hop
encryption as shown in Figure 2a & 2b). End to end security
is shown in Figure 2a and performs just two securing
functions: encryption of the plaintext at the sender and its
decryption at the final destination. This protects sensitive
data from sniffing by any intermediary node, trusted or no
trusted. In order for this approach to be feasible, the header
information such as the routing protocol type and the
destination address should not be encrypted. This way, the
packets can be directly forwarded to the next nodes.

Unlike an end to end scheme, a hop by hop protocol (as
shown in Figure 2b) performs encryption and decryption for
each hop along the route. From a security standpoint, hop by
hop is more secure when the authenticity of nodes can be
assumed. However, when physical security of nodes cannot
be assured, end to end protocols might be a more
appropriate.

TinySec [11] is a fully-implemented, link layer security
architecture for WSN which is natively supported in TinyOS
platform [12]. It is built upon existing primitives such as the
Message Authentication Code (MAC), a cryptographically
secure checksum appended at the end of a message. It also
utilizes initialization vectors (IV) with periodic updates for
semantic security—in other words, encrypting the same
plain text two times yields two different cipher texts.
TinySec provides both researchers and application
developers with an extensible research platform whose
impact on bandwidth, latency, and power is limited. The
encryption protocol used in TinySec is a cipher block
chaining (CBC) scheme. CBC was designed to be used with
IVs to provide semantic security [9]; to produce the first
block of cipher text, the IV is XORed with the first block of
plaintext, while for the decryption process, and the IV is
XORed with the first block of the output of the decryption.
The block cipher used was RC5 and Skipjack. Enabling
TinySec in TinyOS platforms can be done by setting a
parameter during compile time. TinySec provides two
options: an authentication-only mode, which is the default
mode, and an encryption with authentication mode.

The authors in [13] present a Secure Network
Encryption Protocol (SNEP). SNEP gives data integrity
through data authentication, protection against replay
messages, and data freshness. SNEP has communication
overheads of 8 bytes per message. In addition, each end of
the communication pair keeps track of a counter, used for
identifying double packets. The implementation of the
protocol is based on one single block cipher. The code space
is reduced by utilizing the same functions for encryption and
decryption; a one time pad, based on the counter state, is
XORed with the plaintext or the cipher text. A message
authentication code, computed per packet, is used to check
for authentication and integrity of the message.

2. Figure 2a & 2b: Security approaches
3.
4. 1.2. PROBLEM DEFINITION
5. In communication systems, security remains one of the

prime challenges, particularly as personal or sensitive
information becomes more widely accessible. Traditional
security approaches cannot be directly applied to WSN as
the inherent constraints of sensors devices prohibit
computationally intensive algorithms. New approaches,
therefore, need to be implemented.

6. Furthermore, WSNs experience vastly different
challenges than large-scale wired networks. Eavesdropping
is as easy as turning on a radio receiver, while message
packets are often implemented as extremely small and
simple structures. The lives of soldiers on a battlefield
depend on a wireless security that can combine real time
accessibility with sufficient privacy. Tradeoffs between
power consumption and complexity yield a great range of
possible protocols, at times leaving appropriate choices
obscured. Without a doubt security schemes optimized for
wireless sensor networks have not been fully developed.
Current techniques face weaknesses in certain situations, as
aggregation or routing aspects prevent top efficiency. It is
our belief that further exploration in this field can produce
solutions better suited to modern sensor networks.

 II. PRACTICAL ALGORITHM FOR DATA

100

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 13:14 from IEEE Xplore. Restrictions apply.

 SECURITY
In [14], Albath et al. propose the Practical Algorithm for
Data Security (PADS), an end-to-end security scheme based
on one time padding. The authors of the PADS technique
suggest that the scheme is well suited to wireless sensor
networks, and expect an implementation to provide a strong
alternative to the industry standard TinySec in certain cases.
This paper presents an implementation of the PADS
algorithm, as well as empirical data gathered in a number of
test environments. The following section provides an
overview of the proposed scheme and a summary of the
design methodology implemented.

2.1 OUR APPROACH
We provide an analysis of the scheme in order to
demonstrate the fitness of this algorithm. At the core of the
PADS algorithm is a one time pad (OTP) scheme organized
between individual sensors and their respective base
stations; the OTP provides both confidentiality and privacy
required in many hostile environments.

A one time pad security scheme is a method of
encrypting some plain text by combining it with a key, also
known as a pad. The pad is generated randomly beforehand,
and transforms each element of the plaintext independently.
Because the plaintext is not transformed as a unit, as with a
block cipher, any subset of the cipher text can yield no
information about the plaintext. To an eavesdropper, a three
letter cipher text may correspond to any conceivable three
letter plaintext. In other words, once the plaintext has been
encrypted with a truly random pad, no information besides
its length can be determined. For this reason, a well one time
executed application is considered perfectly secure.

A critical caveat remains, however, and is directly
related to the true randomness of the pad key. Ideally, each
pad key should not be used more than once. Repetitions or
patterns present within the pad is a critical security flaw, and
renders the scheme nearly useless. The proposed approach
circumvents this issue by emulating random pad key
generation as a function of MAC, data, and time.

The computations involved in encrypting and decrypting
with a one time pad are considered relatively simple and can
be achieved using bit level operations natively provided by
modern processors. While industry standard protocols such
as Diffie-Hellman and ElGamal [15] cryptography rely on
exponentiation and the factoring large numbers, the
application of a pad can be carried out though a byte by byte
addition, or even bit by bit exclusive or(XOR) operation. It
is this efficient, yet powerful, transformation that makes a
onetime pad solution desirable for WSNs.

However, due to the secret key nature of a one time pad
based system, and the fact that the pad must be at least the
length of plaintext, the gains in computation are apparently
lost in memory requirements. Both the remote sensor and
base station must share the key, yet also remain functional
as the network is scaled up or downwards. It would be
infeasible to preload a wireless sensor with a pad long
enough to encrypt all transmissions over a multiyear
deployment. Furthermore, the requirements of the base
station would grow at least linearly with the network size.

The PADS algorithm is proposed to solve this dilemma
by requiring only an initialization vector (IV) at compile
time, and diverting the key generation phase until just before
transmission time. The OTP is then composed by feeding a
time variant key and message dependent values into a
pseudorandom number generator, and applying the resulting

values. By optimally selecting the time variant key period
based on message transmission frequency, an application
can expect a high degree of randomness, and therefore
security.

Despite the apparent advances in message encryption, the
PADS protocol is unproven in wireless sensors. WSN
performance depends on a number of factors beyond
memory requirements, and small changes in protocols may
chaotically affect network efficiency as information is
routed from node to node. This paper aims to analyze
performance, benefits, and tradeoffs of the PADS algorithm.
The results will be compared with two other cases: when no
security is present, and when another security protocol is
enabled, namely TinySec. The first step involved
implementing a portable PADS component in the spirit of
the TinyOS operating system. This yielded a component that
seamlessly interfaces between the application and routing
layers. This design methodology encapsulates all the
features of PADS in one component; no external knowledge
of routing or the application is required for the PADS
algorithm to function.

By providing a well designed implementation,
subsequent analysis was able to focus on near real life
applications and deployment. The focus of our simulation
and empirical results is: memory footprint, packet overhead,
network latency, power consumption and throughput.

III. DESCRIPTION OF THE FINAL DESIGN
This paper presents an implementation of the PADS
algorithm developed by Albath, et al to be used in wireless
sensor networks. The code was optimized to take advantage
of the modularity of TinyOS architecture; it lives between
the application and the routing layer, and performs
encryption and decryption of data independent of the
application or the routing protocols. In order to test the
functionality of the PADS component, several test units
were developed. This custom software modeled common
network topologies and allowed for empirical data
collection. With multimeter and stopwatch in hand, it was
possible to compare the TinySec security suite to the PADS
component with respect to power consumption, network
latency and throughput.

3.1 SOFTWARE ARCHITECTURE

The TinyOS operating system is an open source event-
driven application stack built for low power sensor
networks. The core utilities were developed at the
University of California-Berkeley and first released in the
year 2000. Active development continues on a version 2
release, all of which is covered by the BSD license.
Components are written in nesC—a variant of C for
embedded systems |and designed to be highly portable.
Functionality is organized through a system of public
interfaces and required structures among modules,
encouraging rapid mixing-and-matching for custom
deployments.

By imitating the interfaces required by radio-aware
software, PADS was built as a transparent component sitting
above the routing protocol. Data gathering applications are
unaffected, as they continue to generate outgoing messages
to a global interface. In unsecured networks, a routing
system would pick up the message buffer and immediately
execute the transmission. However with the PADS
component activated –through the addition of four lines in a
configuration file – the message buffer is first encrypted.
This encrypted buffer is next passed to the routing scheme

101

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 13:14 from IEEE Xplore. Restrictions apply.

as if no detour had taken place. Such a design allows for the
rapid deployment of a PADS-based security protocol, as
current projects require little-to-no modification.

The software layers of the three protocols under the
microscope are graphically depicted in Figure 3. For the
developer, the PADS component implements two major
interfaces: Send and Receive. Encryption and decryption
takes place within these events, as the one time pad cannot
be calculated without an entire message payload. Per the
published algorithm, the message authentication code is
combined with a section of the time variant key to yield a
stream of pseudorandom bits. This pad is conveniently the
same length of the message payload itself, so both buffers
are combined using the exclusive-or bit operation.
Assuming the base station and remote mote are time
synchronized, each party has enough information to
recompose the pad.

This module also provides the Intercept interface,
however it does nothing more than pass the message buffer
to the application level. As each remote sensor has a unique
time variant key coordinated with only the base station, it
would be useless to attempt to decrypt messages in transit.
Some components, however, may still be able to usefully act
upon the message buffer. A secure hierarchical aggregation
module may be implemented at near application level, and
could depend on the Intercept event. For this reason, the
PADS component provides the Intercept interface for
flexibility and developers' convenience.

Figure 2: A network of 18 nodes with costs and bandwidth

The lower level interfaces SendMsg and ReceiveMsg

are not provided. Both are typically used by a routing layer
to direct message packets along specific paths or individual
nodes. While this is an attractive functionality to provide,
the PADS algorithm cannot be efficiently implemented as a
hop-by-hop scheme. Doing so would require a large chunk
of memory that could not scale well with network size. The
PADS component expects to communicate with a single
other node, the base station. For local inter-node
communication, a separate parameterized interface of
SendMsg should be included by the application developer.

IV. RESULTS AND DISCUSSION

After coding the PADS algorithm into a discrete TinyOS
component, a number of experiments were performed to

measure performance. Data was gathered concerning power
consumption, network throughput, and latency. These three
metrics are probably the most important aspects in
describing a security protocol, and represent many of the
tradeoffs involved. To quantify PADS performance, the
same experiments on two additional protocols: a group with
no security and a group with TinySec were conducted. In
addition to this empirical data, we present theoretical and
methodological differences among approaches.

 4.1 MEMORY REQUIREMENTS
 In terms of memory requirements, we expect the control
group to perform most efficiently. Since the PADS
component uses libraries provided by TinySec, it is
reasonable to assume that the compiler will include much of
the TinySec code in the PADS binary as well. This suggests
that a PADS-enabled binary should require the greatest
amount of resources. In order to test the memory
requirements of the various protocols, a simple network
application was designed and compiled. An Ad hoc On
Demand Distance Vector (AODV) component was included
to simulate a routing protocol and control interactions with
the hardware. The results parsed from the output of the nesC
compiler can be found in Table 2. Overall, the results
support our hypothesis. As expected, the PADS component
indeed had greater memory requirements than both the
Control and TinySec groups.

Table 2: Memory utilization of three security
 protocols on Motes
Scheme RAM (Bytes) ROM (bytes)
MemTest no security 743 13770
MemTest with TinySec

(authentication)
1002 22886

MemTest with PADS 1606 30370

 4.2 PACKET STRUCTURE

The packet size affects the computational/processing and the
radio operation. Since they account for the majority of the
power consumption, there is a direct correlation between the
packet size and the power consumption.

Figure 3 shows the packet structure of the groups of
interest. Compared to the control group, the PADS scheme
has an additional 4 bytes overhead, equal to the size of the
MAC key used for security operations. Compared to
TinySec, we note that there are virtually no differences
between the paclet structures. There is, however, a semantic
difference as to the location of MAC; while in TinySec the
MAC is at the end of the message, in PADS the MAC is
coupled to the data message of the packet itself. This
difference stems directly from the inherently different
approaches to security of the two protocols, end to end and
hop by hop. For instance, since PADS is end to end, the
MAC should be included in the data field of the packet. This
method allows encapsulation of the data, which is later
deciphered at the end receiver.

102

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 13:14 from IEEE Xplore. Restrictions apply.

Figure 3: Packet structure of the three security schemes

 4.3 LATENCY

To measure the latency of a reasonably sized WSN, it was
necessary to design a routing level component for time
synchronization. An accurate latency value—which is on the
order of a few dozen milliseconds— becomes hard to
achieve using multiple timers in a sensor network. Attempts
to synchronize clocks across a WSN fall victim to the same
latency as to be documented, while two way routing
protocols are similarly difficult to implement. The network
architecture designed in this paper simulates a multihop
topology with a single timer—using just two nodes. A
message is transmitted by a master node, which at the same
moment begins a timer. The lower level routing protocol
bounces this message back and forth between the master and
slave node, imitating the process of passing transmissions
along a path. After some even number of repetitions, the
routing layer of the master node passes the message back up
to the application layer, which again records a timestamp.
By comparing the two timestamps with respect to the
number of messages sent, one is able to determine the
average network latency. Due to the flexibility of this
design, it is easy to test various network sizes, for nothing
but the number of bounces must be modified.

 4.4 POWER
Applications were developed to realistically model network
communications in a manner that also allowed for
reasonable data collection. Power consumption was
calculated both by the PowerTOSSIM [16] embedded
systems simulator and by voltage monitoring of a distributed
network. PowerTOSSIM is a utility provided by Harvard
University to the TinyOS community that aims to accurately
simulate discrete events across an arbitrary network
topology. Extensive hardware data collection had taken
place prior to PowerTOSSIM development, and yielded a
detailed power model for the Mica2 sensor. The simulator
takes advantage of the modular design of TOSSIM [17], the
TinyOS simulator, to track events propagated within a
simulation. By breaking down network events into atomic
units, the simulator is able to determine the power costs of
each computational cycle or hardware interrupt. Such a
simulator made it possible to run thousands of tests for
complicated network topologies of up to 75 nodes.
Simulated networks of 10 or 20 nodes can be tested in
greater than real time on a reasonably modern personal
computer. However, as network complexity grows beyond
30 or so motes, the time requirements per simulation
increase rapidly. While we could simulate 2 minutes in a
network of 10 nodes in around 30 seconds, a network of 30

nodes could easily take 10 minutes. Time and computing
constraints limited data precision of power consumption
trials at networks greater than 25 sensors.

Figure 4. Latency Results (a) Latency overall and (b)

Latency per hop
 The final results for the central processing unit's

(CPU) power consumption and total power consumption are
depicted in Figure 5a, and Figure 5b, respectively. The
graphs show minuscule difference of the three protocols.
There is little we can say with certainty about this data. The
authors of TinySec demonstrate a 10% increase in power
consumption when their encryption algorithm is enabled. As
the PADS component is computationally less complex than
the ciphers used by TinySec, we would expect an increase in
power consumption by less than 10%. However, to show
with sufficient precision (a percent or two) the gradation
among the groups, simulations would need to have been run
continuously for 10-15 weeks. Standard error calculations
suggest each data point is reasonably precise, yet not great
enough for true differentiation among groups. A future
endeavor with a more relaxed time constraints, or perhaps
cluster computing facilities, could produce more
enlightening results.

We believe that the accuracy of our results can be
improved significantly by increasing the virtual time of the
experiment, the number of nodes, and the number of rounds
of each of the experiments.

103

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 13:14 from IEEE Xplore. Restrictions apply.

Figure 5a. CPU Energy

Figure 5b. Total Energy

V. CONCLUSIONS
In this paper we have presented simulation and empirical
results of the Practical Algorithm for Data Security, a fully
implemented TinyOS security scheme employing symmetric
key encryption. Unlike other security protocols, PADS is
implemented near the application layer providing end to end
security. This feature allows PADS to perform better than
standard approaches, particularly as the network size
increases. The data we have gathered indicates that PADS is
indeed suitable algorithm for data security in WSN.
Specifically, PADS performs comparable to or better than
TinySec with respect to latency and throughput, while
maintaining power consumption rate similar to that of the
industry standard.

REFERENCES
[1] I. Technology, “MICA2: Wireless Measurement System,"
Mica2 Datasheet. Available in: http://www. xbow.
com/products/Product pdf _les/Wireless pdf/MICA2 Datasheet.
pdf.
[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey," Computer Networks, vol.
38, no. 4, pp. 393-422, 2002.
[3] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J.
Anderson, “Wireless sensor networks for habitat monitoring,"
Proceedings of the 1st ACM international workshop on Wireless
sensor networks and applications, pp. 88-97, 2002.
[4] J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and
T. Tuan, Picoradics for wireless sensor networks: the next
challenge in ultra-low-power design," Solid-State Circuits
Conference, vol. 2, 2002.
[5] C. Perkins and P. Bhagwat, “Highly dynamic Destination-
Sequenced Distance-Vector routing (DSDV) for mobile

computers," Proceedings of the conference on Communications
architectures, protocols and applications, pp. 234-244, 1994.
[6] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector
routing, in Mobile Computing Systems and Applications
Proceedings.(WM-CSA'99), pp. 90-100, 1999.
[7] R. Shah and J. Rabaey, “Energy aware routing for low energy
ad hoc sensor networks," Wireless Communications and
Networking Conference, WCNC2002, IEEE, vol. 1.
[8] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of
data aggregation in wireless sensor networks," Distributed
Computing Systems Workshops, 2002. Proceedings. 22nd
International Conference on, pp. 575-578, 2002.
[9] W. Stallings, Cryptography And Network Security: Principles
and Practice, Prentice Hall, 2006.
[10] A. Menezes, Elliptic Curve Public Key Cryptosystems.
Kluwer Academic Publishers, 1993.
[11] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer
security architecture for wireless sensor networks," Proceedings of
the 2nd international conference on Embedded networked sensor
systems, pp. 162—175, 2004.
[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, et al.,
“TinyOS: An Operating System for Sensor Networks," Ambient
Intelligence, 2005.
[13] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler,
“SPINS: Security Protocols for Sensor Networks," Wireless
Networks, vol. 8, no. 5, pp. 521—534, 2002.
[14] J. Albath and S. Madria, “Practical algorithm for data security
(PADS) in wireless sensor networks," Proceedings of the 6th ACM
international workshop on Data engineering for wireless and
mobile access, pp. 9-16, 2007.
[15] T. ELGAMAL, “A public key cryptosystem and a signature
scheme based on discrete logarithms," IEEE transactions on
information theory, vol. 31, no. 4, pp. 469—472, 1985.
[16] V. Shnayder, M. Hempstead, B. Chen, G. Allen, and M.
Welsh, “Simulating the power consumption of large-scale sensor
network applications," Proceedings of the 2nd international
conference on Embedded networked sensor systems, pp. 188—
200, 2004.
[17] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate
and scalable simulation of entire tinyos applications," in SenSys
'03: Proceedings of the 1st international conference on Embedded
networked sensor systems, (New York, NY, USA), pp. 126-137,
ACM Press, 2003.

104

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 13:14 from IEEE Xplore. Restrictions apply.

	Implementation and Analysis of Practical Algorithm for Data Security
	Recommended Citation

	untitled

