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Implementation and Analysis of Practical Algorithm for Data Security 
 

Willi Ballenthin, Foti Kacani, Julia Albath and Sanjay Madria 
Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65401 

madrias@mst.edu 
 

In this paper, we present a complete implementation of the Practical Algorithm for Data Security (PADS) proposed by 
Albath et al., an end-to-end security scheme employing symmetric key encryption. The implementation takes full advantage 
of the modular design of the TinyOS environment. The simplicity of the algorithm allows for efficient implementation in 
hardware, a requirement for resource constrained devices. The protocol adds only four bytes of data per packet, on par with 
industry standards. Simulation and empirical results of the scheme are also provided. The analysis shows that the Practical 
Algorithm for Data Security is superior to standard security schemes. 

 

            I. INTRODUCTION 

A wireless sensor network (WSN) is a system of 
independent devices able to collaborate via radio on a set of 
common tasks that often includes sensing local 
environmental variables. Sensors, or motes, are provided 
with a limited computing capacity in addition to a radio 
communication stack. A network of such nodes is 
commonly used to measure variables such as temperature, 
barometric pressure, sunlight intensity, acoustic noise, 
seismic activity, and local acceleration. The Mica2 sensors 
[1] developed by Crossbow Technology is an extendable 
sensing device often employed in WSNs. It features an 
8MHz processor along with 128 kilobytes of program 
memory and 4 kilobytes of random access memory. Its radio 
stack is well suited for local two way communication and 
supports a bandwidth of nearly 40 kilobits per second (see 
table 1). The authors in [2] enumerate a number of WSN 
applications such as terrain surveillance, troop monitoring, 
forest fire or flood detection, sructural monitoring (i.e. 
bridges), habitat monitoring [3], tele-monitoring of 
physiological data of patients, tracking of doctors, nurses, 
and patients in a care center among others.   

Power efficiency is a prime design consideration both at 
the hardware level (processor, radio, memory usage) and 
software level (instruction count, memory footprint, radio 
utilization). The network lifetime, being the life expectancy 
of the network as a whole, is used as a network power 
indicator. Network lifetime maximization involves several 
aspects such as efficient routing and data aggregation. 
Hence, researchers are looking into scavenging or 
harvesting available energy from the environment [4]. 

Routing [5,6] is one of the main components of WSN, as 
in any type of network. Routing algorithms need to be 
computationally efficient and power aware in order to meet 
the network constraints. Often, however, selecting the 
shortest path does not result in reduced network lifetime. 
Hence, routing algorithms which account for sub-optimal 
paths need to be considered [7]. In-network aggregation, the 
fusion of data from different sources promises to increase 
network lifetime [8]. As shown in Figure 1, data from the 
lower levels is combined at the higher levels. This approach 
results in reduced overhead of packet exchanges throughout 
the network while ultimately communicating the same 
effective information.     

A well designed sensor network is built with long term 
goals in mind. Often times a limited opportunity exists in 
which to deploy any sort of network and the initial setup 
must be maintained throughout measurements. For example, 
a network deployed on the seafloor by a research vessel is 
not easily modified, yet may be expected to collect data for 

each season. Resiliency and durability in hostile 
environments is often accomplished by over-saturating the 
test bed with sensors. A WSN must be a self organizing 
structure, so as the topology of the network changes, 
connections remain wherever possible. As motes begin to 
fail, others are expected to step up and fill in. Similarly, 
some devices may be programmed to wake up late in the life 
of a network in order to extend its life. An ideal 
implementation might take into account of battery power 
and expected lifetime of each node to maximize 
dependability. 

               Table 1: Mica Specs 

 

 
                     Figure 1: Simple network 
 
Security is another important aspect and its development 

has enhanced widespread adoption of WSNs. The challenge 
is two-fold; on one hand, security in the sense of data 
integrity, confidentiality, and availability, needs to be 
provided; on the other hand, the power resources of the 
device and network as a whole are extremely limited. Data 
integrity is a security feature in which a message sent at one 
end of the communication channel is guaranteed to be the 
same message received – imagine that a malicious attacker 
may attempt to modify transmitted data, but each tampered 
packet is rejected at reception. If a message cannot be 
understood by an attacker then the message is said to be 
confidential. Here, the content of such messages are known 
only by the sender and the recipient. Finally, availability 
requires that a message can be transmitted anytime, 
anywhere, independent of a system. All the three 
aforementioned characteristics of data communication 

Processor Speed  7.37 MHz 

Program Flash Memory  128 Kilobytes 

EEPROM Storage  4 Kilobytes 

Radio Frequency  869 or 916 MHz 

Maximum Data Rate  38.4 Kbaud 

Maximum Transmission Range  500 feet 

Processor Current Draw  Active 8 ma 

  Sleep < 15uA 

Radio Current Draw  Transmit 27 mA 

  Receive 10 mA 

  Sleep < 15uA 
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introduce a significant overhead into wireless sensor 
networks; the greater the overhead, the shorter the network 
lifetime. 

 
1.1. BACKGROUND 

Security paradigms fall under two major categories: public 
key based encryption and symmetric key encryption [9]. 
Symmetric key encryption is based on two principles: a 
strong cryptographic algorithm and a secret key shared for 
encryption and decryption. A strong cryptographic system 
implies that adversaries with knowledge of the cipher text 
and/or the plain text must not be able to deduce the 
algorithm being used or its’ key. Symmetric key 
cryptosystems can be subdivided into two broad categories: 
block ciphers and stream ciphers [10]. A block cipher is a 
cipher in which the block of plaintext is treated as a whole 
to produce a block of cipher text of equal length. A stream 
cipher is similar to a block cipher; however the 
cryptographic algorithm is applied one bit or one byte at a 
time. The Vernam cipher is a classical encryption scheme, in 
which the key is bitwise XORed with the plaintext. 

Security schemes can employ two different network 
approaches end to end encryption and hop by hop 
encryption as shown in Figure 2a & 2b). End to end security 
is shown in Figure 2a and performs just two securing 
functions: encryption of the plaintext at the sender and its 
decryption at the final destination. This protects sensitive 
data from sniffing by any intermediary node, trusted or no 
trusted. In order for this approach to be feasible, the header 
information such as the routing protocol type and the 
destination address should not be encrypted. This way, the 
packets can be directly forwarded to the next nodes. 

Unlike an end to end scheme, a hop by hop protocol (as 
shown in Figure 2b) performs encryption and decryption for 
each hop along the route. From a security standpoint, hop by 
hop is more secure when the authenticity of nodes can be 
assumed. However, when physical security of nodes cannot 
be assured, end to end protocols might be a more 
appropriate. 

TinySec [11] is a fully-implemented, link layer security 
architecture for WSN which is natively supported in TinyOS 
platform [12]. It is built upon existing primitives such as the 
Message Authentication Code (MAC), a cryptographically 
secure checksum appended at the end of a message. It also 
utilizes initialization vectors (IV) with periodic updates for 
semantic security—in other words, encrypting the same 
plain text two times yields two different cipher texts. 
TinySec provides both researchers and application 
developers with an extensible research platform whose 
impact on bandwidth, latency, and power is limited. The 
encryption protocol used in TinySec is a cipher block 
chaining (CBC) scheme. CBC was designed to be used with 
IVs to provide semantic security [9]; to produce the first 
block of cipher text, the IV is XORed with the first block of 
plaintext, while for the decryption process, and the IV is 
XORed with the first block of the output of the decryption. 
The block cipher used was RC5 and Skipjack. Enabling 
TinySec in TinyOS platforms can be done by setting a 
parameter during compile time. TinySec provides two 
options: an authentication-only mode, which is the default 
mode, and an encryption with authentication mode. 

The authors in [13] present a Secure Network 
Encryption Protocol (SNEP). SNEP gives data integrity 
through data authentication, protection against replay 
messages, and data freshness. SNEP has communication 
overheads of 8 bytes per message. In addition, each end of 
the communication pair keeps track of a counter, used for 
identifying double packets. The implementation of the 
protocol is based on one single block cipher. The code space 
is reduced by utilizing the same functions for encryption and 
decryption; a one time pad, based on the counter state, is 
XORed with the plaintext or the cipher text. A message 
authentication code, computed per packet, is used to check 
for authentication and integrity of the message. 
 

 
2.                          Figure 2a & 2b: Security approaches 
3.  
4.                    1.2. PROBLEM DEFINITION 
5. In communication systems, security remains one of the 

prime challenges, particularly as personal or sensitive 
information becomes more widely accessible. Traditional 
security approaches cannot be directly applied to WSN as 
the inherent constraints of sensors devices prohibit 
computationally intensive algorithms. New approaches, 
therefore, need to be implemented.  

6.  Furthermore, WSNs experience vastly different 
challenges than large-scale wired networks. Eavesdropping 
is as easy as turning on a radio receiver, while message 
packets are often implemented as extremely small and 
simple structures. The lives of soldiers on a battlefield 
depend on a wireless security that can combine real time 
accessibility with sufficient privacy. Tradeoffs between 
power consumption and complexity yield a great range of 
possible protocols, at times leaving appropriate choices 
obscured. Without a doubt security schemes optimized for 
wireless sensor networks have not been fully developed. 
Current techniques face weaknesses in certain situations, as 
aggregation or routing aspects prevent top efficiency. It is 
our belief that further exploration in this field can produce 
solutions better suited to modern sensor networks.  

 
       II. PRACTICAL ALGORITHM FOR DATA 
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       SECURITY 
In [14], Albath et al. propose the Practical Algorithm for 
Data Security (PADS), an end-to-end security scheme based 
on one time padding. The authors of the PADS technique 
suggest that the scheme is well suited to wireless sensor 
networks, and expect an implementation to provide a strong 
alternative to the industry standard TinySec in certain cases. 
This paper presents an implementation of the PADS 
algorithm, as well as empirical data gathered in a number of 
test environments. The following section provides an 
overview of the proposed scheme and a summary of the 
design methodology implemented. 
 

2.1 OUR APPROACH 
We provide an analysis of the scheme in order to 
demonstrate the fitness of this algorithm. At the core of the 
PADS algorithm is a one time pad (OTP) scheme organized 
between individual sensors and their respective base 
stations; the OTP provides both confidentiality and privacy 
required in many hostile environments.  

A one time pad security scheme is a method of 
encrypting some plain text by combining it with a key, also 
known as a pad. The pad is generated randomly beforehand, 
and transforms each element of the plaintext independently. 
Because the plaintext is not transformed as a unit, as with a 
block cipher, any subset of the cipher text can yield no 
information about the plaintext. To an eavesdropper, a three 
letter cipher text may correspond to any conceivable three 
letter plaintext. In other words, once the plaintext has been 
encrypted with a truly random pad, no information besides 
its length can be determined. For this reason, a well one time 
executed application is considered perfectly secure.  

A critical caveat remains, however, and is directly 
related to the true randomness of the pad key. Ideally, each 
pad key should not be used more than once. Repetitions or 
patterns present within the pad is a critical security flaw, and 
renders the scheme nearly useless. The proposed approach 
circumvents this issue by emulating random pad key 
generation as a function of MAC, data, and time.  

The computations involved in encrypting and decrypting 
with a one time pad are considered relatively simple and can 
be achieved using bit level operations natively provided by 
modern processors. While industry standard protocols such 
as Diffie-Hellman and ElGamal [15] cryptography rely on 
exponentiation and the factoring large numbers, the 
application of a pad can be carried out though a byte by byte 
addition, or even bit by bit exclusive or(XOR) operation. It 
is this efficient, yet powerful, transformation that makes a 
onetime pad solution desirable for WSNs.  

However, due to the secret key nature of a one time pad 
based system, and the fact that the pad must be at least the 
length of plaintext, the gains in computation are apparently 
lost in memory requirements. Both the remote sensor and 
base station must share the key, yet also remain functional 
as the network is scaled up or downwards. It would be 
infeasible to preload a wireless sensor with a pad long 
enough to encrypt all transmissions over a multiyear 
deployment. Furthermore, the requirements of the base 
station would grow at least linearly with the network size. 

The PADS algorithm is proposed to solve this dilemma 
by requiring only an initialization vector (IV) at compile 
time, and diverting the key generation phase until just before 
transmission time. The OTP is then composed by feeding a 
time variant key and message dependent values into a 
pseudorandom number generator, and applying the resulting 

values. By optimally selecting the time variant key period 
based on message transmission frequency, an application 
can expect a high degree of randomness, and therefore 
security. 

Despite the apparent advances in message encryption, the 
PADS protocol is unproven in wireless sensors. WSN 
performance depends on a number of factors beyond 
memory requirements, and small changes in protocols may 
chaotically affect network efficiency as information is 
routed from node to node. This paper aims to analyze 
performance, benefits, and tradeoffs of the PADS algorithm. 
The results will be compared with two other cases: when no 
security is present, and when another security protocol is 
enabled, namely TinySec. The first step involved 
implementing a portable PADS component in the spirit of 
the TinyOS operating system. This yielded a component that 
seamlessly interfaces between the application and routing 
layers. This design methodology encapsulates all the 
features of PADS in one component; no external knowledge 
of routing or the application is required for the PADS 
algorithm to function. 

By providing a well designed implementation, 
subsequent analysis was able to focus on near real life 
applications and deployment. The focus of our simulation 
and empirical results is: memory footprint, packet overhead, 
network latency, power consumption and throughput. 
 

III. DESCRIPTION OF THE FINAL DESIGN 
This paper presents an implementation of the PADS 
algorithm developed by Albath, et al to be used in wireless 
sensor networks. The code was optimized to take advantage 
of the modularity of TinyOS architecture; it lives between 
the application and the routing layer, and performs 
encryption and decryption of data independent of the 
application or the routing protocols. In order to test the 
functionality of the PADS component, several test units 
were developed. This custom software modeled common 
network topologies and allowed for empirical data 
collection. With multimeter and stopwatch in hand, it was 
possible to compare the TinySec security suite to the PADS 
component with respect to power consumption, network 
latency and throughput. 

 
3.1 SOFTWARE ARCHITECTURE 

The TinyOS operating system is an open source event-
driven application stack built for low power sensor 
networks. The core utilities were developed at the 
University of California-Berkeley and first released in the 
year 2000. Active development continues on a version 2 
release, all of which is covered by the BSD license. 
Components are written in nesC—a variant of C for 
embedded systems |and designed to be highly portable. 
Functionality is organized through a system of public 
interfaces and required structures among modules, 
encouraging rapid mixing-and-matching for custom 
deployments.  

By imitating the interfaces required by radio-aware 
software, PADS was built as a transparent component sitting 
above the routing protocol. Data gathering applications are 
unaffected, as they continue to generate outgoing messages 
to a global interface. In unsecured networks, a routing 
system would pick up the message buffer and immediately 
execute the transmission. However with the PADS 
component activated –through the addition of four lines in a 
configuration file – the message buffer is first encrypted. 
This encrypted buffer is next passed to the routing scheme 

101

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 13:14 from IEEE Xplore.  Restrictions apply.



 
 

as if no detour had taken place. Such a design allows for the 
rapid deployment of a PADS-based security protocol, as 
current projects require little-to-no modification.  

The software layers of the three protocols under the 
microscope are graphically depicted in Figure 3. For the 
developer, the PADS component implements two major 
interfaces: Send and Receive. Encryption and decryption 
takes place within these events, as the one time pad cannot 
be calculated without an entire message payload. Per the 
published algorithm, the message authentication code is 
combined with a section of the time variant key to yield a 
stream of pseudorandom bits. This pad is conveniently the 
same length of the message payload itself, so both buffers 
are combined using the exclusive-or bit operation. 
Assuming the base station and remote mote are time 
synchronized, each party has enough information to 
recompose the pad. 

This module also provides the Intercept interface, 
however it does nothing more than pass the message buffer 
to the application level. As each remote sensor has a unique 
time variant key coordinated with only the base station, it 
would be useless to attempt to decrypt messages in transit. 
Some components, however, may still be able to usefully act 
upon the message buffer. A secure hierarchical aggregation 
module may be implemented at near application level, and 
could depend on the Intercept event. For this reason, the 
PADS component provides the Intercept interface for 
flexibility and developers' convenience. 

 

 
Figure 2: A network of 18 nodes with costs and bandwidth 

 
The lower level interfaces SendMsg and ReceiveMsg 

are not provided. Both are typically used by a routing layer 
to direct message packets along specific paths or individual 
nodes. While this is an attractive functionality to provide, 
the PADS algorithm cannot be efficiently implemented as a 
hop-by-hop scheme. Doing so would require a large chunk 
of memory that could not scale well with network size. The 
PADS component expects to communicate with a single 
other node, the base station. For local inter-node 
communication, a separate parameterized interface of 
SendMsg should be included by the application developer. 

 
IV. RESULTS AND DISCUSSION 

After coding the PADS algorithm into a discrete TinyOS 
component, a number of experiments were performed to 

measure performance. Data was gathered concerning power 
consumption, network throughput, and latency. These three 
metrics are probably the most important aspects in 
describing a security protocol, and represent many of the 
tradeoffs involved. To quantify PADS performance, the 
same experiments on two additional protocols: a group with 
no security and a group with TinySec were conducted. In 
addition to this empirical data, we present theoretical and 
methodological differences among approaches. 
 
                 4.1 MEMORY REQUIREMENTS 
 In terms of memory requirements, we expect the control 
group to perform most efficiently. Since the PADS 
component uses libraries provided by TinySec, it is 
reasonable to assume that the compiler will include much of 
the TinySec code in the PADS binary as well. This suggests 
that a PADS-enabled binary should require the greatest 
amount of resources. In order to test the memory 
requirements of the various protocols, a simple network 
application was designed and compiled. An Ad hoc On 
Demand Distance Vector (AODV) component was included 
to simulate a routing protocol and control interactions with 
the hardware. The results parsed from the output of the nesC 
compiler can be found in Table 2. Overall, the results 
support our hypothesis. As expected, the PADS component 
indeed had greater memory requirements than both the 
Control and TinySec groups. 
 

Table 2: Memory utilization of three security   
              protocols on Motes 
Scheme RAM (Bytes) ROM (bytes)
MemTest no security 743 13770
MemTest with TinySec 

(authentication) 
1002 22886

MemTest with PADS 1606 30370
 
                   4.2 PACKET STRUCTURE 

The packet size affects the computational/processing and the 
radio operation. Since they account for the majority of the 
power consumption, there is a direct correlation between the 
packet size and the power consumption.  

Figure 3 shows the packet structure of the groups of 
interest. Compared to the control group, the PADS scheme 
has an additional 4 bytes overhead, equal to the size of the 
MAC key used for security operations. Compared to 
TinySec, we note that there are virtually no differences 
between the paclet structures. There is, however, a semantic 
difference as to the location of MAC; while in TinySec the 
MAC is at the end of the message, in PADS the MAC is 
coupled to the data message of the packet itself. This 
difference stems directly from the inherently different 
approaches to security of the two protocols, end to end and 
hop by hop. For instance, since PADS is end to end, the 
MAC should be included in the data field of the packet. This 
method allows encapsulation of the data, which is later 
deciphered at the end receiver.   
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Figure 3: Packet structure of the three security schemes 

 
                           4.3 LATENCY 

To measure the latency of a reasonably sized WSN, it was 
necessary to design a routing level component for time 
synchronization. An accurate latency value—which is on the 
order of a few dozen milliseconds— becomes hard to 
achieve using multiple timers in a sensor network. Attempts 
to synchronize clocks across a WSN fall victim to the same 
latency as to be documented, while two way routing 
protocols are similarly difficult to implement. The network 
architecture designed in this paper simulates a multihop 
topology with a single timer—using just two nodes. A 
message is transmitted by a master node, which at the same 
moment begins a timer. The lower level routing protocol 
bounces this message back and forth between the master and 
slave node, imitating the process of passing transmissions 
along a path. After some even number of repetitions, the 
routing layer of the master node passes the message back up 
to the application layer, which again records a timestamp. 
By comparing the two timestamps with respect to the 
number of messages sent, one is able to determine the 
average network latency. Due to the flexibility of this 
design, it is easy to test various network sizes, for nothing 
but the number of bounces must be modified. 
 
                                4.4 POWER 
Applications were developed to realistically model network 
communications in a manner that also allowed for 
reasonable data collection. Power consumption was 
calculated both by the PowerTOSSIM [16] embedded 
systems simulator and by voltage monitoring of a distributed 
network. PowerTOSSIM is a utility provided by Harvard 
University to the TinyOS community that aims to accurately 
simulate discrete events across an arbitrary network 
topology. Extensive hardware data collection had taken 
place prior to PowerTOSSIM development, and yielded a 
detailed power model for the Mica2 sensor. The simulator 
takes advantage of the modular design of TOSSIM [17], the 
TinyOS simulator, to track events propagated within a 
simulation. By breaking down network events into atomic 
units, the simulator is able to determine the power costs of 
each computational cycle or hardware interrupt. Such a 
simulator made it possible to run thousands of tests for 
complicated network topologies of up to 75 nodes. 
Simulated networks of 10 or 20 nodes can be tested in 
greater than real time on a reasonably modern personal 
computer. However, as network complexity grows beyond 
30 or so motes, the time requirements per simulation 
increase rapidly. While we could simulate 2 minutes in a 
network of 10 nodes in around 30 seconds, a network of 30 

nodes could easily take 10 minutes. Time and computing 
constraints limited data precision of power consumption 
trials at networks greater than 25 sensors. 
 

 
                                                     

                   
Figure 4.  Latency Results (a) Latency overall and (b) 

Latency per hop 
 The final results for the central processing unit's 

(CPU) power consumption and total power consumption are 
depicted in Figure 5a, and Figure 5b, respectively. The 
graphs show minuscule difference of the three protocols. 
There is little we can say with certainty about this data. The 
authors of TinySec demonstrate a 10% increase in power 
consumption when their encryption algorithm is enabled. As 
the PADS component is computationally less complex than 
the ciphers used by TinySec, we would expect an increase in 
power consumption by less than 10%. However, to show 
with sufficient precision (a percent or two) the gradation 
among the groups, simulations would need to have been run 
continuously for 10-15 weeks. Standard error calculations 
suggest each data point is reasonably precise, yet not great 
enough for true differentiation among groups. A future 
endeavor with a more relaxed time constraints, or perhaps 
cluster computing facilities, could produce more 
enlightening results.  

We believe that the accuracy of our results can be 
improved significantly by increasing the virtual time of the 
experiment, the number of nodes, and the number of rounds 
of each of the experiments. 
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Figure 5a. CPU Energy 

 
 

Figure 5b. Total Energy 
 

V. CONCLUSIONS 
In this paper we have presented simulation and empirical 
results of the Practical Algorithm for Data Security, a fully 
implemented TinyOS security scheme employing symmetric 
key encryption. Unlike other security protocols, PADS is 
implemented near the application layer providing end to end 
security. This feature allows PADS to perform better than 
standard approaches, particularly as the network size 
increases. The data we have gathered indicates that PADS is 
indeed suitable algorithm for data security in WSN. 
Specifically, PADS performs comparable to or better than 
TinySec with respect to latency and throughput, while 
maintaining power consumption rate similar to that of the 
industry standard. 

REFERENCES 
[1] I. Technology, “MICA2: Wireless Measurement System," 
Mica2 Datasheet. Available in: http://www. xbow. 
com/products/Product pdf _les/Wireless pdf/MICA2 Datasheet. 
pdf. 
[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, 
“Wireless sensor networks: a survey," Computer Networks, vol. 
38, no. 4, pp. 393-422, 2002. 
[3] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. 
Anderson, “Wireless sensor networks for habitat monitoring," 
Proceedings of the 1st ACM international workshop on Wireless 
sensor networks and applications, pp. 88-97, 2002. 
[4] J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and 
T. Tuan, Picoradics for wireless sensor networks: the next 
challenge in ultra-low-power design," Solid-State Circuits 
Conference, vol. 2, 2002. 
[5] C. Perkins and P. Bhagwat, “Highly dynamic Destination-
Sequenced Distance-Vector routing (DSDV) for mobile 

computers," Proceedings of the conference on Communications 
architectures, protocols and applications, pp. 234-244, 1994. 
[6] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector 
routing, in Mobile Computing Systems and Applications 
Proceedings.(WM-CSA'99), pp. 90-100, 1999. 
[7] R. Shah and J. Rabaey, “Energy aware routing for low energy 
ad hoc sensor networks," Wireless Communications and 
Networking Conference, WCNC2002, IEEE, vol. 1.  
[8] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of 
data aggregation in wireless sensor networks," Distributed 
Computing Systems Workshops, 2002. Proceedings. 22nd 
International Conference on, pp. 575-578, 2002. 
[9] W. Stallings, Cryptography And Network Security: Principles 
and Practice, Prentice Hall, 2006. 
[10] A. Menezes, Elliptic Curve Public Key Cryptosystems. 
Kluwer Academic Publishers, 1993. 
[11] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer 
security architecture for wireless sensor networks," Proceedings of 
the 2nd international conference on Embedded networked sensor 
systems, pp. 162—175, 2004. 
[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. 
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, et al., 
“TinyOS: An Operating System for Sensor Networks," Ambient 
Intelligence, 2005.  
[13] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler, 
“SPINS: Security Protocols for Sensor Networks," Wireless 
Networks, vol. 8, no. 5, pp. 521—534, 2002. 
[14] J. Albath and S. Madria, “Practical algorithm for data security 
(PADS) in wireless sensor networks," Proceedings of the 6th ACM 
international workshop on Data engineering for wireless and 
mobile access, pp. 9-16, 2007. 
[15] T. ELGAMAL, “A public key cryptosystem and a signature 
scheme based on discrete logarithms," IEEE transactions on 
information theory, vol. 31, no. 4, pp. 469—472, 1985. 
[16] V. Shnayder, M. Hempstead, B. Chen, G. Allen, and M. 
Welsh, “Simulating the power consumption of large-scale sensor 
network applications," Proceedings of the 2nd international 
conference on Embedded networked sensor systems, pp. 188—
200, 2004. 
[17] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate 
and scalable simulation of entire tinyos applications," in SenSys 
'03: Proceedings of the 1st international conference on Embedded 
networked sensor systems, (New York, NY, USA), pp. 126-137, 
ACM Press, 2003.  
 

104

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 13:14 from IEEE Xplore.  Restrictions apply.


	Implementation and Analysis of Practical Algorithm for Data Security
	Recommended Citation

	untitled

