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Interactive DNA Sequence and Structure Design for
DNA Nanoapplications

Mingjun Zhang*, Member, IEEE, Chaman L. Sabharwal, Weimin Tao, Member, IEEE, Tzyh-Jong Tarn, Fellow, IEEE,
Ning Xi, Member, IEEE, and Guangyong Li, Student Member, IEEE

Abstract—DNA sequence and structure design is very impor-
tant for DNA nanoapplications. A computer-aided design tool is
needed for exploring DNA sequence and structure of interests
before experimental synthesis, which is a time- and labor-con-
suming process. In this paper, an interactive DNA sequence and
structure design software tool called DNA shop is proposed and
implemented. The visualization tool can generate DNA structures
by specifying, selecting, and moving DNA sequences around and
display corresponding structures. Using the tool, DNA sequence
and structure can be visually inspected in three-dimensional space
before experimental studies.

Index Terms—DNA computation, DNA machine, DNA nan-
otechnology, interactive design, visualization.

I. INTRODUCTION

COMPUTERS ARE expected to play important roles in
enabling technologies for both theoretical and practical

applications in nanotechnology. Some interesting work has been
done for nanorobotics assembly simulation in nanomedicine
[2]. In this paper, we will show how computers help to in-
teractively generate DNA sequence and display structure for
DNA nanoapplications.

As the carrier of genetic information for all living species,
DNA has been well known for its unique properties of infor-
mation encoding, structure self-recognition, and self-assembly.
DNA computation and DNA nanotechnology are two emerging
fields aiming to use these properties.

DNA nanotechnology takes advantage of the fact that the
intermolecular interactions of DNA are highly specific and
readily programmed through Watson–Crick complementary
properties. Possible applications include scaffolds for molec-
ular electronic devices and nanometer robots construction.
Seeman [13] proposed DNA as scaffolds to organize structures
of other molecules. Mao et al. [10] showed that self-assembly
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structure of branched DNA motifs can provide basis for dy-
namic assembling switchable molecular machines. Yurke et
al. [16] reported that the construction of a DNA machine in
which the DNA is used not only as a structural material, but
also as fuel. The proposed machine made from three strands
of DNA has a pair of tweezers. The DNA machine may be
closed and opened by addition of auxiliary strands of fuel
DNA; each cycle produces a duplex DNA waste products. The
Watson–Crick complementary association of sticky ends may
be used to direct specific intermolecular associations of the
DNA complexes into more intricate arrangements. Seeman [12]
pointed out that the combination of branched DNA molecules
and sticky ends may create a powerful molecular assembly kit
for structural DNA nanotechnology. Mao et al. [9] constructed
a two-dimensional (2-D) DNA crystal using Holliday junction
analogues that contain two helical domains twisted relative to
each other. Polyhedra, complex topological objects, nanome-
chanical devices, and 2-D arrays with programmable surface
features have already been produced in this way.

In addition, the combination of DNA information-encoding
and recognition properties, and the enzymatic machinery capa-
bility for DNA manipulation facilitate the emergence field of
DNA computation. The feasibility of DNA computation was
first demonstrated by Adleman in 1994 [1]. Benenson [3] dis-
cussed a programmable finite automation comprising DNA and
DNA-manipulating enzymes that solves computational prob-
lems autonomously. The automation’s hardware consists of a
restriction nuclease and ligase, the software and inputs are en-
coded by double-stranded DNA, and programming amounts to
choose appropriate software molecules. Upon mixing solutions
containing these components, the input molecules are processed
via a cascade of restriction, hybridization, and ligation cycles,
producing detectable output molecules that encode the com-
putational results. In the future, there may be a need for fully
organic computer devices implanted in a living body that can
integrate signals from several sources and compute a response to
an organic molecular-delivery device for drugs or signals. DNA
molecule computing may pave the way in this direction [8].

For the above DNA nanoapplications, DNA sequence and
structure design is a critical step. Currently, one must obtain
proper conditions, refine design, and determine experimental
windows for DNA structure through tedious and often expen-
sive processes of trials and errors [14]. No software tool is avail-
able for interactive DNA structure design before experimental
studies. A visualization tool is needed for DNA sequence and
structure design. The purpose of this paper is to propose a soft-
ware tool for DNA sequence and structure design. The idea is to
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let researchers interactively assemble DNA bases and generate
DNA machines as if using symbols A, T, G, and C and visually
inspect the three-dimensional (3-D) structures before experi-
mental studies. This may help researchers get better ideas be-
fore experimental studies, and do better design of experiments.

This paper is organized as follows. Section II summarizes
DNA properties that can be used for automatic structure con-
struction. In Section III, an example of DNA sequence and
structure design is discussed. An interactive DNA sequence
and structure design tool called DNA shop is presented in
Section IV. Conclusions are given in Section V.

II. DNA PROPERTIES

DNA’s unique biological property includes the specificity of
the base pairing that holds two strands of double helix together.
Usually, DNA double helix generated from the complementary
interactions is a linear molecule. Its axis is not branched in the
biological sense. However, branched DNA molecules do occur
as key intermediate state in DNA metabolism, particularly in the
processes of replication, recombination, and repair [12], [13].

The physical properties of DNA double helix are unlike those
of any other natural or synthetic polymers. The molecule’s char-
acteristic base stacking and braided architecture lend it unusual
stiffness: it takes about 50 times more energy to bend a double-
stranded DNA molecule into a circle than to perform the same
operation on single-stranded DNA. Furthermore, the double-
stranded DNA molecule is very stable. These features make
the double-stranded DNA molecule a great candidate for scaf-
folds of other molecules. Moreover, the phosphates in DNA’s
backbone make it one of the most highly charged polymers [4].
DNA’s electrical properties make DNA one of the most inter-
esting biomolecules for molecular electronics [17].

A DNA double helix is about 2 nm in diameter with he-
lical repeat of about ten base pairs, which produces a pitch of
3.4–3.6 nm. A small volume of DNA contains a vast number of
molecules. DNA in weak solution of one liter of water can en-
code 10 –10 terabytes information, which makes DNA mole-
cule a potential material for information storing. DNA sequence
may be used for encoding information that can be read exter-
nally by proteins and nucleic acids. Most current data storing
media has a life around 100 years. DNA molecules will have
much longer, stable, and larger capacity for information storage.

A. DNA Sticky Ends

DNA can be cut at precise locations by restriction enzymes.
Another enzyme—DNA ligase—can then be used to reassemble
the pieces into a desired order. Together, these two enzymes
allow researchers to assemble customized DNA structures. For
example, restriction enzymes typically recognize a symmetrical
sequence of DNA, such as the binding site of EcoRI containing
--GAATTC-- and --CTTAAG--. Using restriction enzymes to
react at this cite and break hydrogen bonds holding the over-
lapping single-stranded complementary strands, which are the
strands between and , the following overhanging chains can
be obtained:

---G AATTC --- (1)

---CTTAA G --- (2)

The segments AATT and TTAA in the above chains are called
sticky ends, because the base pairs glue the two pieces together
at proper conditions. The sticky end is an essential part of ge-
netic engineering. It allows researchers to cut little pieces of
DNA and place them at specific locations, where the sticky ends
match.

DNA sticky ends provide a predictable, diverse, reliable, and
programmable set of intermolecular interactions. Various DNA
structure molecules can be created in this way for possible
nanoapplications. The use of stable-branched DNA molecules
permits one to make stick figures. DNA double-crossover
molecules are rigid DNA motifs for nanostructural construc-
tion, which contain two double helices linked at two different
points. The sticky ends that hold the array together can vary
to include diverse periodic arrangements of molecules in the
crystal. DNA branched junctions have been constructed that
contains three, four, five, and six arms. The combination of
branched DNA and sticky-ended ligation results in the ability to
form stick figures whose edges consist of double helical DNA,
and whose vertices are the branch points of the junctions [12].

B. DNA Self-Assembly

The capability of fabricating individual molecules and atoms
is the key for nanotechnology. Self-assembly, which is a method
for constructing structures by spontaneously self-ordering of
substructures, is an attractive approach for nanostructure fabri-
cation. The technique works by simulating the way biological
systems build molecules, viruses, and cells. DNA self-assembly
presents a bottom-up approach to fabricate nanoscale objects.
DNA self-assembly uses artificially synthesized single-strand
DNA to self-assemble into different DNA crossover molecules
(tiles), which have sticky ends that preferentially match the
sticky ends of certain other DNA tiles, facilitating the further
assembly into tiling lattices—DNA machines.

Various DNA structures have been built using the DNA
self-assembly property, including DNA knots [14], cubes,
truncated octahedron, and Borromean rings. Two-dimensional
crystalline forms of DNA that self-assemble from synthetic
DNA double-crossover molecules have been observed by
atomic force microscopy by Winfree et al. [15]. Intermolecular
interactions between the structure units are programmed by the
design of sticky ends according to Watson–Crick complemen-
tarity. The results demonstrate potential of using DNA to create
self-assembling periodic nanostructures.

DNA self-assembly generally includes annealing single-
strand DNA into tiles and assembling tiles into superstructures.
Direct lattices assembly from single-strand DNA is possible
and has been demonstrated for noncomputational DNA lattices
[11].

III. EXAMPLE OF DNA SEQUENCE AND STRUCTURE DESIGN

The above DNA properties are fundamental principles that
need to be followed for designing DNA sequence and structure.
Two steps are usually involved in the DNA sequence and
structure design. The first step is called sequence selection.
The second step can be regarded as interactive DNA structure
design. Sequence selection is the critical part of DNA structure
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Fig. 1. A branched DNA molecule with four arms.

Fig. 2. Two branches of the four-arm DNA.

design. Sequence needs to be properly defined so that the
Watson–Crick complementarity and sticky ends can generate
desired structure. Branched target molecules correspond to an
excited state must be taken to ensure that the excited product
obtained is the one that is sought [12].

To illustrate the idea of DNA sequence and structure de-
sign, a simple four-arm branched DNA molecule is shown
in Fig. 1, where “ ” represents hydrogen bonding between
the DNA bases. To design the four-arm branched DNA, only
two single-stranded DNA need to be specified as shown in
Fig. 2. The rest strands and sequences can be generated through
Watson–Crick complementarity automatically. A 2-D lattice

Fig. 3. Four-arm branched DNA molecule with sticky ends.

Fig. 4. 2-D lattice design.

can then be constructed from the four-arm junction with sticky
ends as shown in Fig. 3. Using the four-arm branched DNA
molecule, 2-D lattice can be generated as shown in Fig. 4,
where and stand for sticky ends and and represent
their complements.

More complicated structures can be built in a similar way.
A software tool can automate some of the above design work.
For example, users may only need to specify the length, start,
and ending bases of a predefined sequence. Complemen-
tary sequences can be generated automatically following the
Watson–Crick complementarity principles. By introducing
interactive visualization concepts, users can have the flexibility
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Fig. 5. DNA shop user interface.

to move DNA segments around during the design stage, and
the sticky ends can be specified interactively. To facilitate
these design ideas, a software tool called DNA shop has been
proposed and implemented.

IV. DNA SHOP

DNA shop is a Java visualization tool for interactive DNA
sequence and structure design. The software tool contains object
management module, interactive user input module, graphics
display module, coordinate transformation module, DNA object
module, and design engine. The system is primarily based on
Java 3-D class and Java J2SE SDK. The design components
include four DNA bases: A, T, G, and C. Fig. 5 shows the
user interface of the tool. It contains a “main menu,” a “work
place,” a “DNA object window,” and a “DNA property editor.”
Components and functions of each windows are as follows.

• The main menu contains three submenus: “File,” “Simu-
lation,” and “Help.” The “File” submenu can be used to
open and save a file or to exit the program. The “Simula-
tion” submenu can be used to activate the workspace.

• The workspace shows the designed DNA structure. Users
may select bases and change them or delete or insert bases.
Users may move any part of a sequence to different loca-
tions by changing the coordinates.

• The DNA object window shows all DNA objects in the
workspace. In Fig. 5, 11 DNA objects are shown. Users
can easily add new DNA objects to the list. For each DNA
object, users can make copy, generate complementary, or
change the name.

• The DNA property editor shows each DNA’s object-ori-
ented properties including “Reference,” “Coordinate,”
“Display,” “Color,” “Text,” “Height,” “Left split,” “Split
angle,” and “Left complementary.”

— Reference represents the origin of the DNA sequence.
It could be any predefined world coordinate or another
DNA object. In Fig. 5, is the world coordinate.

— Coordinate is the world coordinate of the DNA with
respect to the “Reference” point.

Fig. 6. Workflow of DNA sequence and structure design.

— Display controls whether the object displays or not.
— Color represents the color used to draw the DNA ob-

ject.
— Text is used to specify DNA sequences by the four

DNA letter bases.
— Height defines height of DNA characters shown in the

screen.
— Left split specifies the bending position of the DNA

strand by counting the number of DNA bases from the
left.

— Split angle defines the bending angle of the DNA
strand.

— Left complementary is used to control the sequence
for complimentary generation. If it is not checked, the
complimentary of the right split sequence will be gen-
erated. Otherwise, the complimentary for the left split
sequence will be used.
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Fig. 7. Simulation results.

Right-clicking on an object in the object window can select
the object. Users may then select “delete” or “copy” the object.
An object can be moved by changing coordinate in the property
editor. Right-clicking an object in the workspace will show the
name of the object. Users can modify the object through the
object window.

A workflow of DNA sequence and structure design using the
DNA shop is shown in Fig. 6. Users can start to design work
from scratch or continue from previous work. First, DNA ob-
jects need to be created. Properties of each DNA object can then
be specified. Users can view, rotate, and move 3-D structure of
the DNA molecule interactively in the workspace. If users prefer
expand certain base components or connect different compo-
nents together, users may specify them and let the tool conduct
the work automatically. Fig. 7 shows the results of DNA se-
quence and structure design for the example given in Section III.
The top left figure shows a linear DNA sequence after specifying
the DNA sequence. The top right figure shows the structure after
bending an angle. The middle left figure shows complimentary
of the two bending strands. The middle right shows complete
complimentary of all strands. The bottom left figure shows the
DNA structure after specifying sticky ends. Self-assembling of
the strands shows an aggregated DNA structure in bottom right,
which is a 2-D lattice.

The DNA sequence is first shown in a linear form. Users may
define as many sequences as they want and change the form
by specifying turning angles. Only a single sequence needs to
be specified. After right-clicking a DNA object in the object
window, an action menu will pop up. Clicking on the “Compli-
mentary” menu item will generate a complimentary sequence of
the object.

Fig. 8. 3-D DNA block expanded from one DNA base component.

Additional features of the DNA shop are the following.
• Modification of any single base in a strand will automati-

cally adjust corresponding binding pair.
• Sticky ends can be specified by users interactively. Users

may specify multiple sticky ends.
• Moving the mouse while pressing the left button cause the

DNA structure move around.
• Holding the “Shift” key while pressing the left mouse

button will rotate the DNA structure and show in different
views.

• Holding the “Ctrl” key while pressing the left mouse
button will zoom in and out of the DNA structure.

• The 3 end of each strand is marked with in the
workspace.

Users may change sequence bases any time during the design
process. The DNA shop will automatically synchronize corre-
sponding changes. Complicated structures using base compo-
nents of 2-D lattice or 3-D structure as shown in Fig. 8 can be
generated using the DNA shop.

A. Design Engine and Automation

The DNA shop is aimed to help researchers to design DNA
sequences and structures interactively and efficiently. The auto-
matic design engine plays a key role for this goal. In the DNA
shop, the design engine mainly consists of a knowledge-based
system. The following types of rules have been implemented:

• Watson–Crick complementary binding properties;
• the sticky end association property.

In addition, component-based design automation mecha-
nisms have been implemented to improve design efficiency.
Two types of design automation have been implemented in the
DNA shop.

• Automated sequence expansion. Users can define a base
DNA component to be expanded and set the number of
the base component expanded. A new DNA sequence and
structure can then be generated automatically based on the
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Fig. 9. DNA structure generated by automatic expansion of the structure in
Fig. 8.

base component. Fig. 8 shows a 3-D DNA structure gen-
erated automatically based on a base component, which
is a V-shaped single-strand DNA. The DNA structures
were expanded in 3-D space by selecting the DNA rotating
angle with respect to its complementary reference. Note
that “ ” in the sequence represents the growing direction
of a DNA sequence.

• Automated sequence connection. Through automated se-
quence expansion, a cluster of DNA blocks may be
generated as shown in Fig. 8. A DNA block consists
of a number of DNA sequences expanded from same
DNA base component. Automated sequence connection
allows designers to connect two or more DNA blocks
automatically and generate more complicated structures.
The user only needs to specify DNA blocks that need
to be connected and the position of sticky end of a con-
necting block. The DNA blocks will then be connected
automatically. Fig. 9 shows a DNA structure obtained
by automatically connecting three DNA blocks created
by automated sequence expansion.

V. CONCLUSION

Physical observations for DNA structures are expensive.
They should be applied only if necessary. For some cases,
computer visualizations may provide appropriate solutions.
This paper has proposed a software tool called DNA shop,
which is aimed for interactive DNA sequence and structure
design. The goal is to improve DNA structure design efficiency
and have a better idea about the designed DNA sequences and
structures before the tedious and time-consuming laboratory
experiments.

The proposed DNA shop is to interactively facilitate DNA
sequence and structure design for DNA nanoapplications.

One example of potential application is DNA circuit design
for DNA electronics. Another potential application is DNA
structure construction for drug delivery. Recently, the authors
have been using the tool to design DNA sequence for research
on DNA computation [18]. All of the above research requires
significant amount of DNA sequence and structure design
work before experimental studies. The DNA sequences and
structures involved here are too complicated to be determined
by brain imaging or pen–paper drawing. The proposed software
tool can be used in these applications.
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