View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

MISSOURI
s Missouri University of Science and Technology

Scholars' Mine

Computer Science Faculty Research & Creative

Works Computer Science

01 Jan 2001

A Visual Query System for the Specification and Scientific
Analysis of Continual Queries

Jennifer Leopold
Missouri University of Science and Technology, leopoldj@mst.edu

A. Ambler
M. Heimovics

T. Palmer

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

b‘ Part of the Computer Sciences Commons

Recommended Citation

J. Leopold et al., "A Visual Query System for the Specification and Scientific Analysis of Continual
Queries," Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments,
2001, Institute of Electrical and Electronics Engineers (IEEE), Jan 2001.

The definitive version is available at https://doi.org/10.1109/HCC.2001.995260

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

https://core.ac.uk/display/229135481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/HCC.2001.995260
mailto:scholarsmine@mst.edu

A Visual Query System for the
Specification and Scientific Analysis of Continual Queries

Jennifer Leopold, Allen Ambler, Meg Heimovics and Tyler Palmer
University of Kansas
Department of Electrical Engineering and Computer Science
{leopold, ambler, megheim, tyler} @designlab.ukans.edu

Abstract

The lack of a facility that would allow non-
programmers to easily formulate temporal ad hoc
analyses over a network of heferogeneous, constantly-
updated data sources has been a significant
impediment to research, particularly in the scientific
caommunity. In this paper we describe WebFormulate,
an Interner-based system which facilitares the
development of analyses using information obiained
from databases on the Internet. The main distinction
between this system and existing Internet facilities to
retrieve information and assimilate it into
computations is that WebFormulate provides the
necessary facilities to perform continual queries,
developing and maintaining dynamic links such that
computations and reports automatically maintain
themselves. A further distinction is that this system is
specifically designed for users of spreadsheet-level
ability, rather than professional programmers.

1. Introduction

The revolution in computing brought about by the
Internet is rapidly changing the nature of computing
from a personalized computing environment to a
ubiquitous computing environment in which both data
and computational resources are network-distributed
[1, 2]. However, the lack of a facility that would allow
nen-programiners o easily formulate temporal ad hoc
analyses over a network of heterogeneous, constantly-
updated data sources has been a significant impediment
to research, particularly in the scientific community.
There are many classes of research queries that cannot
be addressed as a result of the n-way struggle that must
go on between every researcher and every network
database interface of interest. The process is tedious,
inefficient, and subsequenty leaves information

0-7695-0474-4/01 $ 10,00 © 2001 IEEE

unnoticed and unutilized. Furthermore, although
common client-server cormurunications protocols
permit parallel ad hoc queries of ODBC databases,
they do not provide the functionality to automatically
perform continual queries to track changes in those
databases through time. The lack of persistence of the
state of data resources requires researchers to
repeatedly query data sources and manually compare
the results of searches through time.

For example, suppose that a biologist in California is
researching the apparent disappearance of the plains
leopard frog (Rana biairi) in Douglas County, Kansas.
S/he suspects that it might be due to predation by or
competition with the builfrog (Rana catesbeiana). To
investigate this problem, each week for nine months
graduate students from a Kansas university go to areas
throughout Douglas County to count the number of the
two species of frogs, and enter the information into a
database. The biologist would like to graph the counts
of the frogs (such as the graph in Figure 1) to monitor
the population changes in that area over the nine month
period.

i b8 952 s BTE WA N
Langluiaw

Figure 1. A graph to analyze the populations
of two species of frogs.

203

In Specify’, a biclogical collection database that is
typically used to record specimen information of this
nature, the actual SQL statement for such a query
would be the following:

SELECT TaxonName2.FullTaxonName,

Locality. Latitude, Locality.Longitude FROM
(CollectionObject) INNER JOIN (((CollectionObject
AS CollectionObject2) INNER JOIN ((Determination
AS Determination?2) INNER JOIN (TaxonName AS
TaxonName2) ON TaxonName2.TaxonNamelD =
Determination2.TaxonNameID) ON
Determination2.BiologicalObject]lD =
CollectionObject2.CollectionObjectID) INNER JOIN
({(CollectingEvent AS CollectingEvent2) INNER JOIN
(Locality) ON Locality. LocalitylD> =
CollectingEvent2.LocalityID) ON
CollectingEvent2.CollectingEventID =
CollectionObject2.CollectingEventIDy ON
Collection0Object2.CollectionObjectID =
CollectionObject. CollectionObject]ID WHERE
(((({TaxorName2 .FullTaxonName IN(Rana blairi’,
Rana catesbeiana’))))) AND (((Locality Latitude
BETWEEN 37.8 AND 39.4 AND Locality.Longitude
BETWEEN 94.8 AND 96.0))))

Te monitor the results of this study weekly over the
nine month period, the researcher would have to
repeatedly run this query on the database, each time
downloading and importing the latest results into
his/her spreadsheet application to regenerate the graph.
In reality, it is unlikely that a biologist would have ali
the requisite skills to perform this task, namely: (1) to
connect to a remote database, (2) to construct a
complex SQL statement, (3) to download the query
results, and {4) to import the data into a spreadsheet
and construct a graph. In addition, it would require
that the biclogist had the time (and perseverance) to
perform this procedure 36 times.

The above example clearly demonstrates that a
second obstacle to the synthesis of networked data is
the lack of a programming interface which permits
end-users to easily formulate and execute scientifically
meaningful and often complex queries of distributed
data sources and to be able to link the results of those
queries to analysis applications. In short, we need to
be able 1o empower researchers to build these kinds of
automated retrieval and analysis functions through a
network interface without any specific knowledge of
programming tasks. The problem is, of course, that
many scientists are untrained as programmers and to

1 hitp/iwww . usobi org/Specify

- system i

use today’s programming languages generally requires
significant programming training.

Herein we describe WebFormulate, an Internet-based
system which facilitates the development of analyses
using information obtained from databases on the
Internet. The main distinction between this system and
existing Internet facilities to retrieve infermation and
assimilate it inte computations is that WebFormulate
provides the necessary facilities to perform continual
queries, developing and maintaining dynamic links
such that computations and reports automatically
maintain themselves. A further distinction is that this
specifically designed for users of
spreadsheet-level ability, rather than professional
programmers.

2. Background and Related Work

2.1. Visual Query Systems

Visual query systems (VQS) [3, 4] are typically
designed for users with limited technical skills. The
technology for the construction of VQS is generally
well researched and the choice of approach is primarily
one of matching other language concepts to provide a
clean, conceptually consistent interface. Adaptive
systems such as the one developed by [5] even allow
the user to select from several visual representations
and interaction mechanisms for expressing the query
and visualizing the results.

The primary differences between the WebFormulase
query interface and other VQS are:

(1) Most VQS have been developed specifically to
query geographic and image databases, which are
not the problem domain of the WebFormulate
research.

(2) The WebFormulate query interface was designed
to be consistent with an existing form-based
visual programming language interface which had
been designed for users of spreadsheet-level
ability, and which had the necessary underlying
evaluation model to make it extendable to
continual query processing with automatic
updating of visual and computational objects
dependent upon query results.

(3) To date, research in VQS and continual queries
has not been successfully integrated. User
interfaces for most continual processing systems
are not designed for non-programmers. Typically
the user is required to know the names of tables
and fields in the database, to be able to construct

204

SQL statements, and to use other applications 1o
anatyze query results,

2.2. Continual Queries

A continual query as defined by [6] “...is a standing
query that monitors updates of interest using
distributed triggers and notifies the user of changes
whenever an update of interest reaches specified
thresholds or some time limit is reached." It is
expressed in terms of a normal, SQL-like query, a
trigger condition, and a stop condition. Some
conditional queries may also include a start condition
and a potification condition (i.e., when the condition
for notification of results is different from the trigger
condition). The concept of continual queries was first
introduced by {7] for append-only databases.

Active database management systems [8, 9, 10, 11,
12] are restricted implementations of continual query
systems. Unlike the traditional, passive, program-
driven database management systems, active database
management systems are data-driven. They actively
monitor the arrival of desired information and provide
it to the interested users as it becomes available.
However, such systems often depend heavily on
extensions specific to the database management system
such as the built-in triggers in Informix [13}. Another
limitation is that the trigger mechanisms of these
systems will only work on active tables (i.e., append-
only tables in which existing records are never updated
and new records are appended to the end of the table).
Active database management systems are simply not
an efficient or scalable solution for a large number of
concurrently running continual queries on a variety of
Internet distributed data sources.

CONQUER [6], OpenCQ [14], and NiagaraCQ [15]
represent the most extensive work to date on
distributed, event-driven continual query systems that
allow the specification of time-based or content-based
trigger conditions. Prototypes of these systems have
been developed for some small databases with very
simple underlying data models {(e.g., for monitoring
weather conditions, stocks, and bibliographic
references). The user interfaces for these systems
require that the user know the names of the database
tables and fields to express the query. The NiagaraCQ
system further requires that the user be able to express
the query as an XML-QL [16] text file. In the
CONQUER and OpenCQ systems users are notified of
updated query results by email, and can then download
a text file of the results or view the tabular results on a
web page (which must be created by the system
developers, not the end-user). If the user wants to

computationally or visually analyze the data further,
s/he must download the text file containing the query
results each time there is an update notification and
import the data into another application such as a
spreadsheet. The NiagaraCQ system allows the user to
specify an action to be performed on the query results.
However, such actions must be expressed as low-level
system calls such as the "MailTo" UNIX command.

In summary, priot to WebFormulate, there has yet to
be developed a visual query system specifically
designed for non-programmers that can perform
continual queries on Internct-distributed databases,
developing and maintaining dynamic links such that
user-specified computations and reports automatically
maintain themselves.

3. Formulate

The WebFormulate system is based on an existing
implementation of a language called Formulate [17,
18, 19, 20, 21, 22]. Formulate is the product of many
years of visual and public programming research, and
has been lested against users with liitle prior
programmting experience [19]. A complete description
of the Formulate language is beyond the scope of this
paper; some of the highlights of Formulate which are
also present in the WebFormulate system are:

¢ Object names are unnecessary because aif objects are
potentially visible and can be referenced by pointing.

& Assignment is avoided in favor of a functional
approach more consistent with mathematics.

« Iteration is unnecessary. Recursion is supporied. but
often unnecessary as well.

¢ Definitions in the premeditated sense are
unnecessary. Functions can be defined by a user
observing that seme combination of already existing
objects and their associated egualions might be
abstracted. The system then develops the
appropriated abstracted function.

e Bvaluation ordering is unnecessary because the
language definition guarantees that all evaluation
orderings are equivalent.

s All programs are developed using live data. This
mode of operation exploits the interactiveness of the
development environment and facilitates user
understanding.

¢ Structured objects (e.g., arrays, lists, tables) are
supported, but without the wusual indexing
mechanisms. Rather the systern deduces indexing
based upon higher-level user interactions.
Determination of the size and shape of the resulting

205

structure as well as all required indexing is left to the
systern. This also eliminates the need for developing
loops to perform such indexing.

In Formulate objects communicate via messages to
request or announce changes in values. In particular,
computations retain symbolic links to referenced
objects. Using such links, computations request to be

-notified of value changes. When notified of a value
change to a referenced object, an object recomputes
and then notifies all objects which have previously
requested to be notified. This notification process
happens automatically and keeps all computations
moment-to-moment up to date. This distributed object
model was essential for the WebFormulate system as
well where dynamic links to objects distributed across
the Internet must be maintained so that computations
and reports can automatically update themselves.

4. A Visual Interface for the Specification
of Continual Queries

The WebFormulate user interface is very similar to
the Formulate user interface (which is described in
detail in [17, 18, 20, 21, 22]) with the exception that it
runs in a web browser environment. WebFormulate
extends the functionality of Formulate allowing the
user to perform continual queries of distributed
databases and to use the results of those queries for
subsequent computations and visualizations.

4.1. Specification of a Continual Query

In their taxonomic classification of visual gquery
systems, [23] define paradigms for the scheme of both
data and query representations. WebFormulare utilizes
a hybrid paradigm: the diagrammatic paradigm to
describe the database schema, and the tabular paradigm
to visualize query results and to reference intermediate
database query results in subsequent queries.
According te the classification criteria for classes of
users and type of visual query system given in [23], the
diagrammatic paradigm should be particutarly well-
suited for scientists with little or no programming
background; users who likely have significant
knowledge of the semantic domain of the databases
they are querying, but are required to perform
structurally complex queries?.

2 For example, the Specify specimen database mentioned in the
example given in the Introduction contains over 70 tables and
approximately 800 fields.

“schema display is shown in Figure 2.

In the WebFormulate system continual uerics are
expressed in terms of an SQL-like query, a notification
condition, a trigger condition, and a termination
condition. The SQL-like query specifies the names of
the fields to be included in the result set, the conditions
10 be applied to extract the tuples of interest, and the
sorting order for the resulis. Once a database is
specified (by a URL identifying the database or by
referencing a WebFormulate object containing the
results of another query), the database schema is
displayed as a hierarchical "tree” of the names of
tables, related tables, and fields. An example of such a
Nodes
representing tables in the database can be expanded to
display the names of related tables and fields by
clicking the mouse on the "+" bution to the left of the
table name in the tree display. Once expanded,
clicking on the "-" button to the left of a table name
contracts the display of the corresponding branch of
the tree.

B- @ Calection Objact
El--§p Heip
r?x - @ Deteimination
- TomorName

L

Lolacting Dala

1
i
:

o LA AL A

Figure 2. A database schema displayed as a
hierarchical tree containing the names of
tables, related tables, and fields.

The user can simply click on a field name in the tree
display to reference it within any pat of a
WebFormulate query expression. For example, a
standing (non-continual) WebFormulate query
expression for the query discussed earlier in the
Introduction would look like:

(SELECT ([FuliTaxonName} {Latitude] [Longitude])
(AND (IN {FuliTaxonName)
("Rana blairi" "Rana catesbeiana"))
(>= [Latitude) 37.8) (<= [Latitude] 39.4})
(>= [Longitude] 94.8) (<= [Longitude] 96)))

The notation [X] is meant to convey that the database
field name X in the database schema tree display is
selected (clicked on) with the mouse, and an image
representing that selection appears in the eguation.
The ficld name is not actually typed as it appears in the
expression.

206

340
Hnz0

| |FullTaxonName
Rana blairi

3300
. 1080
IkED
w40
k20
o0

areo

ME 35 52 SE4 OEE 55 86
Longitude

Population Overap

Figure 3. A WebFormulate form to track the populations of two species of frogs.

It is important to note that in order to construct a
query in the WebFormulate system the user need not
type in {teld and/or table names, or construct complex
SQL statements involving joins. Thus, as [23]
advocate, "the user is released from syntactic and
implementation details, and the query can be naturally
expressed by pointing directly to objects and spatially
navigating among them.”

A notification condition for a WebFormulate
continual query can be a combination of time-based
conditions and content-based conditions. Time-based
coenditions include: {1) absolute points in time (defined
by the system clock), (2) regular or imregular time
intervals (e.g., weekly, the first of every month, etc.),
and (3) relative temporal events {e.g, one week after
event A occurred). Content-based conditions include:
(1) relationships between a previous query result and
the current database state {e.g., when the number of
bullfrogs increases by 20% since the last reporting
time), (2) trends (e.g., when the number of bullfrogs
decreases over the last two months), and (3) absolute
threshold values {(e.g., when the number of frogs
exceeds 1000). The trigger condition is used to
determine how often the database should be queried
and tested against the notification condition. It is
restricted to regular or irregular time intervals. The
WebFormulate system provides predefined functions
for the expression of many such conditions. In
addition, the user can define and utilize his/her own
functions in these expressions. See [17, 20, 21] for a
more detailed discussion of the creation of user-defined
functions in Formulate.

The termination condition for a WebFormulate
continual query must be an absolute point in time,
functionally expressed in terms of a month, day, and
year.

4.2. Example of Specifying a Continual Query

Here we demonstrate some of the salient aspects of
the WebFormulate user interface with respect to the
specification of a continual query using the example
given earlier in the Introduction, slightly modified to
use a mare complex notification condition.

Figure 3 is a web page that a biologist could create in
WebFormulate to analyze the population of the two
species of frogs.

In brief, a WebFormulate web page (form) is created
by dragging various types of objects from a palette in
the user interface onto a clean form, and assigning
values andfor equations to attributes of those objects.
To create the form in Figure 3 the user would do the
following:

1. Create a Database’ object and set its Database
ID’ atiribute to the URL of the web-accessible
ODBC database containing the data of interest.
The database schema will then be displayed as
shown in Figure 3, organized hierarchically as a
“tree” of the names of tables, related tables, and
fields within the tables’.

2. Create a 'Database Query’ object to query the
two frog populations using the following
equation:

(CQSELECT ([FullTaxonName) [Latitude]
[Longitude])
(AND (IN [FullTaxonName]
("Rana blairi" "Rana catesbeiana"))
(>=[Latitude] 37.8)
(<= [Latitude] 39.4])

3 The database schema is determined each time the WebFormulate
form is opened. Changes to the schema of the actual database {e.g.,
removal of the FuliTaxonName field) may subseguently generate
errors in equations that reference the Database’ cbject.

207

(>= [Longitude] 94.8)

(<= [Longitude] 96))
((ASC [FullTaxonName}))
(OR (WEEKLY)

(> (COUNT {FullTaxonName])
(+ (PREVCOUNT (FullTaxonName])
1000)»

(DAILY)
(DATE 1¢ 30 2001))

The first argument to the CQSELECT
function is a list of the fields to be displayed in
the query results. The second argument is the
conditional expression that will be used to
identify the wples to be retrieved by the query.
The order by which the results are to be sorted is
specified by the third argument (e,
FullTaxonName in ascending order). The fourth
argument specifies that the user wants to be
notified of the query results WEEKLY or
whenever the total number of frog records (of
both species of interest) has increased by 1000
since the last query. The fifth argument
designates that the database is to be queried
DAILY (i.e. the trigger condition). The Ilast
argument is the stop condition for the continual
guery, specified here as a particular date.

3.0Once ithe user submits this equation for
evaluation, the query is evaluated and the
(initial) results are displayed as a table in the
Database Query’ objeci. This table display can
be further sorted using any sequence of columns.
To do so, the user simply drags the mouse over a
region of the table* (possibly the entire table)
and sets the sort order attribute of that region to
a list of column names and sort order indicators
(ASC for ascending order or DES for
descending order), for example:

(([FullTaxonName] ASC)
([Latitude] ASC) ([Longitude] ASC))

As in the previous equations, the column
names referenced in this equation are not typed,
but rather are selected (clicked on) with the
mouse in the column headings of the Database
Query’ table display.

4 For a more comprehensive discussion of the Fermulaie user
interface for the selection and manipuiation of regions within a table
or array, see [18].

4. Create a graph object to plot the occurrences of
the two species of frogs by latitude and
longitude. The equation’® for this object is:

(GRAPH (([38.2..95.8] (BLACK-CIRCLE))
([37.9..95.6] (BLACK-SQUARE)}))

The argument to the predefined function
GRAPH® is a list of lists, where each sublist
specifies the source of the data value pairs to be
graphed, and the color andfor pattern to be used
to display the corresponding data points. In the
above equation, the sources of the data values
are referenced by dragging the mouse over the
appropriate regions (the block of Latitude and
Longitude values for each species of frog) of the
Database Query’ table.

Each time the continual query returns updated
results, the tabular display of the Database Query’
object and the graph object which references that data
will automaticatly be updated on this form.

It is of interest to note that the ‘Database Query’
object could now be referenced as the value for the
Database ID’ attribute of another Database’ object. Its
schema would simply consist of a single table
containing the three fields: FullTaxonName, Latitude,
and Longitude. This {eature facilitates the querying of
"intermediate” query results (i.e., database "views").

5. System Architecture

The evaluation model utilized by Formulate (and
WebFormulate) is discussed in detail in {20, 21, 22].
Here we briefly describe the system architecture
employed by WebFormulate for continval query
processing and its interface to the evaluation engine.

5.1. Overview of the Continual
Processing System Architecture

Query

When the user submits 2 continual query expression
to the WebFormulate evaluation engine, it is parsed
and translated into a well-formed SQL expression with

5 The notation {n..m} is meant to convey that the rectangular region
bounded by value i to value m in a table object is being referenced.
The selection is made by dragging the mouse over the desired region
of the table, from upper left to lower right. The region representation
is not actually typed as it appears in the example.

6 WebFormulate includes many of the statistical and graphing
functions found in spreadsheet programs.

208

complete table and field name identifiers, required
joins, etc. It is then submitted to a continual query
processing server (CQServer) which has been
implemented using Enterprise Java Beans (EIB), a
standard server-side component transaction monitor
architecture that automatically manages transactions,
object distribution, concurrency, security, persistence,
and resource management [24].

A CQBean process is created by the server and
begins its cycle of connecting to and querying a
particular database according to the specified trigger
condition, and comparing the results against the
notification condition. CQBeans are self-autonomous
in that: (1) a CQBean can commupicate with other
CQBeans to share information on similar active
queries, (2} CQBeans maintain their own schedule for
querying the database, and (3) a CQBean determines
whether or not to allow itself to be passivated by the
server under various conditions.

If a client disconnects from a CQBean (e.g., the
WebFormulate form is closed), the CQBean will be
passivated by the CQServer unless: (1) the notification
condition is a linear trend and passivation would result
it a loss of information, or (2) the CQBean is actively
gathering information from other CQBeans interested
in the same guery. The system allows the client to
later reconnect to the CQBean (e.g., when the
WebFormulate form is re-opened).

Most other continual query processing sysiems
utilize web-based Java applet interfaces to achieve
portability, but often rely on platform-dependent
resource management facilities (e.g., the UNIX cron
facility, the Windows NT process scheduler, etc.). The
WebFormulate system is portable to any EJB
implementation (which is available for most commonly
used operating systems). This system is also more
efficient and scalable than other continual processing
systems due to the optimized resource and process
management facilities of the EJB server, and the semi-
autonemous processing capabilities of the CQBeans.

5.2. Example of Processing a Continual Query

We will use the sample problem given in section 4.2
to explain in more detail how the CQServer processes a
WebFormulate contimual query.

When the WebFormulate evaluation engine
processes a CQSELECT equation, it connects to the
CQServer, which in turn performs all necessary
authentification and authorization checks of the client
connection. The CQServer then adds 10 an Active
Bean table a CQBean to process the query. That

CQBean will first check the CQServer’s Active Query
table to see if collaboration is possible with another
CQBean that is processing the same query (e.g., if
there is more than one instantiation of the same
WebFarmulate form). [f collaboration is possible, the
CQBean will establish inter-bean communication with
that other CQBean 1o negotiate information exchange.

When a CQBean is created, a clockCheck object
within the bean is configured for the time-based trigger
and termination conditions specified in the continyal
query. In the example given in section 4.2, the trigger
condition is DAILY. Since "daily" is an imprecise
time, a random time of day is selected and the CQBean
process is scheduled to query the database every day at
that time. The clockCheck object is also configured to
check the system date once a day and notify the
CQBean to terminate itself when the specified
termination date is reached.

When the CQBean queries the database (based on
the trigger condition), the query results are stored in
XML format on the server and the CQBean checks the
notification condition. The notification condition in our
sample problem is WEEKLY or whenever the number
of records returned by the query has increased by 1000
since the last time the query was issued. Since the
notification condition contains a content-based
condition involving an increase in the size of the result
set, the CQBean maintains a count of the number of
records returned when the database is queried. For the
notification condition "weekly", the CQBean is also
configured to return query resuits on the same day of
the week that the query was originally issued. For
example, if the query was originally issved on a
Monday, the CQBean interprets "weekly" as every
Monday. Therefore, the CQBean for this example
checks to see if the current date is Monday or if the
size of the result set has increased by 1000 since the
last time the database was queried. If either condition
is true, the CQBean sends a message to the
WebFormulate evaluation engine to notify it that
updated query results. are available. Any other
CQBeans which are interesied in these query results
and have established inter-bean communication with
this CQBean will also be notified.

If the WebFormulate web page is currently open,
every WebFormulaie object that is interested in the
query results will be sent a message from the
evaluation engine to recompute and/or redisplay itseif.
In our example, the Database Query’ object will be
notified to update its table display. The update of that
object in turn will cause an update message to be sent
to the graph object whose equation was specified in
terms of values contained within the Database Query’

209

object. Thus, the graph object will also recompute and
redisplay itself based on the new data.

If the WebFormulate form is not currently open, the
next time the form is opened, it will request the most
recent data from the evaluation engine. The evaluation
engine will then retrieve the most recent query results
from the XML file that is maintained on the server by
the CQBean.

6. Future Work

In the future, we plan to continue consulting with
scientists to determine what additicnal functionality
needs 1o be included in the WebFormulate system in
order to facilitate meaningful visual and computational
analyses of query results. We will also be conducting
simulated experiments to evaluate the performance of
the continual query processor for a variety of scenarios,
varying the complexity of the queries, the update
frequency, and the size of the distributed databases that
will be queried.

7. Summary

It is important not only that information be
accessible to the public, but that the same public be
able to combine this information into effective
analyses. The incomplete, dynamic, and "unknewable"
structure of databases, and the inability of non-
programming scientists to formulate querics against
multipie Internet databases has been a significant
impediment to research. WebFormulate was
specifically designed as an efficient and scalable
application that would enable non-programmers to
perform continual queries on Internet-distributed
databases, and to automatically update user-specified
computations and reports. We believe that the
technology developed for the WebFormulate system
will contribute to the general advancement of the
Internet and its impact on industry, government, and
education.

Acknowledgements

This work was supported by NSF under award DBI-
9905760.

References

[1) K. Kavi, J.C. Browne, and A. Tripathi, "The Pressure Is

On," IEEE Computer, January 1999, pp. 30-39.

{2] W. Bolosky, R. Draves, R. Fitzgerald, C. Fraser, M.
Jones, T. Knoblock, and R. Rashid, "Operating Sysiem
Directions for the Next Millennium,” Microsoft Research,
Redmond, Washington, http://research.microsofi.com.

[3] T. Catarci and M. Costabile (eds.), "Special Issue on
Visual Query Languages”, Journal of Visual Languages and
Computing, 6(1), 1995.

[4]1 T. Catarci, M. Costabile, S. Levialdi, and C. Batini,
"Visual Query Systems for Databases: A Survey", Technical
Report SI/RR-95/17, Dipartimento di Scienze
deliInformazione, Universita’ di Roma "La Sapienza", 1995.

5] T. Catarci, M. Costabile, A. Massari, L. Saladini, and
G.Santucci, "A Multiparadigmatic Environment for
Interacting with Databases", SIGCHI, 28(3), July 1996.

[6] L. Liu, C. Pu, W. Tang, and W. Han, "CONQUER: A
Continual Query System for Update Monitoring in the
WWW*", Special edition on Web Semantics, nternational
Journal of Computer Systems, Science, and Engineering,
1999.

[7] D. Terry, D. Goldberg, D. Nichols, B. Oki, "Continuous
Queries over Append-Only Databases”, ACM SIGMOD
International Conference on Management of Dara, 1992, pp.
321-330.

[8] U. Dayal, B. Blaustein, A. Buchman, U. Chakravarthy,
M. Hsu, R. Ladin, D. McCarthy, A. Rosenthal, S. Sarvin, M.
Carey, M. Livny, and R.Jauhari, "The HiPAC Project:
Combining Active Database and Timing Constraints”, ACM-
SIGMOD Record, 17(1), March 1998, pp. 51-70.

9] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan,
"Alert: An Architecture for Transforming a Passive DBMS
mto an Active DBMS", ACM SIGMOD International
Conference on Management of Dara, 1991, pp. 469-478.

[10] M. Hsu, R. Ladin, and D. McCarthy, "An Execution
Model for Active Database Management Systems”, in
Proceedings of the 3 International Conference on Data and
Knowledge Bases - Improving Usability and Responsiveness,
1988.

[11]1J. Widom and S Ceri, Active Database Sysfems,
Morgan-Kaufman, 1996,

210

[12] D. McCarthy and U. Dayal, “The Architecture of an
Active Database Management System", in Proceedings of

ACM-SIGMOD International Conference on Management of
Data, May 1989, pp. 215-224.

[13) Informix Software, Inc., Informix Guide to SQL: Syntax
(Version 6.0), 1994.

[14] L. Liu, C. Py, and W. Tang, "Continual Queries for
Internet Scale Event-Driven Information Delivery”, Special
issue on Web Technologies, IEFE Transactions on
Knowledge and Data Engineering, January 1999.

{151 J. Chen, D. DeWitt, F. Tian, and Y. Wang, "NiagaraCQ:
A Scalable Continuous Query System for Internet
Databases”, in Proceedings ACM SIGMOD International
Conference on Management of Data, May 1999,

[16] A. Deutsch, M. Femandez, D. Florescu, A. Levy, D.
Suciu, "XML-QL: A Query Language for XML",
http:/hww . w3.org/TR/NOTE-xml gl

1171 A. Ambler and A. Broman, "Formulate Solution to the
Visual Programming Challenge,” in Journal of Visual
Languages ard Computing, 3(2), April, 1998, pp. 171-209,

[18] J. Lecpold and A. Ambler, "A User Interface for the

211

Visualization and Manipulation of Amays”, in Proceedings of

IEEE 12th Symposium on Visual Languages, 1996, pp. 54-
53,

(9] J. Leopold, "A Multimodal User Interface for a Visual
Programming Language”, Ph.D. Thesis, University of
Kansas, Lawrence, Kansas, 1999,

[20] G. Wang and A. Ambler, "Invocation Polymorphism”,
Proceedings of IEEE Symposium on Visual Languages,
Darmstadt, Germany, September 1995, pp. 83-90.

[21} G. Wang and A. Ambler, "Solving Display-Based
Problems”, in Proceedings of IEEE 12th Symposium on
Visual Languages, 1996, pp. 122-129.

[22] G. Viehstaedt and A, Ambler, "Visual Representation
and Manipulation of Matrices”, in Journal of Visual
Languages and Computing, Volume 3, 1992, pp. 273-298.

[23] C. Batini T. Catarci, M. Costabile, and §. Levialdi,
“Visual Query Systems: A Taxonomy", in Visual Database
Systems [I (E. Knuth and L. Wegner, eds.), Elsevier Science
Publishers, North-Holland, 1992, pp. 153-168.

{24} R. Monson-Haefel, Enterprise JavaBeans, OReilly &
Associates Inc., Sebastopol, CA, March 2000,

	A Visual Query System for the Specification and Scientific Analysis of Continual Queries
	Recommended Citation

	A visual query system for the specification and scientific analysis of continual queries

