
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2004

A Change Impact Dependency Measure for Predicting the A Change Impact Dependency Measure for Predicting the

Maintainability of Source Code Maintainability of Source Code

Xiaoqing Frank Liu
Missouri University of Science and Technology, fliu@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
X. F. Liu, "A Change Impact Dependency Measure for Predicting the Maintainability of Source Code,"
Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004,
Institute of Electrical and Electronics Engineers (IEEE), Jan 2004.
The definitive version is available at https://doi.org/10.1109/CMPSAC.2004.1342659

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229135011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CMPSAC.2004.1342659
mailto:scholarsmine@mst.edu

A Change Impact Dependency Measure for Predicting the Maintainability of Source Code

Franck Xia, Praveen Srikanth
Computer Science Dept., University of Missouri-Rolla, Rolla, MO 65409; xiaf@umr.edu

1. Introduction
Software maintenance costs far more than development
in software industry. Planning, managing, and
controlling maintenance is an important issue that
software engineers must deal with everyday. However,
as maintenance heavily relies on the knowledge and
skills of maintainers, maintainability is related to many
subjective and vague factors which are not easy to treat
rigorously. It is thus difficult for us to design and model
a measure such that a calculation based on some internal
software artifacts could reflect the external view of
software maintainability. In this paper, we first
articulate the theoretic difficulties with the existing
metrics designed for predicting software
maintainability. To overcome the difficulties, we
propose to measure a purely internal and objective
attribute of code, namely change impact dependency,
and show how it can be modeled to predict real change
impact. The proposed base measure can be further
elaborated for evaluating software maintainability.

2. Challenge with Quality Measurement
Dependency is an essential aspect to consider for
designing the architecture of complex systems and it
directly affects the maintainability and many other
quality attribute of software. But the notion of
dependency itself is vague and subject to different
interpretations, i.e. static, dynamic, one-way change
impact or two-way mutual dependency. This ambiguity
creates confusion when we strive to measure
maintainability. Coupling is an internal attribute
commonly used for evaluating dependency and
maintainability. However, when considering the
maintainability of a component, only one-way change
impact dependency is relevant, two-way dependency is
not. Some well-known coupling metrics, e.g. coupling
between objects [1] do not make such a crucial
distinction. One consequence of this conceptual
ambiguity is that existing dependency metrics cannot
stand a basic theoretic validation. By measurement
theory, a measure must satisfy the representation
condition which means, in plain terms, that a heavy man
must have a large weight number on a correctly built
scale [2]. Theoretically, we must reject a measure if it
cannot preserve the empirical relations we know about
the ranking of the entities to be measured. One
elementary property of change impact dependency is
that it could be transitive: if A depends on B and B on

C, then A may depend on C [3]. But all the known
coupling metrics count only the direct change impact
and ignore the indirect ones or ripple effect [1,4], which
violates the transitivity property and its entailed
ranking. Tracing ripple effect is essential for
maintenance [3], but none of the existing code
maintainability metrics consider ripple effect either [5-
7]. The fact that we do not have a sound measure for
some crucial quality concepts, i.e. coupling and
dependency, suggests that more research effort is
needed for developing sound software measures.

3. Change Impact Dependency (CID)
Our goal is to develop a measure based on which we
can estimate the change impact (CI) when one system
component is to be modified. This measure will
eventually enable us to predict the cost of maintenance.
We assume that we are limited to study source code
without any knowledge about the types of change, i.e.
deletion, addition or modification, nor on which part of
code, i.e. data or program logic, the change will occur.

3.1 Identifying Fundamental Factor
Based on our general assumption, we focus on tracing
the static CID. When a change occurs in a statement s,
what we want to know is what are the other statements
that could be potentially affected. Although the change
in s may affect either data or program control part, for
the impact of change, we only need to trace the change
of data, whether the change is about name, type,
address, value, scope, lifetime, or structure of data/
class. This is because when a change affects a program
control construct in s which contains no assignment
operator, there will be no further impact; otherwise, the
left hand side (LHS) variable x of s will be affected, and
to trace the impact of change in s we must trace the
impact of change on x. Tracing CID through sub-
program or method call is to tracing the impact of
change via actual parameters. We can demonstrate that
all kinds of coupling described in OO literature [4] can
be reified though the most fundamental data change.

3.2 Algorithm for Tracing Potential Change Impact
Given any system component M, changing any part of
M generally first affects the subsequent part S of M and
then through one sub-program call to another in a
decomposed system, propagates far beyond the
immediate super-ordinate and sub-ordinates of M. In S

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

M, given a change data d, our algorithm first traces all
assignment statements and conditions in S containing d.
The tracing of the potential CI depending on d stops if d

appears at the LHS of an assignment, otherwise, the
LHS variable of the assignment becomes a new change
data that needs to be traced for the indirect impact from
d. When d is an actual parameter in a sub-program call,
we continue to trace the ripple-effect of change beyond
M. This tracing algorithm is carried out recursively till
no other sub-program is called. The impact to the super-
ordinates of M is traced through the output parameters
of M. We select LOC (line of code) as a measurement
unit for CI. For any sub-program M, by the end of
tracing, the potential CID (Cpotential) from M can be
represented by {b0, b1, b2, … }, b0 representing the
number of lines that could potentially be affected in M
(level 0), b1 the number of lines traced in sub-programs
immediately called in M or in M’s callers (level 1), etc.

3.3 Modeling/Predicting Real Change Impact
Our algorithm traces the maximum potential impact of
change from a source sub-program M. In reality, for
certain types of change, its real impact may end before
our tracing algorithm terminates, the same way as any
ripple effect diminishes progressively in a medium
when it propagates away from the center of the impact.
Thus we propose to model and predicate real CI based
on the traced potential CID as follows:

0i
i

i
predicted bC (1)

In formula (1), is a coefficient introduced to take into
account the fact that not all the lines traced could be, in
reality, affected. is the attenuation coefficient which
reifies the attenuation of ripple effect when the impact
pass through one sub-program to another. As and
are unknown, test cases are designed and real changes
are made. Based on a set of real change data (CActual(k)

standing for the total number of lines modified in the kth

test case), we have estimated and through
minimizing the mean square errors of k k

2, with

)(
1

0 kActual
i

i
i

k Cbb (2)

Note that our model is non-linear with respect to and
. No existing regression models can be directly used in

our case and the estimation task is non-trivial. By
limiting to two levels of ripple effect, an analytic
solution has been found. The formulas for and are
quite complex and not represented in this short abstract.
With our test cases, we obtain 1.00 and 0.90.
Note that the two programs used for our model
validation have been taken from websites providing

open source code. The maintenance activities are
designed and performed on these two source programs.

3.4 Modeling Change Impact in OO Source Code
Our CID model is general and hence can be applied to
either structured or object-oriented code, for a method is
just a specific sub-program with a scope limitation.
With the estimated and , formula (1) can be used for
predicting real change impact based on traced potential
change impact. However, when dealing with OO
software, the unit of interest is class rather than method.
So far our CID model does not make such a distinction.
We now propose a more refined model for OO code,
decomposing potential CID into intra-class and inter-
CIDs:

Cpotential = Cintra-class-CID Cinter-class-CID.

For predicting real CI, formula (1) is applied only to the
inter-class part of the potential CID (Cinter-class-CID). Note
that data to be change in OO code could be non-local
for a method, such as an object attribute or data in a
super-class. These specificities can be treated as shared
data with our general model without difficulty.

4. Conclusion
Our change impact dependency model is theoretically
sound, for it respects our empirical observation about
CID. The proposed measure for predicting CI helps us
to estimate the real impact of change during the
maintenance phase. By integrating other factors that
have been already considered in the existing methods,
such as comment lines in each component [5] or the
probability of change for each component, we are
confident that a more reliable measure for predicting
software maintainability can be obtained. Finally,
through reliable cost/effort estimation, we can estimate,
plan, and manage maintenance before the start of the
maintenance process, thereby the maintenance activity
can be efficiently executed in an organized manner.

Reference
1. Chidamber S.R. Kemerer C.F., Towards a metrics suite for

object-oriented design, IEEE T-SE, 20(6), 1994, 476-493
2. Krantz D.H., Luce R.D., Suppes P., and Tversky A.,

Foundations of Measurement, vol.1, Academic Press, 1971
3. Arnold R.S. & Bohner S.A., Software Change Impact Analysis,

Wiley, 1996
4. Briand L. et al., A unified framework for coupling measurement

in object-oriented systems, IEEE T-SE, 25, 1, 1999, 91-121
5. Coleman, D. et al., Using Metrics to Evaluate Software System

Maintainability, IEEE Computer, 27(8), 1994, 44-49
6. Munson J., Elbaum S.G., Code Churn: A Measure for

Estimating the Impact of Code Change, Proc. ICSM, 1998
7. Polo M. et al., Using Code Metrics to Predict Maintenance of

Legacy Programs: A Case Study, Proc. ICSM, 2001

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

	A Change Impact Dependency Measure for Predicting the Maintainability of Source Code
	Recommended Citation

	A change impact dependency measure for predicting the maintainability of source code

