
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

26 Jun 2006

Genetic Code Based Coding and Mathematical Formulation for Genetic Code Based Coding and Mathematical Formulation for

DNA Computation DNA Computation

Mingjun Zhang

Maggie Xiaoyan Cheng
Missouri University of Science and Technology, chengm@mst.edu

Tzyh-Jong Tarn

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
M. Zhang et al., "Genetic Code Based Coding and Mathematical Formulation for DNA Computation,"
Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Institute of Electrical
and Electronics Engineers (IEEE), Jun 2006.
The definitive version is available at https://doi.org/10.1109/ROBOT.2006.1642256

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ROBOT.2006.1642256
mailto:scholarsmine@mst.edu

Genetic Code Based Coding and Mathematical
Formulation for DNA Computation

Mingjun Zhang
Agilent Technologies

Email: mingjunzhang@ieee.org

Maggie X. Cheng
University of Missouri

Email: chengm@umr.edu

T. J. Tarn
Washington University

Email: tarn@wuauto.wustl.edu

Abstract— DNA computation is to use DNA molecules for
information storing and processing. Challenges currently faced
by DNA computation are (1) lack of theoretical computational
models for applications, and (2) high error rate for implementa-
tion. This paper attempts to address these problems from genetic
coding and mathematical modeling aspects. The proposed genetic
coding approach provides a promising alternative to reduce high
error rate. The mathematical formulation lays down groundwork
for studying theoretical aspects of DNA computation.

I. INTRODUCTION

In the late 1950’s, the Nobel laureate Richard Feynman first
introduced the idea of computation at a molecular level. In
1994, the concept of DNA computation was demonstrated us-
ing experiments to solve a directed Hamiltonian Path Problem
(HPP) by Adleman [1]. Since then, the possibility of DNA
computation has attracted many researchers’ attention.

DNA computation is to use DNA molecules for infor-
mation storing and processing by encoding and interpreting
DNA molecules in suspended solutions before and after DNA
complementary binding reactions. The central idea of DNA
computation is the Watson-Crick model of DNA structure,
which specifies complementary binding properties of DNA
molecules. DNA computation involves to use single-stranded
DNA segments to code the problem, let the single-stranded
DNA segments react in test tubes or substrate surfaces, and
then to find DNA binding strands and interpret the results by
applying bio-molecular techniques.

DNA computation is attractive mainly for three rea-
sons. First, the computation realizes fast parallel information
processing. Second, the process is remarkably energy efficient.
Finally, DNA molecules have very high storing capacity.

Unfortunately, DNA computation currently is too error-
prone to achieve its great potential. Many ideas of DNA
computation assume a zero error rate. In reality, errors appear
at every stage. In [1], [7], the problem of high error rates was
identified as the most challenging problem for the success of
DNA computation. High error resistant method is needed for
DNA computation. One open question is whether the error
rates in DNA manipulations can be adequately controlled [4],
[8]. Some algorithms have been proposed to handle a few of
the apparently crippling errors. Paper [6] proposed a surface-
based DNA computation algorithm to solve the minimal set
cover problem. The technique decreases errors caused by
potential DNA strand lost by affixing the DNA onto a silicon

surface. In [3], a DNA computation model has been developed
that uses dynamic programming and large size of memory
available to DNA computers. The goal is to reduce error
rates by increasing DNA strands. A more thorough study of
decreasing error rates can be found in [4], where methods
for making volume decreasing algorithms (the number of
strands decreases as the algorithm executes) more resistant
to certain types of errors are proposed. One effort in the
paper is to convert the decreasing volume problem to a
constant volume problem (the number of strands remains the
same throughout the computation). The basic idea is to add
DNA strand redundancy by increasing solution volume. The
technique requires to increase steps of operations and cannot
be applied to an algorithm that has constant volume to begin
with. The other effort proposed in the paper is to reduce the
false negative error rate in the bead separation procedure by
double encoding DNA bases. The idea is to have each DNA-
encoded base appear twice in separate locations in the strand to
increase the possibility of being extracted. However, it is still
not clear at present stage whether error rates can be reduced
sufficiently to allow a general-purpose DNA computation.

This paper will propose a genetic code based approach to
reduce error rate for DNA computation. The genetic code has
great quality assurance, because of its redundancy. Some mis-
binding results in no change in the coding words.

To better understand theoretical aspects of DNA compu-
tation, a mathematical model of DNA computation is also
proposed. The model is useful to apply mathematical tools
to solve DNA computation problems. Based on the formula-
tion, character-based DNA computation is converted into a
numerical computation problem. Propositions based on the
formulation are also presented.

II. GENETIC CODE BASED DNA COMPUTATION

Errors in DNA computation usually come from (1) DNA
strand extraction, (2) Random errors, or (3) PCR errors. These
errors can be reduced by either designing high error resistant
coding approach or developing better molecular techniques for
later DNA strand extraction. To avoid difficulty in reducing
errors at later stages, a method to address the problem at the
early phase of DNA computation is preferred. The proposed
genetic code based approach targets earlier coding stage of
DNA computation.

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 3630

A C G T

A

C

G

T Code 7

Code 4

Code 5

Stop

Arbitrary
third letter

The Third Letter
Legend

A or G

T or C

The Second Letter

T
he

 F
ir

st
 L

et
te

r

Code 7

Code 5Code 6

Code 6 Code 1

Code 1

Code 3

Code 3

Code 2

Code 2

Stop

Start

Start

Code 4

Fig. 1. Coding set for DNA computation

A. Genetic code based DNA computation

If a DNA computation problem is coded using redundant
genetic codes, the code will be highly error resistant and the
error rates will be low. Different from biological systems that
are highly diverging and require a large set of DNA codons to
code various genetic information, the set of “codons” for DNA
computation will be small. To take advantage of chemical
properties of the molecular structures and obtain a reduced
set of “codons” (called coding set for DNA computation), we
will reduce the regular codons of biological systems to obtain
smaller coding sets. One additional concern is that all coding
sets should be closed, i.e., elements of a coding set and their
complementaries (anti-codon) are within the same coding set.
This is based on the concern that DNA computation does not
use the same mechanism as biological systems for recognizing
DNA strands. We expect to have a robust coding system.
Second, the triple code mechanism will still be used. Since
there may be biochemistry and stability reasons for the triple
codes, though it is not completely clear at the present time.
The following coding sets are proposed as shown in Fig. 1.

• Start coding set: ATG, ATA, TAC, or TAT.
• Set 1: GAA, GAG, GAT, GAC, CTT, CTC, CTA, CTG.
• Set 2: CAA, CAG, CAT, CAC, GTT, GTC, GTA, GTG.
• Set 3: AAA, AAG, AAC, AAT, TTT, TTC, TTG, TTA.
• Set 4: ACC, ACA, ACG, ACT, TGG, TGT, TGC, TGA.
• Set 5: CCT, CCC, CCA, CCG, GGA, GGG, GGT, GGC.
• Set 6: GCT, GCC, GCA, GCG, CGA, CGG, CGT, CGC.
• Set 7: TCT, TCC, TCA, TCG, AGT, AGC, AGA, AGG.
• Stop coding set: TAA, TAG, ATT, or ATC.
All the above coding sets are closed with respect to the

DNA complementary operation. In addition, the above coding
scheme allows significant amount of overlapping, which leads
to highly error resistant. The coding sets are enough to code
significantly large problems by varying the length of wording.
By coding this way, many DNA base mutations may not cause
changes in word meaning for DNA computation.

B. Genetic Code Based DNA Computation to Solve the Hamil-
tonian Path Problem (HPP)

The HPP problem is to find (if there is) a Hamiltonian
path for a given graph. A Hamiltonian path is a sequence of

compatible one-way edges of a directed graph that begins and
ends at a specified vertex and enters every other vertex exactly
once. Known algorithms for this problem have exponential
worst-case complexity. The problem has been proved to be
NP-complete.

Assume that the graph has n > 0 vertices (cities) and i
is the index of a vertex [1]. The following steps are usually
followed.

1) Associate the start vertex i = 1 with one code (three
bases) from the Start coding set. Associate the end vertex
i = n with a code from the Stop coding set.

2) Associate each of the other vertices i (1 < i < n) with
a 3m-mer sequence generated by m codes (usually an
even number to keep the left and right side edges of a
city with equal length), and denote it by Oi. For each
edge i → j, an oligonucleotide Oi→j is created, which
is the 3’ 3m/2-mer of Oi followed by the 5’ 3m/2-mer
of Oj .

3) Keep only those paths that begin with codes from the
Start coding set, and end with codes from the Stop cod-
ing set. This can be done by PCR amplifying products
of the Step 1) using primers starting with codes from
the start coding set or the Stop coding set.

4) Keep only those paths that enter exactly n vertices. The
product of Step 2) is run on an agarose gel and the
3m base pair band (corresponding to dsDNA encoding
paths entering exactly n vertexes) is excised and soaked
to extract DNA.

5) Keep only those paths that enter all vertices of the graph
exactly once. This can be done by first generating single-
stranded DNA sequences from the dsDNA product of
Step 4) and then incubating the ssDNA with Ō2 conju-
gated to magnetic beads. Only those ssDNA molecules
containing O2 (and hence encoded paths which enter
vertex 2 at least once) anneal to the bound Ō2 and were
retained. The process repeat successively with Ō3, Ō4,
..., Ōn−1 and Ōn.

6) The remaining DNA sequences (paths) in the test tube
represent solutions.

To further illustrate the idea, consider an n = 7 vertex HPP
graph as given in [1], we use 12 DNA bases (4 codes from the
coding sets) to uniquely code each of the 7 cities. Fig. 2 shows
the final coding graph for each edge and vertex. The next step
is to apply DNA molecular techniques to obtain biological
solutions. Similar to the work in [1], same conclusion will be
obtained. Compared with the brute-force approach used for
solving HPP problem in [1], the proposed approach can save
40% of the coding characters, which will eventually speed
up the problem solving time. More importantly, the proposed
approach has a much lower error rate.

To demonstrate that the error rates can be reduced, assume
that the following stochastic transfer matrix of DNA sequences

3631

City 1: start

City 7: end

City 2

City 3

City 4

City 5

City 6

ATGTAC
(start+3 random bases)

TAGATC
(stop+3 random bases)

GAACAG
AAATGC

CAATTC ACAGGA

CCTGCT

GTCAGC

GCATCG

CTATTC

TCTCTG

CTAACG

Fig. 2. Coding for the seven cities of the HPP problem

are held for DNA bases {A, T,G,C}.

Γ =

⎡
⎢⎢⎣

0.9990 0.0003 0.0004 0.0003
0.0003 0.9990 0.0003 0.0004
0.0004 0.0003 0.9990 0.0003
0.0003 0.0004 0.0003 0.9990

⎤
⎥⎥⎦ (1)

After one transformation, a DNA sequence X = GATCAG
coded by codons from the coding sets 1 and 2 can be expressed
in numerical values as

Γ1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0004 0.0003 0.9990 0.0003
0.9990 0.0003 0.0004 0.0003
0.0003 0.9990 0.0003 0.0004
0.0003 0.0004 0.0003 0.9990
0.9990 0.0003 0.0004 0.0003
0.0004 0.0003 0.9990 0.0003

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where each element shows the probability that the correspond-
ing base is obtained after molecular manipulation.

It can be concluded that the original sequence X =
GATCAG is still preserved very well. After about 1000 trans-
formations, the sequence turns to be ambiguous as follows.

Γ2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2021 0.1748 0.4484 0.1748
0.4484 0.1748 0.2021 0.1748
0.1748 0.4484 0.1748 0.2021
0.1748 0.2021 0.1748 0.4484
0.4484 0.1748 0.2021 0.1748
0.2021 0.1748 0.4484 0.1748

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

It seems that the original sequence may be turned into a
different format. However, by following the proposed coding
scheme, the original word coded in X is still well preserved.
This is because the redundancy of the coding scheme. There
are 8 × 8 = 64 different combinations of codings for the six-
base DNA sequence X , and they are all coded for the same
word. Even mutation occurs after multiple transformations,
the original information remains intact. This is the beauty of
the genetic coding based method. However, if a brute force
fixed length coding approach is used, i.e., each combination
represents one scheme only, the original coding meaning
cannot still be kept intact. If any other redundancy coding
approach that has less than 64 combinations to represent one
coding scheme is used, the proposed genetic coding scheme
still performs the best.

III. A MATHEMATICAL FORMULATION OF DNA
COMPUTATION

Define the following notations:

• Let X = xixi+1...xj and Y = yiyi+1...yj represent
single-stranded DNA segments, where i, j ∈ N and
i ≤ j. N is the natural number. xi, yi ∈ {A, T,G,C}.

• The complementary sequence of X is defined as X̄ .
• Let Ti represents the i-th test tube, where i ∈ N . Ti(+X)

means that the test tube containing DNA segment X.
Ti(−X) means that the test tube Ti does not contain
DNA segment X.

DNA computation involves many bio-molecular operations
including hybridization, separation, cutting and pasting DNA
strands at desired locations. These operations can be general-
ized at DNA strand level as follows, where “→” represents
“the result of” reactions from the left hand side operations.

• Ligation: plus “+” operation. Ligation concatenates seg-
ments of DNA. Biochemically, it is often invoked after
an annealing operation. For two single-stranded DNA
segments X and Y , a ligation operation can be expressed
as “X + Y → [XY]”, where [XY] represents a newly
created single-stranded DNA segment.

• Cut: minus “−” operation. Restriction enzymes can cut
a strand of DNA at a specific address. Some restriction
enzymes only cleave single-stranded DNA, while others
only cleave double-stranded DNA segments. If a single-
stranded DNA X is cut at position n from the 3′ end
of a DNA segment, the process can be expressed as
“−X(n) → Y +Z”, where Y and Z are newly generated
single-stranded DNA segments and Y has a length of
n − 1.

• Hybridization: multiplication “•” operation. It is a
process when single-stranded complementary DNA seg-
ments spontaneously form a double-stranded DNA. For
single-stranded DNA X and X̄ , the binding process
can be described as “X • X̄ → (XX̄)”, where (XX̄)
is a newly created double-stranded DNA. DNA strands
enclosed by brackets “(” and “)” are double-stranded
DNA and cannot be bonded with other strands unless
further melting operation is applied.

• Melting: division “\” operation. Heating can be selec-
tively used to melt apart short double-stranded DNA
segments while leaving longer double-stranded segment
intact. For example, “\(XX̄) → X + X̄” means melting
the double-stranded DNA (XX̄) as two complementary
single-stranded DNA segments X and X̄ .

All the above operations are single step DNA molecule re-
actions, which are extremely fast compared with conventional
silicon computation. In addition to strand level operations, the
DNA computation may use the following operations at test
tube level, which are performed using sets of DNA segments.

• Mergence: union operation “∪”. The operation means two
test tubes can be combined, usually by pouring one test
tube into the other. For example, “T1 ∪ T2 → T ” means

3632

melting two test tubes T1 and T2 together to produce a
new test tube T .

• Separation or extraction: difference operation “−”. The
expression “−(Ti, X) → Tj(+X)∪Tk(−X)” represents
a separation operation applied to the test tube Ti on DNA
segment X . The operation produces two test tubes, where
the tube Tj contains a string X and the tube Tk does
not contain the DNA segment X , where i, j, k ∈ N .
Either Tj and Tk could be empty set φ. This step is done
using gel electrophoresis. It requires the DNA strands to
be extracted from the gel once the DNA segments of
different length have been identified.

• Amplification: product operation “×”. Given a test tube
containing DNA strands, the operation is to make multi-
ple copies of a subset of the strands presented. Copies are
usually made with PCR. For example, “×T → T1 ∪ T2”
means two test tubes T1 and T2 containing copies of a
subset of DNA strands are produced from the test tube
T .

• Detection: question operation “?”. This operation means
that gel electrophoresis is applied to see if anything of
the appropriate length is left within a test tube after PCR
amplification. For example, “T?X → True” means that
the test tube T contains at least one string X . Otherwise,
“T?X → False”.

• Destroy: intersection operation “∩” with an empty set.
Subsets of strands can be systematically destroyed or
“digested” by enzymes that preferentially break apart
nucleotides in either single- or double-stranded DNA
segments. The process can be expressed as “T ∩φ → φ”.

To further investigate DNA computation as a computational
problem, the following concepts are developed.

A. Conversion of character-based DNA sequences to numeri-
cal sequences

Three original methods are proposed to convert character-
based DNA sequences into numerical sequences. One method
is to use complex numbers. The second method is to use
integer numbers. The third method is to convert DNA sequence
into vectors.

1) Complex number representation: Define a function
f(x) : {A, T,G,C} → {1,−1, i,−i} as

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x = A;
−1, x = T ;
i, x = G;
−i, x = C.

(4)

where x is one of the four nucleotides.
The complementary base of each DNA base x can then be

calculated by the following inverse function

x̄ = f−1(−f(x)) =

⎧⎪⎪⎨
⎪⎪⎩

T, x = A;
G, x = C;
C, x = G;
A, x = T.

(5)

By definitions (4) and (5), complementary DNA sequences
(either numerical or character-based) can be easily obtained.

This means only single-stranded DNA segments need to be
specified. The complementary strands can be easily generated
using the above functions in either character-based or numer-
ical format.

2) Integer number representation: DNA bases may be
mapped as integer numbers as well. Define a function f(x) :
{A, T,G,C} → {0, 1, 2, 3} as

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x = A;
1, x = C;
2, x = G;
3, x = T.

(6)

Similarly, the complementary base of x can be determined
by the following inverse function

x̄ = f−1({3} − f(x)) =

⎧⎪⎪⎨
⎪⎪⎩

T, x = A;
G, x = C;
C, x = G;
A, x = T.

(7)

where {3} represents an appropriate finite length sequence
consisting of multiple copies of integer 3. The numerical
calculation can then be conducted base by base. For example,
the numerical sequence of a DNA segment X = AGGCAT
is f(X) = f(AGGCAT) = 022103. The complementary
segment of X can be easily obtained as X̄ = f−1({3} −
f(X)) = f−1(311230) = TCCGTA.

3) Vector representation: In vector space analysis, numer-
ical value based DNA sequences can be expressed as rows of
a matrix. Addition of such kinds of matrices can be regarded
as DNA hybridization process. Scaler multiplication produces
multiple copies of the sequences in a test tube. Consider the
four DNA bases {A, T,G,C}T as a vector, any DNA strand
X = x1x2...xn, n ∈ N , can then be expressed as a vector by
a transfer matrix Π as

X = Π

⎡
⎢⎢⎣

A
T
G
C

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p11 p12 p13 p14

p21 p22 p23 p24

...
...

...
...

pn1 pn2 pn3 pn4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

A
T
G
C

⎤
⎥⎥⎦ (8)

where
∑4

j=1 pij = 1, ∀i ∈ N . Specifically,

pi1 =
{

1, xi = A.
0, otherwise.

, pi2 =
{

1, xi = T.
0, otherwise.

pi3 =
{

1, xi = G.
0, otherwise.

, pi4 =
{

1, xi = C.
0, otherwise.

(9)
In the above definition, each row of the matrix Π represents

one DNA base. The complementary sequence of X̄ can then
be obtained by simply swapping column one with column two,
and column three with column four as follows

X̄ =

⎡
⎢⎢⎢⎣

p12 p11 p14 p13

p22 p21 p24 p23

...
...

...
...

pn2 pn1 pn4 pn3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

A
T
G
C

⎤
⎥⎥⎦ (10)

3633

For example, the transfer matrix of a single-stranded DNA
X = ACGTGGATCT is shown in Π1. The complementary
sequence of X is X̄ = TGCACCTAGA, whose transfer
matrix is given in Π2.

Π1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Π2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 0 0 1
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

The above definitions (9) and (10) make it possible to define
a DNA strand as an n × 4 matrix.

The DNA nucleotides may also be defined as a vector
directly. For example, A = [1 0]T , T = [−1 0]T , G = [0 1]T ,
and C = [0 − 1]T . Then a DNA sequence can be expressed
as a 2 × n matrix, where n is the number of bases for the
DNA sequence. For example, a single-stranded DNA sequence
X = GATCCAGT can be expressed as[

0 1 −1 0 0 1 0 −1
1 0 0 −1 −1 0 1 0

]
(12)

In a biological process, mutations often occur [5]. A sto-
chastic transfer matrix Γ can be defined as follows to reflect
this phenomena based on the above definitions (9) and (10).

Γ =

⎡
⎢⎢⎣

ρaa ρat ρag ρac

ρta ρtt ρtg ρtc

ρga ρgt ρgg ρgc

ρca ρct ρcg ρcc

⎤
⎥⎥⎦ (13)

where ρij represents the probability of transformation from
DNA base i to j, where i, j ∈ {a, t, g, c}. Obviously, ρia +
ρit + ρig + ρic = 1, ∀i ∈ {a, t, g, c}. ρii is the probability for
correct transformation.

The inner product (same definition as in linear algebra) of
a DNA sequence X can then be expressed as XT X , which
is a diagonal 2 × 2 matrix. The first and the last elements in
the matrix represent the number of bases in X from the set
{A, T} or {G,C}, respectively.

Once a DNA sequence is converted into a numerical se-
quence, many interesting properties can be investigated. Next,
some theoretical results are presented.

B. Some theoretical results

By definition (4) and in viewing a DNA sequence as a vector
in the format of (12), the following results are obtained. Proof
of these results are straightforward.

Proposition 2.1: If the base-by-base plus operation of two
equal length numerical value based DNA sequences results in
a zero vector, then the two DNA sequences are complementary
to each other.

Proposition 2.2: If the base-by-base plus operation of all
numerical value based DNA sequences in different test tubes

results in a zero vector, then the hybridization by mixing the
test tubes should be complete. A complete hybridization means
all single-stranded DNA sequences find their complementaries.

Proposition 2.3: Under the definition (4), if the inner
product of two equal length sequences is not a real number,
then the two sequences are not complementary to each other.
It can be further claimed that they are not complementary in
G and C.

Proposition 2.4: Under the definition (4), ∀X,Y ∈ Rn (n
represents the number of DNA bases in the strands), if X and
Y have a complete hybridization and XT Y = 0, then X and
Y have equal number of DNA bases from {G,C} and {A, T}.
Similarly, if a complete hybridization occurs, but XT Y > 0,
it means that there are more bases from {G,C} set than from
{A, T} set. Otherwise, if complete hybridization occurs, but
XT Y < 0, it means that there are more bases from {A, T}
set.

Proposition 2.5: Under the definition (4), ∀X,Y ∈ Rn

(n represents number of DNA bases in the strands), we have
‖XT Y ‖ < ‖X‖‖Y ‖, where ‖XT Y ‖ represents the length of
the DNA strand after hybridization. ‖X‖ and ‖Y ‖ represent
the length of single-stranded DNA segments. If a complete
hybridization occurs, ‖XT Y ‖ = n. If none of the bases is
hybridized, then ‖XT Y ‖ = 2n. This relationship is similar to
the well-known Cauchy-Schwartz inequality in linear algebra.

To investigate properties under the above formulation (12)
in vector space, the following definitions are proposed.

Definition: Equivalent transfer matrices. Since each single
strand of a double-stranded DNA uniquely determines the
other strand, each single-stranded DNA can be alternatively
used to describe the same DNA double strand. Transfer
matrices of a single-stranded DNA and its complementary are
regarded as equivalent to each other. For example, the above
Π1 in (11) is an equivalent transfer matrix of the Π2 in (??)
expressed as Π1 ⇔ Π2, and vice versa. Two DNA sequences
are complementary to each other, if and only if their transfer
matrixes are equivalent.

Note, two DNA transfer matrixes are equivalent, if and only
if one matrix is the result of swapping column one with column
two, and column three with column four of the other matrix.

Proposition 2.6: If DNA transfer matrices A ⇔ B and
B ⇔ C, then A is the same as C.

Definition: Similar DNA sequences. Two equal-lengthed
DNA sequences that have less than certain percent (usually
10% in practice) different bases in order are regarded as similar
sequences. The binding results for similar sequences may be
hard to be distinguished using current molecular techniques. It
is advised not to use similar sequences to code different words
in DNA computation.

Proposition 2.7: Necessary condition for similar se-
quences. Under the formulation (12), if two DNA sequences
are similar, then the sum of all columns of the transfer matrices
has numerical value variations less then pre-defined percent of
the length of a single DNA sequence.

3634

IV. APPLICATIONS

The above mathematical formulation of DNA computation
may be used in the following applications.

A. Word design for DNA computation

In DNA computation, to reliably store and retrieve in-
formation in synthetic DNA strands, DNA word design is
very important. DNA word design is to design sets of equal-
lengthed words over the alphabet {A, T,G,C} satisfying
certain constraints. The primary constraint is ∀X,Y ∈ {DNA
words} at least d mismatches between X and Y , and between
XR and Ȳ , where XR represents the reverse of X [9].

Based on the above formulation, the word design problem
is equivalent to the following mathematical problem: choosing
X and Y sequences from characters {A, T,G,C}, so that the
number of non-zero bases from the base-by-base operation of
f(X) plus f(Y), and f(XR) plus f(Ȳ) are greater or equal
to d. Based on the above discussion, solvability and upper or
lower bounds of the DNA word design can be solved [4].

B. Natural DNA processing

The above formulation may also be used to process natural
DNA for sequencing, fingerprinting and mutation detection.
The idea is to first convert character-based DNA sequences
into numerical sequences, then apply numerical computation
techniques.

An example is multiple DNA sequence alignment. The pro-
posed mathematical formulation may save significant amount
of machine time, if the sequences are expressed and compared
in the numerical domain.

For example, to detect long DNA sequence mutations as
shown in equation (14), the proposed method can be applied
first to convert the character-based sequences into numerical
sequences as shown in (15). A numerical minus operation
can then be conducted. If the final result is non-zero, this
implies that there is mutation. The comparison is efficient
by avoiding tedious character-based side-by-side comparison.
This is called re-coding DNA. As pointed in [10], the re-
coding has great potential application for DNA engineering
applications. The formulation proposed in this paper provides
an ideal mechanism for the re-coding process.

ATTCCAGA · · ·GACCTTGAGT
ATTCCATA · · ·GACCTCGAGT

(14)

03311020 · · · 2011332023
03311030 · · · 2011312023 (15)

where “· · · ” may represent thousands or millions of DNA
bases.

C. Combinatorial chemistry

The mathematical formulation may also be used in com-
binatorial chemistry for pseudo-enzyme design [2]. The goal
is to create molecules with desired properties, which may be
difficult or expensive by direct experimental studies. With the
above mathematical formulation, the molecule design process

can be done in a numerical simulation mode. The beauty
of this approach is that the tedious and expensive pseudo-
molecule experimental design process may be avoided.

It is also interesting to note that most advanced numerical
operations for conventional computers require combinations of
a number of basic silicon computer operations. However, they
may be completed by much less operations using DNA com-
putation as shown in the mathematical operations. The above
symbolic operation may be used for algorithm implementation
in DNA computation.

V. DISCUSSION AND CONCLUSIONS

The high error rate is a major concern for DNA com-
putation. This paper proposes a genetic code based DNA
computation method to reduce the error rate. The idea is
inspired by the genetic code of biological systems, except
that the codon sets have been reduced. Redundancy in the
genetic codes plays an important role in reducing error rates.
Different from many methods proposed in the open literature,
the proposed method does not require any additional bio-
molecular techniques or steps, and it is not limited to any
specific type of errors, which is a great advantage compared
with other methods in the open literature.

A mathematical formulation of DNA computation and some
propositions have also been presented in this paper. The
formulation can convert a character-based DNA computation
problem into a numerical value based computing problem.
This will allow researchers to build theoretical framework
for DNA computation, and analyze algorithmic as well as
computational efficiency of DNA computation. Some poten-
tial problems may be further studied within the proposed
mathematical framework, such as how can we increase DNA
computational efficiency? what is the ultimate limit of the
error-rate for DNA computation using genetic coding? what
are the solvability and the upper or lower bounds for the DNA
word design? We hope more discussions can be inspired in
these regard.

REFERENCES

[1] L. Adleman, Molecular Computation of Solutions to Combinatorial
Problems, Science, vol.266, pp. 1021-1024, Nov. 1994.

[2] D. Bartel, and J. Szostak, Isolation of new ribozymes from a large pool
of random sequences. Science, vol. 261, pp. 1411-1418, September 1991.

[3] E. Baum, and D. Boneh, Running dynamic programming algorithms on
a DNA computer. the 2nd DIMACS workshop on DNA based computers,
pp. 141-147, 1996.

[4] D. Boneh, and R. Lipton, Making DNA computers error resistant.
Technical report, Princetion University, CS-TR-491-495, 1996.

[5] R. Durrett, Probability models for DNA sequence evolution. New York :
Springer, 2002.

[6] T. Eng, and B. Serridge, A Surface-Based DNA Algorithm for Minimal
Set Cover. the 3rd DIMACS workshop on DNA based computers, pp.
74-82, June 1997.

[7] R. Lipton, Using DNA to solve NP-Complete Problem. Science, vol. 268,
pp. 542-545, April 1995.

[8] C. C. Maley, DNA computation: theory, practice, and prospects, Evolu-
tionary computation, vol. 6, no. 3, pp. 201-229, 1998.

[9] A. Marathe, A. E. Condon, and R. M. Corn, On combinatorial DNA word
design, J. Computational Biology, vol. 8, no. 3, pp. 201-220, 2001.

[10] J. H. Reif. Paradigms for Biomolecular Computation, Unconventional
Models of Computation, edited by C. S. Calude, J. Casti, and M. J.
Dinneen, Springer-Verlag, New York, January 1998, pp 72-93.

3635

	Genetic Code Based Coding and Mathematical Formulation for DNA Computation
	Recommended Citation

	Title

