
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Mathematics and Statistics Faculty Research &
Creative Works Mathematics and Statistics

01 Jan 1995

Ensuring the Satisfaction of a Temporal Specification at Run-Time Ensuring the Satisfaction of a Temporal Specification at Run-Time

Grace Tsai

Matt Insall
Missouri University of Science and Technology, insall@mst.edu

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/math_stat_facwork

 Part of the Computer Sciences Commons, Mathematics Commons, and the Statistics and Probability

Commons

Recommended Citation Recommended Citation
G. Tsai et al., "Ensuring the Satisfaction of a Temporal Specification at Run-Time," Proceedings of the First
IEEE International Conference on Engineering of Complex Computer Systems, 1995. Held jointly with 5th
CSESAW, 3rd IEEE RTAW and 20th IFAC/IFIP WRTP, Institute of Electrical and Electronics Engineers (IEEE),
Jan 1995.
The definitive version is available at https://doi.org/10.1109/ICECCS.1995.479365

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Mathematics and Statistics Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat
https://scholarsmine.mst.edu/math_stat_facwork?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICECCS.1995.479365
mailto:scholarsmine@mst.edu

ENSURING THE SATISFACTION OF A TEMPORAL
SPECIFICATION AT RUN-TIME

Grace Tsai
Mathematics and Computer Science

Fairleigh Dickinson University
Teaneck, N J 07666, USA

Matt Insall
Department of Mathematics and Statistics

University of Missouri-Rolla
Rolla, MO 65401 USA

Abstract
A responsive computing system is a hybrid of real-

time, distributed and fault-tolerant systems. In such a
system, severe consequences can occur if the run-tame
behavior does not conform to the expected behavior or
specifications. In this paper, we present a formal ap-
proach t o ensure satisfaction of the specifications in
the operational environment as follows. First we spec-
i f y behavior of the systems using Interval Temporal
Logzc (ITL). Next we give algorithms for trace check-
ing of programs in such systems. Finally, we present
a fully distributed run-time evaluation system which
causally orders the events of the system during its ex-
ecution and checks this run-time behavior against its
ITL specification. The approach is illustrated using a
train-set example.

1 Introduction
A responsive computing system [I] is one which is

required to respond to internal programs or external
inputs in a timely, dependable and predictable man-
ner. These systems are a hybrid of real-time, dis-
tributed and fault-tolerant systems. In such a system,
any failure can cause a catastrophe, and hence, it, is
very important to ensure that run-time behavior of
the system conforms to its expected behavior (specifi-
cation).

The specification of such critical systems can be
rigorously represented using formal methods of logic.
Formal methods are the use of mathematical tech-
niques in the design and analysis of computer hard-
ware and software. One of the many advantages of
using formal methods is that when a property is ob-
tained, it comes from certainty and not from doubtful
or approximate inferences.

Conceptualization. The goal of our work is to find
ways to execute program specifications along with
the actual program’s execution for purposes of run-
time assurance - namely for error detection within the
scope of fault tolerance. If the execution of the pro-
gram does not satisfy the specification at run time,

Bruce McMillin
Department of Computer Science

University of Missouri-Rolla
Rolla, MO 65401 USA

then an error has occurred. Since error detection is
conceptually the most difficult problem in fault toler-
ance, this quantification of error detection has proved
quite powerful - a system need not rely on hardware or
software confidence to avoid or detect errors; the spec-
ification provides the absolute truth of correctness.

The notion of “the program satisfies the specifica-
tion” is a powerful abstraction as it immediately draws
the researcher into the area of formal logic to express
the specification. This, coupled with an existing set of
axioms and inference rules for a particular (program-
ming) language provides the appropriate level of rep-
resentation for run-time error checking. Essentially,
the same tools used in program verification are im-
mediately applicable to run-time assurance, namely
execution of the specification in either a predicate or
temporal framework.

Our work provides the run-time semantics to carry
out such execution of specifications, possibly in the
presense of failed hardware and/or software. Thus, the
approach taken here adopts a formalized specification
language together with a mechanized support tool to
allow detection of certain types of errors and faults.

Methodology. There are three steps involved in
this approach of ensuring a system’s specification at
run-time:

1. Specify properties of a responsive computing sys-
tem using Interval Temporal Logic (ITL) formu-
las,

2. build a run-time event history, the causal struc-

3. evaluate properties of the system according to the

At step 1, the logic ITL was developed to specify
behavior of a responsive computing system. In par-
ticular, we use interval formulas and responsiveness
assertzons to denote properties of a system. These
formulas denoting system specifications are expected
to hold within bounded intervals. Thus, an error has

ture of the execution, and

event histories.

397
0-8186-7123-8/95 $4.00 0 1995 IEEE

occurred if the system does not satisfy these formulas
within bounded intervals.

At step 2, we give algorithms to obtain a run-time
history or to build the causal structure of the execu-
tion. The run-time history of a (distributed) system
can be obtained by collecting and partially ordering
events’ occurring in the system’.

At step 3, we apply a decision procedure, 11, to
check whether the collected event history satisfies the
specification of a system derived at step 1. Since an
event history is a sequence of events occurring in a
system, it represents a process’ observation of all the
processes during execution. This history can be uti-
lized to do evaluation of assertions at run-time. The
evaluation is a simple matter, then, to break down the
temporal assertions into predicate calculus expressions
quantified over this history sequence3. Thus. this ap-
proach uses the ITL formulas to detect errors. If the
run-time behavior violates its specification denoted
by ITL formulas, then appropriate actions should be
taken.

For example, one way to avoid cars and trains oc-
cupying a crossing at the same time is to lower a gate
before a train arrives on the crossing [2]. An ITL
formula (step 1) for this situation can be used to rep-
resent the timing constraints of the system. Knowing
how long it takes to lower the gate, and the minimum
time that can elapse between a train passing a sen-
sor and reaching the crossing, we can deduce timing
constraints on the gate controller. At run-time, then,
we collect the events of the train passing the sensor
(step 2) and can check if the gate controller violates
the ITL specifications denoting these constraints (step
3). If yes, actions should be taken to react to the error.

In our previous work, we used a decision proce-
dure to check satisfaction of liveness assertions in
the operational environment [3]. A liveness assertion
(4 + EF+) denotes that when a program starts from
a state satisfying assertion 4, eventually it will get
to a state satisfying assertion $J. This kind of asser-
tion can not describe properties that must hold within
bounded intervals and hence is not suitable for re-
sponsive computing systems. Thus, this paper focuses
on constructing a decision procedure II to check, at
run-time, satisfaction of system specifications within
bounded intervals of time.

In related work, for the determination of satisfac-
tion of formulas, [4] translates temporal logic formu-
las into finite automata. In contrast, we establish a
correspondence between states and events in the col-
lected event history and examine the history against
t,he specification for the determination of satisfaction

]An event can be modeled as execution of one statement or
a set of statements.

2Note that we consader neither the undedyzng scheddang
strategaes nor predcet whach branches OT statements will be ex-
ecuted a t run-tame.

3 f ~ r example, the temporal expression “now and always p ,
in predicate calculus becomes Vz in history H (of events H ,
indexed by i) such that H, A program to check this
temporal expression over a collected history, H , loops through
H checking that each event H , satisfies p

p .

of formulas. The work of [5] embeds system con-
straints into programs and examines them at run-time.
However, they use a centralized monitor to obtain an
execution history, while our method does not require
monitors to compute histories.

The organization of this paper is as follows. In Sec-
tion 2, we introduce the logic ITL. Section 3 describes
the notion of an event, our model of distributed com-
putation, and other definitions to be used in this pa-
per. In Section 4, we describe a timestamping scheme,
vector clocks, to order events in a collected history.
Next, we present an algorithm, Compute History, to
construct event histories and then give a decision pro-
cedure for the determination of satisfaction of ITL for-
mulas at run-time. Section 5 presents a train set ex-
ample to illustrate the application of operational eval-
uation. Section 6 concludes this paper.

2 Interval Temporal Logic
This section presents a logic, Interval Temporal

Logic (ITL), for the responsive computing systems.
The logic ITL is an extension of Interleaving Set Tem-
poral Logic (ISTL) [6]. It adopts a partial order se-
mantics which considers a distributed computation as
a set of partially ordered events. Hence, this logic
ITL can capture temporal and distributed aspects of
the responsive systems that we are modeling.

With the logic ISTL, one can not reason about a
property within a bounded interval of time, which mo-
tivates the development of the ITL for the responsive
computing systems. There are other temporal logics
for real-time systems for example [7, 8, 9, lo]. The
logic [8] does not have a proof system for reasoning
about a system. [9] is designed for reasoning about
hardware, while we aim at a logic which can reason
about a distributed real-time system. In our approach,
the specification of a system will be tested to detect
errors at run-time. So we need to build a mechanized
support tool for the logic. For efficiency considera-
tion, we built the logic ITL which has a small set of
syntactic forms and includes only the inference rules
necessary for the run-time evaluation. Hence we do
not adopt the logic [9, lo].

Due to the page limits, we only present two types of
formulas, znterval formulas and responsive assertzons.
The reader may refer to [11] for the syntax and seman-
tics of the logic. Informally, an znterval is of the form
b] or [p, q1 and an znterval formula is of the form b]qi
or [P,q]4 where p , q and 4 are any formulas of ITL.
An interval formula b]4 ([p,q]q5) is true over a state
sequence n, iff the interval b] (b, q]) cannot be found
or the formula 4 holds on every interval b] (b,q]) .
Thus, there are two ways to conclude that an inter-
val formula holds. This would cause a problem in the
composition of interval formulas to create a ’71eads-to”
property. Thus, the following responszveness assertion
is proposed.

Definition 2.1 A responszveness assertzon 2s a path

and 4 are formulas of ITL .

A responsiveness assertion (b]4 -+ b,q]EF$) ‘s
true over a state sequence n, iff the following holds: if

formula of the form (b14 + [P, qIE&J), where P, q14j

398

r$ holds whenever p holds, then t,!J will occur at any q
following p . This assertion ensures bounded response
of t,!J to [p]4 within the interrals [p, q].

The above formulas are to be applied to a run-time
system to check if a system does what it is supposed.
The following notation and background are necessary
to understand the proposed algorithms for evaluating
the ITL formulas at run-time.

3 Background
A distributed program consists of n processes,

PI , P2, . . . , P,, which cooperate to perform a compu-
tation. Each process resides on a unique processor.
The mapping between processors and processes is one-
to-one. There are no global clocks, and processes
must communicate via message-passing to exchange
information. Thus, the events occurring within a pro-
cess can be totally ordered according to its processor’s
clock while events occurring within other processors
cannot.

There are three types of operations, internal (lo-
cal) operations, send operations, and receive opera-
tions. A send (receive) event of a processor includes
execution of a sequence of local operations followed
by a send (receive) operation in that processor. Send
or receive events are referred to as externally observ-
able events. The externally observable events can be
partially-ordered by any processor whereas internal
events of a processor are non-observable by other pro-
cessors.

The following definitions are necessary before the
presentation of the algorithms.

Notation 3.1 Event executaon an a dzstrzbuted pro-
gram as represented b y a daagram, where each hor-
azontal lane descrabes one process behavaor, and the
horazontal darectaon of each lane denotes tame whach
ancreases from left to raght. Message exchanges are
shown b y darected lanes.

Definition 3.1 Event executaon an a program forms
an arreflexave partaal order(denoted b y +) on the
events whach occur an the program.

Definition 3.2 Event e precedes event f an an execu-
taon, a.e., e +- f , af and only af any one of the followang
condataons holds [12] I

e and f are events of the same process, and e
occurs before f ,

e is a send event, and f is the corresponding re-
ceive event, or

there exists an event g , such that e .+ g , and
s - f f .

Note that we assume that a system has been verified
to be deadlock-free.

Definition 3.3 Two events e , f are causally re-
lated if either e + f or f + e holds. If neither
e -+ f nor f + e holds, then e and f are considered
as concurrent or independent events.

Definition 3.4 A history of a program P is a pair
h =< J , v > where J is the initial interpretation and
v = a1, a2, . . . , a, is a sequence of events of the pro-
gram in the causal relation .+ order.

Throughout the paper, we will use the letter J in a
history (e.g., h =< J , v >) to denote an initial state.

Definition 3.5 Let A be a collection of events of a
program. Given an initial state J and two sequences
of events v and w (v , w E A*), two histories h =<
J , v > and h‘ =< J , w > are equivalent, i f there exist
histories < J , v1 >, < J , v2 >, . . . , < J , v, > with 01 =
v and v, = w and for each 1 5 i < n, there exist a f ,
,d and x , y E A*, such that vi = xapy, vi+l = xpay.
In other words, vi and vi+l only differ b y the order of
adjacent symbols which are independent according to
the causal relation + of Definition 3.2 [6].

Definition 3.6 A trace is an equivalence class of
histories. denoted bu TJ. wl where J is an initial state

V L ’ J

and < J,’w > as some member of the equivalence class
I J , ~1([1311 [61b

Definition 3.7 Let a set v h k be a processor PLs
collection of events including processor P i s (local)
events, and those it observes (processor P, commu-
nicates with processor Pk about its local events). This
set v h k denotes processor PLs history. Also, proces-
sor Pk ’s knowledge or view about system execution
is based on the events an its history v i k .

Notice that the history h =< J , v > is a complete
history of a program, which contains events of the
whole execution of the program, while the history v h ,
of processor Pk is a partial history or a collection of
events observed or executed by processor Pk during
execution.

Definition 3.8 Let ek,l, ek,2, . . . , ek,, be the first,
second, . . ., nth observable
(send or receive) events of processor Pk. A n event
ek,m is the mth event ofprocessor 4.

4 Event Histories
In this section, we present algorithms for the con-

struction of event histories to represent system execu-
tion. These histories will be used to evaluate system
specifications written in ITL formulas (described in
the following section). First, we gives a brief introduc-
tion to events, our model of distributed computation
and the notation and definitions used in this chapter.
4.1 Ordering Events

Recall that a history v h k is a collection of events
observed or performed by processor Pk (process) dur-
ing execution. Among these events, some are causally
related, while some are not causally related (indepen-
dent). Thus, a time-stamping scheme is necessary
to decide causality of any two events in a history.
What we would like is a clock scheme that imposes
no arbitrary orderings on any two events which are

399

not, originally causally related. Thus, vector clocks
(114, 15, IS]) are chosen to determine causality be-
tween any two events.

Vector Clock Scheme. Let Ci be the vector clock
of process Pi, and let Ci denote the clock value after
the execution of event ea,k. On sending a message, a
process Pi timestamps the message by appending the
clock value to it. When process Pi executes an event
e , ,the following operations are performed on its clock
C”

Operation 1: for each event e , Pi increments its
clock Ci on the i th component of the vector, i.e.,
Ci[i] = Ca[[i] + 1, where Ca[i] denotes the ith com-
ponent of vector C’.

Operation 2: for a receive event e with a vector
timestamp T, Vm, Ca[m] =
m a z (C i [[m] , T[m]), where Ci[m] andT[m] denote
the mth components of vectors Ci and T , respec-
tively. In other words, the value of each compo-
nent of vector Ci is obtained by taking the maxi-
mal value ,from the corresponding components of
vectors C8 and T.

The following definition describes the mechanism of
deciding causality of any two time-stamped events.

Definition 4.1 Given t w o t i m e s t a m p s (vectors) C;,
C/ for events ei,k and e j , l , respectively, the relation
(ei ,k + e j , l) holds, i$

(vr,Ci[r] 5 C { [T]) / \ (~ S , ~ ~ [S] < c { [s]) .

In ot,her words, event ei,k occurs before event e j , l ,
if and only if all the components of Ci are less than
or equal to the corresponding components of C{ and
there exists a component of Ci which is strictly less
than that of C;.
4.2 Correct Histories and Algorithms

In Section 3.2, we described vector clock times-
tamping which can be used by a processor in a dis-
tributed system to order events from different proces-
sors. The purpose of this subsection is to show that
a processor Pk can construct an execution history vhk
without a global clock and without any moni tors . We
begin with the definition of correct histories and then
present an algorithm Compute His tory , which allows a
processor Pk to construct an execution history vh, by
collecting events occurring in the system. Finally, the
history vhk constructed according to the algorithm is
shown to be correct.

Correct Histories. Recall that a history Vh, is a col-
lection of events executed or observed by processor Pk
during execution, and it is processor 4 ’ s view of all
the externally-observable events performed by other
processors involved in a computation. The objective
is to utilize this history to check for a violation of a
program’s specification at run-time. Thus, it is very

important to have correct histories. The following def-
initions show that a history is correct with respect to
the history h =< J , v > iff its continuation (see Def-
inition 4.2) is a member of the equivalence class of
history h.

Definition 4.2 A history h =< J , w > i s a contin-
uation of a his tory h‘ =< J , w‘ >, if (1) for every
event e i n h‘, e i s also i n h, and (2) causality i n h’
implies causality i n h.

Definition 4.3 For a processor 4 , i f s (run- t ime)
his tory v h k =< J , w > i s correct with respect t o the
his tory h =< J , v >, if and only if the fol lowing con-
dition holds:

there exists a his tory (Vj,)’, a continuation
of vh,, such that (Vh,)’ i s a m e m b e r of the
equavalence class of < J , v >, i . e . ,
(Vh,)’ =< J , W >E [J , U] .

Notice that, in Definition 4.3, histories h and (Vh,)’
are equivalent, where h is a correct and complete his-
tory of a program and (Vh,)’ is a history resulting
from extending the history Vh,. The following propo-
sition shows that a his tory v h k i s correct, if and only
if causakty among events i n vh, as preserved during
execution.

Proposition 4.1 For a processor 4 , i t s h is tory
Vh, =< J , w > as correct wi th respect t o a h is tory
h =< J , v > i f and only zf for events i n v h k , causal-
i t y i n vh, U Causality i n h, i . e . , causality i n \%, i s
preserved during execution.

Proof: (if part) If the history Vj, is correct, then
there exists a continuation (Vh,)’ =< J , w’ > of Vh,,
and < J , w’ >E [J , U] . In other words, < J , w’ > and
< J , v > only differ by the order of independent opera-
tions, which implies v and w’ have the same orderings
for those causally related events, i.e., causality in h e
causality in (Vh,)’. Since (Vh,)’ is a continuation of
v h k , for the events in v h k , causality in v h k U causality
in Vh,)’. Therefore, for the events in vh,, causality

in Vh, is preserved during execution.
(only-if part) From assumption for events in Vhk,

causality in vh, causality in h, we know that h is a
continuation of Vh, . Then, there exists a continuation
(Vh,)’ = h of vh,, such that (Vh,)’ and h are equiva-
lent. By Definition 4.3, the history v h k is correct with
respect to the history h. 0

4.3 Computing Histories in a Non-Faulty
Environment

In this subsection, we present an algorithm which
allows a processor Pk in a distributed system to collect
events into a history vh, , limiting ourselves, for now,
to a non-faulty environment [17]. Later, it will be
shown that these histories can be utilized to detect a
violation of processors’ run-time behaviors.

Main idea. A processor Pk relies on communica-
tions to find out events that have occurred in other

in i U causality in Vh,. This implies that causality

400

e21 e2.2
Figure 1: Message Passing and Event Contents

processes, and to collect these events into its history
vhk. Thus, whenever there as a communication, pro-
cesses exchange their latest observations (histories) of
event occurrences in the system4. After the exchange,
processors incorporate the received histories into their
own histories. Through the exchanges of histories, ev-
ery processor can obtain a view of the execution of all
the other processors in the system.

Now, we describe the contents of events, the rele-
vant information for processors to compute their his-
tories. Then, examples are given to illustrate how
processors exchange their histories (observations) , fol-
lowed by the algorithm Compute History.

Definition 4.4 Let a tuple tl = (processor, war =
va1,time) denote a timestamped local operation. Let a
tuple t2 = (processorl, processor2, sendlreceive,
t ime) represent a timestamped send/receive operation
of processorl, where processor2 is the corresponding
communicating processor. A send/receive event e is
denoted b y (t l , t l , . . ., t l , t2).

From the above, a tuple can represent a
timestamped local operation or a time-stamped
sendlreceive operation, and a sendlreceive event e
contains information of local operations followed by
an send/receive operation, i.e., (t l , t l , . . . , t l , t 2) . For
example, in Figure 1, there are two send events, el 1
and e1,2. The contents of these two events are as fol-
lows.

Events e1,l shows that at time [1,0] the value of 1:
in processor PI is 1, and PI sent a message to Pz at
time [2,0]. Likewise, event e1,2 shows that at time
[3,0] the value of z in processor PI is 5 , and PI sent
a message to P2 at time [4,0]. Here, the result of a
local operation, z = 1, is considered as part of the
next (observable) event e1, l . Similarly, the result of
a local operation, 1: = 5 , is considered as part of the
next (observable) event e1,2.

Based on this example, then, how does processor P2
incorporate the received events into its history vha?
The following describes the incorporation of an event
into a history.

4Note that, for efficiency considerations, only those events
which have not been communicated previously need to be sent.

A run-time history v h , of processor Pi is computed as
follows. During a communication, processors Pi and
P’ exchange their respective histories Vh, and vh, . Af-
ter the exchange, both processors incorporate the re-
ceived history into their own histories. The following
shows that processor Pi incorporates vh, into its his-
tory vh,.

Figure 2: Algorithm Compute History for processor Pi

Definition 4.5 Given an event e , the incorporation
of e into a history vh, =< J , a1a2. . .a, > of proces-
sor P; as to insert e into the history Vh;, such that the
new history vh, =< J , a1 ’ . . (Yk- le (Yk . . . an > satis-
fies the following conditions:

1. for each m < k , e ft am,

2. e --+ (Yk, i.e., e causes (Y k .

Therefore, in the new sequence
((Y ~ . . . (Y ~ - I ~ (Y ~ . - . Q ,) , e does not cause any event
preceding e (i.e., events a1 . . . (Y k - l) , and e causes its
next event (i.e., event (Y k) . Notice that there are many
ways of incorporating events into a processor’s his-
tory, since events are timestamped by vector clocks
and they form a partial ordering instead of a total or-
dering. However, it is important that during execu-
tion, causality in a collected history vh, is preserved,
and at termination, history vh, is a member of the
equivalence class of the history h =< J , ZI >. The fol-
lowing describes an incorporation of one history into
another.

Definition 4.6 Given two histories vh, and Vha, a
function fi(vh, , Vha) returns a history v h z , such that
for each event e of v h l , if e as not in Vh, , then, using
Definition 4.5, incorporate e into vha.

The following example illustrates exchanges of obser-
vations (histories) and incorporations of histories.
The examples of communicating histories are in [18].

i.e., e does not cause any am(1 5 m < 1).

Algorithm for a Non-Faulty Environment. AS-
sume that there are n isolated Drocessors which can
communicate only by two-party messages. Figure 2
presents Algorithm Compute History, which computes
a history of processor Pi in a non-faulty environment.
In this algorithm, processors Pi and Pj exchange their
respective histories vh, and vh, during a communica-
tion. Then, processors Pa computes its new history
vh, by incorporating events in vh, into vh, (step 1).
Finally, processor Pi updates its clock (step 2).

Theorem 4.1 The history, vh,, built b y the algo-
rithm Compute History of Figure 2, is correct in a
non-faulty environment.

40 1

C , , ~ ~ - ~ ~ ~ -
ain set examp &--,

T’
cc

Proof: By Proposition 4.1, history Vh, is correct if
causality in Vj, is preserved during execution. Recall
that Vj, is processor Pis collection of events during
execution. In the algorithm, upon the receipt of his-
tory Vh, , processor P; computes its history Vh, from
function h(Vj,, Vh,), which incorporates events of Vh,
into vh, according to Definition 4.5. Therefore, events
in Vjz are in a linear order compatible with the causal
relations -+. Also, history Vh2 is built in a non-faulty
environment. Thus, causality in vh, is preserved.

The reader may refer to [18] for the algorithms for
the faulty environments. Next we use a train set ex-
ample to illustrate the application of operational eval-
uation of temporal interval formulas.

5 Train Set Example
In this section, we illustrate the proposed approach

using a train set example ([19], [20]). This is an ex-
ample of a safety-critical system which involves inter-
actions between controllers and physical processes. In
Figure 3, the physical process consists of circuits, C,
and C,, and trains, Tp and T, . The circuits are divided
into sections and the crossing section (CC) is where
the circuits intersect. Each section has a sensor, while
for each train there is an actuator that can stop the
t,rain within any section. For such a safety-critical sys-
tem, accidents will occur if the physical specification
and the logical specification are not met. We can then
check whether the physical specification denoted by a
run-time history Vh, satisfies the logical specification
denoted by ITL formulas.

5.1 Safety Constraints
In this subsection, we describes the safety con-

straints of the system. These constraints are to be
embedded into the train set program t o check if the
run-time system behaves as what we expect. Figure 4
describes the state variables to be used.

Definition 5.1 Let T“ denote the current time when
train x enters section f, and let Tf denote the point of
time immediately before T&l.

Notice that addition @ and subtraction 8 on sec-
tion numbers are performed modulo the number of
sections of the circuit.
SC1 (Reservation constraints): for any train, the cur-
rent occupied section (Ptrain(x)) and the following
mcs f @ 1 sections must always be reserved.

(Vz E T T)

(mcsf I)} E Rtrain(x) ,
[p, T ;] { P t ~ ~ i n (z) , P tra in(x) @ 1, * . . , Ptrain(z) @

mcsf denotes the maximal number of consecutive sen-
sor failure.

SC2 (Exclusion constraints): mutual exclusion must
be achieved for reserved sections. In other words, if
Rtruin(x) and Rtrain(y) are the sets of sections re-
served, respectively, by trains x and y (x # y), then
Rtrai~z(z) n Rtrain(y) = 0.

Vx, y E T r
[qsl TF](x # y ---f Rtrain(x) n Rtrain(y) = 0)

SC3: if the number of consecutive sensor failures is
greater than mcs f , then the system must be shut
down.

Vc E L,Vx, y E T r [Kc, q$mesf](-Sen~(~, i) A . . .A-Sens(c, i e m c s f)) -+ [v , Tern f] E F (Shut D o w n)

The above formula can be derived from Progress
Rule. First, we apply Progress Rule to de-
rive a formula *, which describes sensor failure
on two consecutive sections as follows. To de-
rive \E = [y] P t r a i n (x) --+ [T ~ ’ , T ~] E F (o n (c , x) A

+ens(c, Ptrain(z))) , the following premises must
hold:

[qq Ptrain(x) +

[T;]Ptrain(z) -+

[Tr,T:]EF(on(c, z) A ySens(c , Ptrain(z)))

[T,”, T&]EF(on(c, z) A +ens(c, P t ra in (x)))

[T?, T&]E(on(c, z) A l S e n s (c , P tra in(x)))

Premise (1) states that the sensor of section i fails
within the interval [y , T:]. Likewise, Premise (2)
states that the sensor of section i @ 1 fails within the
interval [T:,TL]. Premise (3) states that the for-
mula (on(c, z) A -Sens(c, Ptrain(x))) will hold in the
interval [~ , T ~] . If these three premises hold, then
according to Progress Rule, we can conclude *, the
sensor failure on two consecutive sections. Similarly,
we can conclude sensor failure on (mcsf @ 1) sections
by applying Progress Rule.

SC4: if an actuator ever fails, the system must be
shut down, i.e., if an actuator is set to stop a train
x on section i ([q S] A c t (x , i)) and the train is moving
beyond section i (ET:, T&l](Ptrain(z) > i)), then the
system must be shut down.

z @ l

l e31

(Vx E Tr)(3i E SC)
[T:]Act(z, i) A [T:, T&l](Ptruin(z) > i)

---f [q”, K$l]EF(Shut-Down)

402

train(z1 I the set of sections that are reserved bv a train z on Circuit c I

Shut-Down

Sens(c , i)
Actlz. i)

I sensor of section i detects a train on circuit c .
I Act(z . i) is set to stoD train z on section i .

Shut-Down holds when all trains must be stopped, i.e., all actu-
ators are set.

process

Figure 4: The state variables

Pt r P, P,
These safety constraints govern the operation of the

system - if they are ever violated, then there is an
error. In other words, for a safety constraint SC, if the
evaluation n (v h , , SC) returns FALSE, then an error
has occurred.
5.2 Results

In this subsection, we examine results of perfor-
mance measurement experiments on the train set ex-
ample. Let Pt,, P,, P, denote processes train, circuit
and section, respectively. Also let Vht , , V h , v h , denote
respectively the histories of processes Ptr, P, and P,.
For this experiment, the trains Tp and T, of Figure 3
have the same speed. Define a round to be the time a
train takes to get back to section i when starting from
section i.

Let the overhead time be the time a process takes
to generate a run-time history Vh, , parse ITL formulas
and evaluate the formulas. In particular, this time
includes the exchanges of histories, consistency check
and incorporation of the received histories. Thus, the
percentage of overhead incurred is (overhead time /
tot a1 time).

The train-set program is implemented on a SUN
10/40 under Solaris. Consider the cases where it takes
1, 5 and 10 minutes for a train to traverse a section.
Figure 5 lists the percentage of overhead for processes
Ptr, P, and P, in 3 hours. If the section traversal
time is 1 minute, then the percentages of overhead are
respectively 25.83%, 9.46% and 12.09% for processes
Pt,, P, and P,. The overhead of process Pt,. is larger
than that of processes P, and P, because in each round
the process Pt, performs more communications (and
hence more auxiliary communications) than processes
P, and P, and the communications are synchronized.
From Figure 5, the percentage of overhead decreases
as the section traversal time increases since most of the
time is spent on traversing sections instead of doing
auxiliary communications.

In this implementation, the histories to be sent are
reset to empty after the auxiliary communications or
the exchanges of histories. A process maint,ains its
own history v h , together with a collection of histo-
ries with respect to every other process in the system.
Whenever there is a communication between processes
P, and Pj, Pi and Pj exchange the histories that con-

communication between P, and Pj . So processes only
exchange the events which are never sent before. After

tain new events that they have observed since the last

5 mins/section I 6.67% I 2.43% I 3.20%
10 mins/section I 3.46% I 1.26% I 1.67%

Figure 5: The amount of overhead.

the exchange, Pi and PI clean the respective histories.
Thus, the histories to be sent do not grow as the exe-
cution proceeds, nor does the overhead.

6 Summary and Conclusions
This paper presents a formal approach which incor-

porates formal methods to detect errors and to guide
fault-finding process for the development of the critical
systems. In this approach, system behavior is speci-
fied using a formal logic, ITL. The system behavior
or specification can then be used as a metric to ver-
ify if the run-time behavior of the system satisfies its
expected behavior (specification).

In summary, this approach includes the following
steps.

1. Specify a system using ITL formulas.

2. Collects events and obtains an event history for
each process in the system. This allows a process
to have a (global) view of the execution.

3. Perform evaluation of the ITL formulas according
to their collected event histories. This is to detect
an violation of an ITL specification at run-time.

We built a run-time evaluation system using the
formalisms of this paper. The simulation of scaling-up
is underway - check if the overhead of communicating
histories grows proportionally as the number of pro-
cesses increases. This work will be extended to enable
evaluation of specifications written in other, suitable,
temporal logic languages. Also, we will consider other
formal languages such as 1 / 0 automata, process alge-
bras or timed CSP for the run-time evaluation system.
Acknowledgements

The authors are grateful to the members of En-
gineering Computer Laboratory of The University of
Missouri-Rolla, who provide many helpful suggestions

403

and comments to this paper. The authors would also
want to thank the anonymous referees for their con-
structive comments. This work is supported in part by
the National Science Foundation under Grant Num-
bers MSS-9216479 and CDA-9222827, and, in part,
from the Air Force Office of Scientific Research under
contract number F49620-92-J-0546 and F49620-93-1-
0409, and, in part by a grant from the University of
Missouri Research Board.

References
[l] M. Malek, “Responsive systems: A challenge for

the nineties,” in Proceeding EUROMICRO ’90,
16th Symp. in Microprocessing and Micropro-
gramming, (Amersterdam, The Netherlands),
pp. 622-628, North Holland, 1990.

[2] J . Rushby, “Formal methods and the certification
of critical systems,” in Technical Report CSL-93-
7, 1993.

[3] G. Tsai, M. Insall, and B. McMillin, “Ensur-
ing value liveness of distributed software through
Changeling,” UMR Department of Computer Sci-
ence Technical Report Number CSC 93-03, 1993.

[4] 6. Jard and T. Jeron, “On-line model-checking
for finite linear temporal logic specifications,” in
Automatic Verification Methods for Finite State
Systems, Lecture Notes in Computer Science 407,
pp. 189-196, 1989.

[5] S. E. Chodrow, F. Jahanian, and M. Donner,
“Run-time monitoring of real-time systems,” in
IEEE Symposium on Real-Time Systems, pp. 74-
83, 1991.

[6] D. Peled and A. Pnueli, “Proving partial or-
der liveness properties,” 17th Colloquium on Au-
tomata, Language and Programming, pp. 553-
571. 1990.

[7] B. Moszkowski and Z. Manna, “Reasoning in in-
terval temporal logic,” in Lecture Notes in Com-
puter Science # l64 , Logic of Programs, pp. 371-
382, 1983.

[SI K. T . Narayana and A. A. Aaby, “Specification of
real-time systems in real-time temporal interval
logic,” in Proceeding of Real-Time Systems Sym-
posium, pp. 86-95, IEEE Computer Society, Dec.
1988.

[9] B. Moszkowski, “Temporal logic for multilevel
reasoning about hardware,” The Computer Jour-
nal, pp. 10-18, 1985.

[lo] R. Moszkowski, “Some very compositional tem-
poral properties,” Tech. Rep. TR-466, Depart-
ment of Computer Science, University of New-
castle upon Tyne, Newcastle NE1 7RU, Great
Britain, 1993.

I113 G. Tsai, M. Insall, and B. McMillin, “Construct-
ing an interval temporal logic for real-time sys-
tems,” in 20th IFAC/IFIC Workshop in Real-
Time Proorammino. 1995. UMR DeDartment
of Compu‘ter Scienlck Technical Report‘ Number
CSC 93-25.

[12] L. Lamport, “Time, clocks and the ordering of
events in a distributed system,” Communications
of the ACM, vol. 21, no. 7, pp. 558-565, 1978.

[13] A. Mazurkiewicz, “Trace semantics,” in Lecture
Notes in Computer Science 255, 1986.

[14] J . Fidge, “Timestamps in message passing sys-
tems that preserve the partial ordering,” in Pro-
ceeding of the Tenth International Conference of
Software Engineering, pp. 182-187, 1992.

[15] F. Mattern, “Virtual time and global states of dis-
tributed systems,” in Parallel and Distributed Al-
gorithms: Proceedings of the International Work-
shops on Parallel and Distributed Algorithms
(M. Cosnard e t al., eds.), pp. 215-226, Ed. El-
sevier Science Publishers B.V., 1989.

[16] D. Jefferson, “Virtual time,” ACM Transactions
on Programming Language and Systems, vol. 7,
no. 3, pp. 404-425, 1985.

[17] H. Lutfiyya, M. Schollmeyer, and B. McMillin,
“Formal generation of executable assertions for
Application-Oriented Fault Tolerance,” UMR
Department of Computer Science Technical Re-
port Number CSC 92-15, 1992.

[18] G. Tsai, Providing Run-Time Assurance for Re-
sponsive Computing Systems. PhD thesis, Univer-
sity of Missouri-Rolla, Department of Computer
Science, Rolla, MO 65401, 1994. Technical Re-
port Number CSC 94-030.

[19] R. de Lemos, A. Saeed, and A. Waterworth,
“Exception handling in real-time software from
specification to design,” in The Second Interna-
tional Workshop on Responsive Computing Sys-
tems, pp. 108-121, 1992.

[20] R. de Lemos, A. Saeed, and T. Anderson, “Anal-
ysis of timeliness requirements in safety-critical
systems,’’ in Lecture Notes in Computer Science
571, Formal Techniques in Real-Tame and Fault-
Tolerant Systems, pp. 171-192, 1992.

404

	Ensuring the Satisfaction of a Temporal Specification at Run-Time
	Recommended Citation

	Ensuring the satisfaction of a temporal specification at run-time

