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Abstract 
 

Pervasive computing enables seamless integration 
of computing technology into everyday life to make up-
to-date information and services proactively available 
to the users based on their needs and behaviors. We 
aim to develop a transaction management scheme as a 
pertinent component for such environment supported 
by either structured or ad hoc networks. We propose 
Transactional Agents for Pervasive COmputing 
(TAPCO), which utilizes a dynamic hierarchical meta 
data structure that captures the semantic contents of 
the underlying heterogeneous data sources. Mobile 
agents process the transactions collaboratively, to 
preserve ACID properties without violating local 
autonomy of the data sources. TAPCO is simulated 
and compared against Decentralized Serialization 
Graph Testing (DSGT) protocol. The results show that 
TAPCO outperforms DSGT in several ways. In 
contrast to DSGT that did not consider local 
transactions, TAPCO supports both local and global 
transactions without violating the local autonomy.  
 
1. Introduction 
 

The proliferation of pervasive computing requires a 
proper infrastructure in place. As all actions performed 
are in the form of transactions, a suitable transaction 
management protocol becomes a critical element. 
Consider the situation when a group of independent 
users reside in the same area such as in library or office 
building. They could be connected via access points or 
ad hoc connections. In pervasive environment, they 
must be able to share, access, and manipulate data and 
services. They now face difficulties of how to: (i) 
know which data are available, (ii) ensure the 
correctness of their transactions when multiple users 
simultaneously access multiple autonomous data 

sources, (iii) pervasively make information up-to-date, 
and (iv) synchronize the information regardless of the 
constraints imposed by the technology. Data sources 
are dynamic, ubiquitous and heterogeneous. They may 
reside in either fixed or mobile network. Mobile 
devices can be both data sources and consumers. In the 
past, most of the researches in this area focused on 
service discovery and query processing. However, 
mobile applications may involve data manipulation. 
Our goal is to develop a transaction management 
protocol for pervasive computing, to proactively allow 
access and update of dynamic data and resources. 

Conventional transaction management protocols are 
mainly designed for human-computer interaction, not 
for a proactive computing. Some solutions are too 
restrictive, [1, 2, 4] and/or based on the assumptions 
that do not realistically address the aforementioned 
challenges [4, 6]. We propose Transactional Agents for 
Pervasive COmputing (TAPCO) as the middleware 
infrastructure for data access and manipulation. Mobile 
data sources automatically form a virtual hierarchical 
structure that facilitates data access and transaction 
resolution, using semantic-based data clustering [11]. 
Our protocol preserves local autonomy and 
heterogeneity while conforming to the serializability 
rules that ensure correctness of all transactions. It is 
non-locking, pessimistic protocol that supports both 
compensatable and non-compensatable transactions. 
Consequently, it avoids the need for global locks and 
cascading aborts. Autonomous agents allow parallel 
processing of global subtransactions, reduce network 
traffic, and allow the transactions to be processed to 
completion while the mobile client is disconnected. 

This paper is organized into 5 sections. Section 2 
provides some essential background and presents some 
related works. Section 3 details our TAPCO algorithm. 
Simulation and its results are presented in section 4. 
Finally, section 5 draws the paper to conclusion. 
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2. Backgrounds 
 

Pervasive environment consists of heterogeneous 
fixed and/or mobile data sources, receiving 
transactions from mobile and/or fixed clients. There 
are two levels of control. At the global level, each 
global transaction – GT is decomposed into several 
global subtransactions – GSTs, each to be executed at 
the local level. Local autonomy and heterogeneity of 
local data sources require the global transaction 
manager to support various types of concurrency 
control schemes, which may be invisible to the global 
level. The local histories (LH) of the execution order of 
both local transactions (LTs) and GSTs at local sites 
are invisible to the global transaction manager that 
maintains the global history (GH). Two GTs, which 
otherwise do not conflict, may conflict over LTs -
indirect conflict. Thus, the transaction management 
must preserve the following serializability rules: (i) 
Every LH is conflict serializable, and (ii) For GTi and 
GTj, if an operation of GTi precedes an operation of 
GTj in one LH, all operations of GTi must precede any 
operation of GTj in all LHs. The architecture of such 
transaction management mechanism is shown in Fig. 1. 

The content-based clustering reduces the search 
cost for accessing data in mobile ad hoc network [11]. 
It extended Summary Schema Model (SSM) originally 
proposed to facilitate semantic based query/transaction 
resolution in mobile multidatabase [3, 8].  SSM is a 
hierarchical meta data structure. Its leaf nodes store 
part of the schema shared by the local data sources. 
Higher-level nodes are Summary Schema Nodes 
(SSNs), providing increasingly abstract view of the 
underlying data by summarizing the semantic contents 
of its child nodes. The relationships between terms in 
the SSM include synonyms, hypernyms (broader 
terms) and hyponyms (narrower terms). The 
participating hosts are partitioned into semantic-related 
groups called semantic-based clusters based on the 

semantic similarity of their data content as determined 
by the online thesaurus [7]. Small clusters are 
recursively merged into larger clusters, fusing their 
data contents to a more general description associated 
with the larger cluster. This recursive process stops 
when all participating hosts are merged to a single 
cluster, and then create the SSM as shown in Fig. 2.  
For each cluster, a host is selected as the centroid, 
which is logically the SSN of the SSM hierarchy. The 
centroid is selected based on hardware characteristics 
and data contents (how well the centroid represents the 
cluster’s content). The centroid keeps the updated 
information about the characteristics of all the hosts in 
the cluster to change the centroid accordingly. In Fig. 
2, the centroid of each cluster maintains semantic 
content of the cluster; the upper-level centroids contain 
the abstract view of child nodes. TAPCO employs the 
semantic-based clustering to build a virtual hierarchical 
structure as its semantic platform for both accessing 
the data and facilitating the transaction management 
tasks in pervasive environment. 

 
2.1 Related Works 
 

Mobile Semantic Serializability scheme proposed in 
[1, 2] handles the transactions that present a serial 
execution of independent atomic units called modules. 
It assumes that mobile databases are disjoint semantic 
entities, i.e., an operation in one global subtransaction 
does not depend on the data from another global 
subtransaction; thus, it could simply implement a 
variant of the conventional two-phase locking protocol. 
NC-Transaction scheme within MoGATU framework 
[9, 10] aimed to maintain a neighborhood-based 
consistency by electing some active witnesses to 
monitor the transaction to ensure its correctness and 
fairness. AMOR (Agents, MObility, and tRansaction) 

 
Fig. 1. Transaction Management in Pervasive Computing 

 
Fig. 2. Semantic-based Clustering 
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[6] is an agent-based transaction management protocol 
for peer-to-peer wired environment with Decentralized 
Serialization Graph Testing (DSGT). AMOR uses 
Resource Agent to wrap local database, log local 
service invocations, and record local conflicts. 
Transaction Agents use such information to 
collaboratively resolve conflicts. It, however, did not 
address local autonomy and indirect conflicts. 

 
3. TAPCO Scheme 
 

Transaction management for pervasive computing 
needs to: (i) handle heterogeneous data sources while 
preserving local autonomy, (ii) conform to the 
serializability rules mentioned in section 2, (iii) work 
without infrastructure support, and (iv) accommodate 
the dynamic topology and frequent disconnections. 
TAPCO has three major functionalities, which address 
these four challenges: (1.) Dynamic Semantic-based 
Clustering involves the creation of the semantic-based 
cluster to address the first challenge, as detailed in 
section 2. In TAPCO, the centroid also informs all 
nodes in the cluster about the members of the centroid. 
To clarify our discussion, the centroid refers to the 
physical host, while the SSN refers to the functional 
unit hosted by the centroid. (2.) Transaction 
Processing addresses the second challenge. It uses 
meta data generated by the dynamic SSM in parallel 
with a time-stamp based ordering of global 
transactions, as shown in section 3.1. (3.) Dynamic 
Topology Handling concerns the maintenance of the 
dynamic SSM structure and the disconnected data 
sources (section 3.2), to address challenge (iii) and (iv). 
 
3.1 TAPCO’s Transaction Processing Algorithm 

Our system has no assumption on host’s mobility. It 
assumes availability of an on-line thesaurus during the 
resolution of the transactions. All data local to a host, 
based on the defined permission, can be modified by 
other hosts. Each local source preserves local 
serializability. The global transaction (GT) submitted 
from the user’s mobile host to the system is composed 
of the data contents and operations (read, write, 
commit, and abort). A mobile agent, called GTAgent, is 
created for each GT to perform transaction 
management tasks on behalf of its user. It makes local 
decisions without user intervention. After the client 
initiates the GT, it may move or disconnect. When a 
global transaction is completed, the result is delivered 
to the user. If the user is disconnected, the result of the 
transaction will not be lost, but it is kept with the 
GTAgent and delivered to the user when reconnected. 
Each SSN and data source maintains an agent, called 
NodeManager, acting as a global transaction manager 

component (GTM Comp in Fig. 1) that interacts with 
other external entities. 

When the user or an application initiates a global 
transaction, the GTAgent is dispatched to a centroid 
node. If the cluster-level meta data content does not 
match the transaction contents, the GTAgent would be 
forwarded to the upper-level SSN which contains meta 
data of a broader range of data sources. The GTAgent 
may travel up or down the SSM according to its 
semantic content. The GTAgent stops at Global 
Transaction Coordinator (GTC), which is the lowest 
SSN that semantically contains related content needed 
to resolve GT. It acts as the coordinator for a particular 
GT. The GT is decomposed at its GTC. The resulting 
global subtransactions (GSTs) are also represented by 
agents, called GSTAgent, which are atomic unit that 
carry the GST to be executed at a local data source. 
GSTAgents are dispatched by the GTAgent to the 
lower SSNs. At each SSN, each GSTAgent is directed 
to the lower SSN based on the semantic of the GST. 
Finally, the GSTAgent will arrive at the data source at 
which its GST will be executed. At anytime, if a 
GSTAgent realizes that its designated data source is 
not found, it will notify the GTAgent for global abort. 

TAPCO employs a pessimistic approach to resolve 
conflicts before the actual execution of the transactions 
to avoid cascading aborts. GSTAgents and 
NodeManagers cooperate to agree on the serialization 
order to be used at the local level. Each NodeManager 
maintains a Global Order Table, which keeps the order 
information of the GSTs that it encounters during the 
transaction resolution. The order of GSTs in the global 
order table reflects the global schedule seen by the 
NodeManager. The order information for each GST 
includes the timestamp or counter value issued by the 
NodeManager, and status. Conflicts between GSTs are 
resolved by TAPCO’s ordering rules as follows: 

1.) When a GT is resolved at a GTC, all of the GST 
represented by GSTAgents will have the same 
timestamp from the GTC upon their creation. When a 
GST is given the timestamp, an entry is inserted to the 
global order table of the SSN for that GST. Then, the 
GSTAgent will be given the global order, which is the 
ordered list of all GSTs preceding it in the global order 
table. The GSTAgent will carry this global order to the 
next SSN it will visit as directed by the current SSN 
based on the semantic of the GST. 

2.) The NodeManager at the SSN that the 
GSTAgent visits assigns a timestamp to the GST. 
When the GSTAgent arrives at an SSN, the 
information in its global order would be merged to the 
global order table of that SSN. Thus, the global order 
information carried by one GSTAgent is transferred to 
another GSTAgent that later arrives at the same SSN 
via the SSN’s global order table. GSTAgenti arriving at 
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the SSN at level k before GSTAgentj would receive 
lower timestamp than GSTAgentj, and results in the 
global order GSTiGSTj. However, if GSTAgentj 
visits the lower SSN (level k+1) (which GSTAgenti 
must also visit) before GSTAgenti, it will be queued 
and wait for GSTAgenti before being assigned a new 
timestamp and inserted to the global order table to 
preserve the global order GSTiGSTj. 

3.) At SSN, the GSTs of the same GT could arrive 
at different times, but they will have the timestamp of 
the first GST arriving at the SSN, to allow them to 
have the same position in the global order seen by the 
NodeManagers at all involved data sources. 

These rules resolve conflicts during the time the 
GSTAgents propagate from the GTC to the local data 
sources.  Thus, the GSTs that visit the data sources are 
globally conflict-free if the NodeManager at each local 
data source guarantees that the global serialization 
order agreed upon during the transaction resolution is 
respected. For data sources that apply Timestamp 
Ordering concurrency control schemes, the 
NodeManager directly utilizes the existing time order 
from global level. The NodeManager maintains global 
order table. When a GSTAgent arrives, the global 
order carried by the agent is merged into the existing 
global order table. The NodeManager submits GSTs to 
the data source according to its global order. For data 
sources that produce rigorous schedules, or at least 
recoverable schedules such as strict two-phase locking 
protocol (S2PL), when the NodeManager receives a 
prepare-to-commit from a GST, it determines whether 
the prepare-to-commit operation of that particular 
transaction will violate the global order. If a GST 
attempts to enter the prepare-to-commit phase out of 
the global order determined by the NodeManager, say 
GSTwrong, the NodeManager will delay the GSTwrong for 
a threshold period of time proportional to the number 
of GSTs that should enter the prepare-to-commit state 
before the GSTwrong. We refer to these GSTs as the 
predecessors of GSTwrong.  If all of the predecessors of 
the GSTwrong are able to complete before the threshold 
period ends, the GSTwrong will prepare-to-commit after 
them; otherwise, it is assumed that the GSTwrong 
indirectly conflicts with its predecessors and should be 
aborted and restarted. Lastly, if the concurrency control 
of the local data source is unknown, the forced conflict 
method is a practical solution [5]. 

 
3.2 TAPCO’s Dynamic Topology Handling 

 
In this section, we use the scenario in Fig. 3 to 

explain how our algorithm handles dymanic topology.  
3.2.1 Change of Centroid. Nodes participating in 

the SSM structure are also data sources. These nodes 
can be either data source only nodes (e.g., node b in 

Fig. 3) and data source/centroid nodes (e.g., node c). A 
centroid is logically SSN. It is periodically informed 
about the characteristics of other nodes in the cluster to 
enable the change of centroid when a more appropriate 
centroid is found. All children are also informed about 
other children of the same centroid. When a new 
centroid is selected, the NodeManager at the current 
centroid and its information including the global order 
table and GSTAgents in the waiting queue will migrate 
to the new centroid. In Fig.3, when the NodeManager 
of SSN000 detects that host a should be the new 
centroid, it informs SSN00 of its migration from host c 
to a. After the migration, the NodeManager, now 
denoted as SSN000’, informs SSN0000, SSN0001, and 
SSN0002 of their new centroid. The NodeManager at 
SSN00 stays in the same host as the migrating child 
before the migration (host c). Thus, it can no longer 
stays at host c and has choices to move to host a, d, or 
e. In this case it moves to host d, denoted as SSN00’. 
The change of centroid impacts the SSM and the 
propagation of the GSTAgents. The GSTAgents 
determine the next physical host to which it will 
migrate based on the most recent information at their 
current centroid. If it fails to contact the NodeManager 
at the next centroid, it would migrate back to the 
current centroid to obtain the updated information. 

3.2.2 Disconnection of Mobile Nodes. 
Disconnection-handling scheme is triggered when 
GSTAgents fail to migrate to the next physical node. 
3.2.2.1 Disconnection of Data Source-Only Nodes 

As global serialization order is established prior to 
the execution of the GSTs, the integrity of GTs is not 
affected by the disconnection of the data sources as 
long as the agreed on global order is preserved at the 
disconnected node until reconnected. If the 
disconnected data source does not reconnect for a time 
threshold and blocks certain amount of GTs, all the 
GSTs to the disconnected data source and their 
corresponding global transaction will be terminated. 
3.2.2.2 Disconnection of Data Source/Centroid Nodes 

Disconnection of a centroid leads to the selection of 
a new centroid. In Fig. 3, node c, which is the centroid 

 
Fig. 3. Disconnection of the Centroid Node or SSN 

 

1125



running SSN00 and SSN000 (dark shaded area), is 
disconnected. Node a and b collaborates to elect node 
a as the new centroid, replacing SSN000 (denoted 
SSN000’). Then, nodes a, d, and e, elect node d as the 
new centroid replacing SSN00 (denoted SSN00’). The 
global transaction management information for the 
GSTs designated for data source at node c is no longer 
needed as it is disconnected. Such information for 
other GSTs, which previously stored at the 
disconnected SSNs, are restored as follows: 

Global Order Table: The global order table 
contains order information of the already dispatched 
GSTAgents. Such information can also be found in the 
global order table of the SSNs immediately below the 
disconnected SSN. It can be reconstructed at the new 
SSN by merging the global order table of the SSNs 
immediately below the old SSN together. For example, 
global order at SSN0000 and SSN0001 are merged to 
produce global order for SSN000’ at node a. We use 
the creation time of the new global order table as the 
timestamp of its first entry. Subsequent entries have 
the insertion time as their timestamp. The global 
consistency is hold as the global order is preserved. 

Waiting Queue: The GSTAgents in the waiting 
queue are those whose entries are in the global order 
table at the SSN immediately above the disconnected 
SSN but not at the SSNs below it. By subtracting these 
two sets, we can determine the list of such GSTAgents.  

GTAgent: The disconnected SSN may be the GTC 
of some GTs. As the GTAgent cannot contact its 
GSTAgent during the disconnection, the already 
dispatched GSTAgents continue to execute and 
prepare-to-commit. They then contact their GTAgent 
for global commit and realize the disconnection. 
Lastly, they would wait for a time threshold before 
aborting their GST. When reconnected, the GTAgent 
tries to contact their GSTAgents. If the GSTAgents 
have terminated, the GTAgent would resubmit the 
global transaction. If the GST is forced to abort by the 
data source and the corresponding GSTAgent fails to 
contact the GTAgent, it will just abort its GST. Other 
GSTAgents of the same GT will eventually aborted 
when they realize that the GTAgent is disconnected. 

GSTAgent: A new GSTAgent is created to replace 
the GSTAgent working or waiting at the disconnected 
SSN. The global order information carried by the 
disconnected GSTAgent is recovered and passed to its 
GTAgent, which will create the new GSTAgent. 
 
4. Performance Evaluation 
 

Our system comprises of mobile hosts in ad hoc 
network moving based on Random Waypoint mobility 
model. A simulator was developed using NS2 and 

SimJava. TAPCO is compared against Decentralized 
Serialization Graph Testing (DSGT). The choice of the 
DSGT is due to the fact that it is also an agent-based 
transaction management protocol designed for similar 
environment. It uses optimistic approach and is tolerant 
for frequent disconnections. However, DSGT assumes 
that all transactions are compensatable while TAPCO 
supports both compensatable and non-compensatable 
transactions. To explore the full capability of DSGT, 
all transactions are compensatable in our simulated 
environment. The environment consists of 10-40 
mobile hosts moving at speed up to 10 m/s. Each host 
may share a data source with probability of 0.8. All 
hosts submit global transactions to the system. The 
simulation parameters are given in Table 1.  
 
4.1 Simulation Results 

 
An increase in the number of GTs increases the 

throughput; however, it introduces higher probability 
of conflict, which could consequently degrade the 
throughput. Fig. 4 shows the throughput of TAPCO for 
both global (GT) and local (LT) transactions, and the 
throughput of DGST for global transactions (GT)  
(DSGT does not support LT without violating local 
autonomy). TAPCO always gives higher throughput 
than DSGT. Its global throughput still keeps rising 
when the number of GTs reaches 40, traded off by the 
drop in the local throughput. In contrast, the 
throughput of DSGT slightly drops as the number of 

TABLE 1: GLOBAL & LOCAL SYSTEM PARAMETERS 
Global System Parameter Value 

Environment Field Size 400x400m 
Maximum Number of Clusters 9 
Maximum Number of SSN Levels 4 
Maximum Mobility 10 m/s 
Pause Time 2s 
Probability of Strong Connection 0.5 
Probability of Weak Connection 0.5 
Transmission Delay during Strong Connection 0.1-0.3s 
Transmission Delay during Weak Connection 0.3-3s 
Mobile Host’s CPU Time 0.005s 
Mobile Host’s I/O Time 0.01s 
Disk Access Time 0.008-0.016s 
Time between Checking for Change of Centroid 5-120s 
Probability of Change of Centroid 0.2 
Number of Data Sources 10 
Number of Data Items per Data Source 100 
Size of Hotspot (Frequently Accessed Data) 20 
Probability of Accessing Hotspot 0.5 
Number of GST per Global Transaction 1-10 
Number of Operations per Global Subtransaction 1-5 
Probability of Read-Only Transaction 0.6 
Probability of Read Operation 0.6 
Number of Local Application Per Data Source 1 
Time between Global Transactions for each Host 0-3s 
Time between Local Transactions at Data Source 5-10s 
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GTs increases. From Fig. 5, the response time of the 
successful transactions rises with the increasing 
number of GTs for both TAPCO and DSGT due to the 
higher level of conflict. However, the response time of 
TAPCO is about half of the DSGT due to its parallel 
processing. The LTs submitted to TAPCO incur 
ignorable response time because they access a single 
data source. When the number of GTs are low (low 
level of conflicts), DSGT has fewer communication 
messages than TAPCO (not shown). However, this 
number grows sharply when the level of conflicts 
increases due to transaction aborts and partial 
(potentially cascading) rollbacks. In contrast, TAPCO 
still requires low number of communication messages 
at high level of conflicts as it avoids cascading aborts. 

Fig 6 shows that the response time increases as 
disconnectivity increases. The response time of 
TAPCO is always approximately half of DSGT. As the 

duration of the disconnected data sources increases, the 
global throughput drops for both TAPCO and DSGT. 
For TAPCO, as the data sources are still available to 
the LT, the local throughput slightly increases. 
 
5. Conclusions and Future Directions 
 

 We proposed TAPCO, Transactional Agents for 
Pervasive COmputing, as a transaction management 
infrastructure for pervasive environment. It utilizes 
mobile agents to resolve conflicts among transactions 
and build a globally agreed upon schedule before 
execution at the local level. TAPCO preserves ACID 
properties, allows parallel processing of global 
transactions, and accommodates dynamic changes of 
ad hoc environment. Unlike some existing solutions, 
TAPCO does not impose any restrictions on the nature 
of disconnectivity and the transactions. It handles 
indirect conflicts without violating the local autonomy 
of the data sources. TAPCO can be improved by 
integrating intelligence to the mobile agents to enable 
them to learn, initiate and process the transactions, and 
negotiate with other agents or data sources. 
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