
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jul 2008

Transactional Agents for Pervasive Computing Transactional Agents for Pervasive Computing

Machigar Ongtang

A. R. Hurson
Missouri University of Science and Technology, hurson@mst.edu

Yu Jiao

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
M. Ongtang et al., "Transactional Agents for Pervasive Computing," Proceedings of the 2008 IEEE
Symposium on Computers and Communications (2008, Marrakech), pp. 1122-1127, Institute of Electrical
and Electronics Engineers (IEEE), Jul 2008.
The definitive version is available at https://doi.org/10.1109/ISCC.2008.4625744

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ISCC.2008.4625744
mailto:scholarsmine@mst.edu

Transactional Agents for Pervasive Computing*

* This work was supported in part by the National Science Foundation under the contract IIS-0324835.

Machigar Ongtang
Dept. of Computer Science and

Engineering, Pennsylvania
State University

ongtang@cse.psu.edu

Ali R. Hurson
Computer Science Dept.,
Missouri University of

Science and Technology
hurson@mst.edu

Yu Jiao
Computational Sciences and
Engineering Division, Oak
Ridge National Laboratory

jiaoy@ornl.gov

Abstract

Pervasive computing enables seamless integration
of computing technology into everyday life to make up-
to-date information and services proactively available
to the users based on their needs and behaviors. We
aim to develop a transaction management scheme as a
pertinent component for such environment supported
by either structured or ad hoc networks. We propose
Transactional Agents for Pervasive COmputing
(TAPCO), which utilizes a dynamic hierarchical meta
data structure that captures the semantic contents of
the underlying heterogeneous data sources. Mobile
agents process the transactions collaboratively, to
preserve ACID properties without violating local
autonomy of the data sources. TAPCO is simulated
and compared against Decentralized Serialization
Graph Testing (DSGT) protocol. The results show that
TAPCO outperforms DSGT in several ways. In
contrast to DSGT that did not consider local
transactions, TAPCO supports both local and global
transactions without violating the local autonomy.

1. Introduction

The proliferation of pervasive computing requires a
proper infrastructure in place. As all actions performed
are in the form of transactions, a suitable transaction
management protocol becomes a critical element.
Consider the situation when a group of independent
users reside in the same area such as in library or office
building. They could be connected via access points or
ad hoc connections. In pervasive environment, they
must be able to share, access, and manipulate data and
services. They now face difficulties of how to: (i)
know which data are available, (ii) ensure the
correctness of their transactions when multiple users
simultaneously access multiple autonomous data

sources, (iii) pervasively make information up-to-date,
and (iv) synchronize the information regardless of the
constraints imposed by the technology. Data sources
are dynamic, ubiquitous and heterogeneous. They may
reside in either fixed or mobile network. Mobile
devices can be both data sources and consumers. In the
past, most of the researches in this area focused on
service discovery and query processing. However,
mobile applications may involve data manipulation.
Our goal is to develop a transaction management
protocol for pervasive computing, to proactively allow
access and update of dynamic data and resources.

Conventional transaction management protocols are
mainly designed for human-computer interaction, not
for a proactive computing. Some solutions are too
restrictive, [1, 2, 4] and/or based on the assumptions
that do not realistically address the aforementioned
challenges [4, 6]. We propose Transactional Agents for
Pervasive COmputing (TAPCO) as the middleware
infrastructure for data access and manipulation. Mobile
data sources automatically form a virtual hierarchical
structure that facilitates data access and transaction
resolution, using semantic-based data clustering [11].
Our protocol preserves local autonomy and
heterogeneity while conforming to the serializability
rules that ensure correctness of all transactions. It is
non-locking, pessimistic protocol that supports both
compensatable and non-compensatable transactions.
Consequently, it avoids the need for global locks and
cascading aborts. Autonomous agents allow parallel
processing of global subtransactions, reduce network
traffic, and allow the transactions to be processed to
completion while the mobile client is disconnected.

This paper is organized into 5 sections. Section 2
provides some essential background and presents some
related works. Section 3 details our TAPCO algorithm.
Simulation and its results are presented in section 4.
Finally, section 5 draws the paper to conclusion.

1122

chimingchen
Text Box
978-1-4244-2703-1/08/$25.00 ©2008 IEEE

2. Backgrounds

Pervasive environment consists of heterogeneous
fixed and/or mobile data sources, receiving
transactions from mobile and/or fixed clients. There
are two levels of control. At the global level, each
global transaction – GT is decomposed into several
global subtransactions – GSTs, each to be executed at
the local level. Local autonomy and heterogeneity of
local data sources require the global transaction
manager to support various types of concurrency
control schemes, which may be invisible to the global
level. The local histories (LH) of the execution order of
both local transactions (LTs) and GSTs at local sites
are invisible to the global transaction manager that
maintains the global history (GH). Two GTs, which
otherwise do not conflict, may conflict over LTs -
indirect conflict. Thus, the transaction management
must preserve the following serializability rules: (i)
Every LH is conflict serializable, and (ii) For GTi and
GTj, if an operation of GTi precedes an operation of
GTj in one LH, all operations of GTi must precede any
operation of GTj in all LHs. The architecture of such
transaction management mechanism is shown in Fig. 1.

The content-based clustering reduces the search
cost for accessing data in mobile ad hoc network [11].
It extended Summary Schema Model (SSM) originally
proposed to facilitate semantic based query/transaction
resolution in mobile multidatabase [3, 8]. SSM is a
hierarchical meta data structure. Its leaf nodes store
part of the schema shared by the local data sources.
Higher-level nodes are Summary Schema Nodes
(SSNs), providing increasingly abstract view of the
underlying data by summarizing the semantic contents
of its child nodes. The relationships between terms in
the SSM include synonyms, hypernyms (broader
terms) and hyponyms (narrower terms). The
participating hosts are partitioned into semantic-related
groups called semantic-based clusters based on the

semantic similarity of their data content as determined
by the online thesaurus [7]. Small clusters are
recursively merged into larger clusters, fusing their
data contents to a more general description associated
with the larger cluster. This recursive process stops
when all participating hosts are merged to a single
cluster, and then create the SSM as shown in Fig. 2.
For each cluster, a host is selected as the centroid,
which is logically the SSN of the SSM hierarchy. The
centroid is selected based on hardware characteristics
and data contents (how well the centroid represents the
cluster’s content). The centroid keeps the updated
information about the characteristics of all the hosts in
the cluster to change the centroid accordingly. In Fig.
2, the centroid of each cluster maintains semantic
content of the cluster; the upper-level centroids contain
the abstract view of child nodes. TAPCO employs the
semantic-based clustering to build a virtual hierarchical
structure as its semantic platform for both accessing
the data and facilitating the transaction management
tasks in pervasive environment.

2.1 Related Works

Mobile Semantic Serializability scheme proposed in
[1, 2] handles the transactions that present a serial
execution of independent atomic units called modules.
It assumes that mobile databases are disjoint semantic
entities, i.e., an operation in one global subtransaction
does not depend on the data from another global
subtransaction; thus, it could simply implement a
variant of the conventional two-phase locking protocol.
NC-Transaction scheme within MoGATU framework
[9, 10] aimed to maintain a neighborhood-based
consistency by electing some active witnesses to
monitor the transaction to ensure its correctness and
fairness. AMOR (Agents, MObility, and tRansaction)

Fig. 1. Transaction Management in Pervasive Computing

Fig. 2. Semantic-based Clustering

1123

[6] is an agent-based transaction management protocol
for peer-to-peer wired environment with Decentralized
Serialization Graph Testing (DSGT). AMOR uses
Resource Agent to wrap local database, log local
service invocations, and record local conflicts.
Transaction Agents use such information to
collaboratively resolve conflicts. It, however, did not
address local autonomy and indirect conflicts.

3. TAPCO Scheme

Transaction management for pervasive computing
needs to: (i) handle heterogeneous data sources while
preserving local autonomy, (ii) conform to the
serializability rules mentioned in section 2, (iii) work
without infrastructure support, and (iv) accommodate
the dynamic topology and frequent disconnections.
TAPCO has three major functionalities, which address
these four challenges: (1.) Dynamic Semantic-based
Clustering involves the creation of the semantic-based
cluster to address the first challenge, as detailed in
section 2. In TAPCO, the centroid also informs all
nodes in the cluster about the members of the centroid.
To clarify our discussion, the centroid refers to the
physical host, while the SSN refers to the functional
unit hosted by the centroid. (2.) Transaction
Processing addresses the second challenge. It uses
meta data generated by the dynamic SSM in parallel
with a time-stamp based ordering of global
transactions, as shown in section 3.1. (3.) Dynamic
Topology Handling concerns the maintenance of the
dynamic SSM structure and the disconnected data
sources (section 3.2), to address challenge (iii) and (iv).

3.1 TAPCO’s Transaction Processing Algorithm

Our system has no assumption on host’s mobility. It
assumes availability of an on-line thesaurus during the
resolution of the transactions. All data local to a host,
based on the defined permission, can be modified by
other hosts. Each local source preserves local
serializability. The global transaction (GT) submitted
from the user’s mobile host to the system is composed
of the data contents and operations (read, write,
commit, and abort). A mobile agent, called GTAgent, is
created for each GT to perform transaction
management tasks on behalf of its user. It makes local
decisions without user intervention. After the client
initiates the GT, it may move or disconnect. When a
global transaction is completed, the result is delivered
to the user. If the user is disconnected, the result of the
transaction will not be lost, but it is kept with the
GTAgent and delivered to the user when reconnected.
Each SSN and data source maintains an agent, called
NodeManager, acting as a global transaction manager

component (GTM Comp in Fig. 1) that interacts with
other external entities.

When the user or an application initiates a global
transaction, the GTAgent is dispatched to a centroid
node. If the cluster-level meta data content does not
match the transaction contents, the GTAgent would be
forwarded to the upper-level SSN which contains meta
data of a broader range of data sources. The GTAgent
may travel up or down the SSM according to its
semantic content. The GTAgent stops at Global
Transaction Coordinator (GTC), which is the lowest
SSN that semantically contains related content needed
to resolve GT. It acts as the coordinator for a particular
GT. The GT is decomposed at its GTC. The resulting
global subtransactions (GSTs) are also represented by
agents, called GSTAgent, which are atomic unit that
carry the GST to be executed at a local data source.
GSTAgents are dispatched by the GTAgent to the
lower SSNs. At each SSN, each GSTAgent is directed
to the lower SSN based on the semantic of the GST.
Finally, the GSTAgent will arrive at the data source at
which its GST will be executed. At anytime, if a
GSTAgent realizes that its designated data source is
not found, it will notify the GTAgent for global abort.

TAPCO employs a pessimistic approach to resolve
conflicts before the actual execution of the transactions
to avoid cascading aborts. GSTAgents and
NodeManagers cooperate to agree on the serialization
order to be used at the local level. Each NodeManager
maintains a Global Order Table, which keeps the order
information of the GSTs that it encounters during the
transaction resolution. The order of GSTs in the global
order table reflects the global schedule seen by the
NodeManager. The order information for each GST
includes the timestamp or counter value issued by the
NodeManager, and status. Conflicts between GSTs are
resolved by TAPCO’s ordering rules as follows:

1.) When a GT is resolved at a GTC, all of the GST
represented by GSTAgents will have the same
timestamp from the GTC upon their creation. When a
GST is given the timestamp, an entry is inserted to the
global order table of the SSN for that GST. Then, the
GSTAgent will be given the global order, which is the
ordered list of all GSTs preceding it in the global order
table. The GSTAgent will carry this global order to the
next SSN it will visit as directed by the current SSN
based on the semantic of the GST.

2.) The NodeManager at the SSN that the
GSTAgent visits assigns a timestamp to the GST.
When the GSTAgent arrives at an SSN, the
information in its global order would be merged to the
global order table of that SSN. Thus, the global order
information carried by one GSTAgent is transferred to
another GSTAgent that later arrives at the same SSN
via the SSN’s global order table. GSTAgenti arriving at

1124

the SSN at level k before GSTAgentj would receive
lower timestamp than GSTAgentj, and results in the
global order GSTiGSTj. However, if GSTAgentj
visits the lower SSN (level k+1) (which GSTAgenti
must also visit) before GSTAgenti, it will be queued
and wait for GSTAgenti before being assigned a new
timestamp and inserted to the global order table to
preserve the global order GSTiGSTj.

3.) At SSN, the GSTs of the same GT could arrive
at different times, but they will have the timestamp of
the first GST arriving at the SSN, to allow them to
have the same position in the global order seen by the
NodeManagers at all involved data sources.

These rules resolve conflicts during the time the
GSTAgents propagate from the GTC to the local data
sources. Thus, the GSTs that visit the data sources are
globally conflict-free if the NodeManager at each local
data source guarantees that the global serialization
order agreed upon during the transaction resolution is
respected. For data sources that apply Timestamp
Ordering concurrency control schemes, the
NodeManager directly utilizes the existing time order
from global level. The NodeManager maintains global
order table. When a GSTAgent arrives, the global
order carried by the agent is merged into the existing
global order table. The NodeManager submits GSTs to
the data source according to its global order. For data
sources that produce rigorous schedules, or at least
recoverable schedules such as strict two-phase locking
protocol (S2PL), when the NodeManager receives a
prepare-to-commit from a GST, it determines whether
the prepare-to-commit operation of that particular
transaction will violate the global order. If a GST
attempts to enter the prepare-to-commit phase out of
the global order determined by the NodeManager, say
GSTwrong, the NodeManager will delay the GSTwrong for
a threshold period of time proportional to the number
of GSTs that should enter the prepare-to-commit state
before the GSTwrong. We refer to these GSTs as the
predecessors of GSTwrong. If all of the predecessors of
the GSTwrong are able to complete before the threshold
period ends, the GSTwrong will prepare-to-commit after
them; otherwise, it is assumed that the GSTwrong
indirectly conflicts with its predecessors and should be
aborted and restarted. Lastly, if the concurrency control
of the local data source is unknown, the forced conflict
method is a practical solution [5].

3.2 TAPCO’s Dynamic Topology Handling

In this section, we use the scenario in Fig. 3 to

explain how our algorithm handles dymanic topology.
3.2.1 Change of Centroid. Nodes participating in

the SSM structure are also data sources. These nodes
can be either data source only nodes (e.g., node b in

Fig. 3) and data source/centroid nodes (e.g., node c). A
centroid is logically SSN. It is periodically informed
about the characteristics of other nodes in the cluster to
enable the change of centroid when a more appropriate
centroid is found. All children are also informed about
other children of the same centroid. When a new
centroid is selected, the NodeManager at the current
centroid and its information including the global order
table and GSTAgents in the waiting queue will migrate
to the new centroid. In Fig.3, when the NodeManager
of SSN000 detects that host a should be the new
centroid, it informs SSN00 of its migration from host c
to a. After the migration, the NodeManager, now
denoted as SSN000’, informs SSN0000, SSN0001, and
SSN0002 of their new centroid. The NodeManager at
SSN00 stays in the same host as the migrating child
before the migration (host c). Thus, it can no longer
stays at host c and has choices to move to host a, d, or
e. In this case it moves to host d, denoted as SSN00’.
The change of centroid impacts the SSM and the
propagation of the GSTAgents. The GSTAgents
determine the next physical host to which it will
migrate based on the most recent information at their
current centroid. If it fails to contact the NodeManager
at the next centroid, it would migrate back to the
current centroid to obtain the updated information.

3.2.2 Disconnection of Mobile Nodes.
Disconnection-handling scheme is triggered when
GSTAgents fail to migrate to the next physical node.
3.2.2.1 Disconnection of Data Source-Only Nodes

As global serialization order is established prior to
the execution of the GSTs, the integrity of GTs is not
affected by the disconnection of the data sources as
long as the agreed on global order is preserved at the
disconnected node until reconnected. If the
disconnected data source does not reconnect for a time
threshold and blocks certain amount of GTs, all the
GSTs to the disconnected data source and their
corresponding global transaction will be terminated.
3.2.2.2 Disconnection of Data Source/Centroid Nodes

Disconnection of a centroid leads to the selection of
a new centroid. In Fig. 3, node c, which is the centroid

Fig. 3. Disconnection of the Centroid Node or SSN

1125

running SSN00 and SSN000 (dark shaded area), is
disconnected. Node a and b collaborates to elect node
a as the new centroid, replacing SSN000 (denoted
SSN000’). Then, nodes a, d, and e, elect node d as the
new centroid replacing SSN00 (denoted SSN00’). The
global transaction management information for the
GSTs designated for data source at node c is no longer
needed as it is disconnected. Such information for
other GSTs, which previously stored at the
disconnected SSNs, are restored as follows:

Global Order Table: The global order table
contains order information of the already dispatched
GSTAgents. Such information can also be found in the
global order table of the SSNs immediately below the
disconnected SSN. It can be reconstructed at the new
SSN by merging the global order table of the SSNs
immediately below the old SSN together. For example,
global order at SSN0000 and SSN0001 are merged to
produce global order for SSN000’ at node a. We use
the creation time of the new global order table as the
timestamp of its first entry. Subsequent entries have
the insertion time as their timestamp. The global
consistency is hold as the global order is preserved.

Waiting Queue: The GSTAgents in the waiting
queue are those whose entries are in the global order
table at the SSN immediately above the disconnected
SSN but not at the SSNs below it. By subtracting these
two sets, we can determine the list of such GSTAgents.

GTAgent: The disconnected SSN may be the GTC
of some GTs. As the GTAgent cannot contact its
GSTAgent during the disconnection, the already
dispatched GSTAgents continue to execute and
prepare-to-commit. They then contact their GTAgent
for global commit and realize the disconnection.
Lastly, they would wait for a time threshold before
aborting their GST. When reconnected, the GTAgent
tries to contact their GSTAgents. If the GSTAgents
have terminated, the GTAgent would resubmit the
global transaction. If the GST is forced to abort by the
data source and the corresponding GSTAgent fails to
contact the GTAgent, it will just abort its GST. Other
GSTAgents of the same GT will eventually aborted
when they realize that the GTAgent is disconnected.

GSTAgent: A new GSTAgent is created to replace
the GSTAgent working or waiting at the disconnected
SSN. The global order information carried by the
disconnected GSTAgent is recovered and passed to its
GTAgent, which will create the new GSTAgent.

4. Performance Evaluation

Our system comprises of mobile hosts in ad hoc
network moving based on Random Waypoint mobility
model. A simulator was developed using NS2 and

SimJava. TAPCO is compared against Decentralized
Serialization Graph Testing (DSGT). The choice of the
DSGT is due to the fact that it is also an agent-based
transaction management protocol designed for similar
environment. It uses optimistic approach and is tolerant
for frequent disconnections. However, DSGT assumes
that all transactions are compensatable while TAPCO
supports both compensatable and non-compensatable
transactions. To explore the full capability of DSGT,
all transactions are compensatable in our simulated
environment. The environment consists of 10-40
mobile hosts moving at speed up to 10 m/s. Each host
may share a data source with probability of 0.8. All
hosts submit global transactions to the system. The
simulation parameters are given in Table 1.

4.1 Simulation Results

An increase in the number of GTs increases the

throughput; however, it introduces higher probability
of conflict, which could consequently degrade the
throughput. Fig. 4 shows the throughput of TAPCO for
both global (GT) and local (LT) transactions, and the
throughput of DGST for global transactions (GT)
(DSGT does not support LT without violating local
autonomy). TAPCO always gives higher throughput
than DSGT. Its global throughput still keeps rising
when the number of GTs reaches 40, traded off by the
drop in the local throughput. In contrast, the
throughput of DSGT slightly drops as the number of

TABLE 1: GLOBAL & LOCAL SYSTEM PARAMETERS
Global System Parameter Value

Environment Field Size 400x400m
Maximum Number of Clusters 9
Maximum Number of SSN Levels 4
Maximum Mobility 10 m/s
Pause Time 2s
Probability of Strong Connection 0.5
Probability of Weak Connection 0.5
Transmission Delay during Strong Connection 0.1-0.3s
Transmission Delay during Weak Connection 0.3-3s
Mobile Host’s CPU Time 0.005s
Mobile Host’s I/O Time 0.01s
Disk Access Time 0.008-0.016s
Time between Checking for Change of Centroid 5-120s
Probability of Change of Centroid 0.2
Number of Data Sources 10
Number of Data Items per Data Source 100
Size of Hotspot (Frequently Accessed Data) 20
Probability of Accessing Hotspot 0.5
Number of GST per Global Transaction 1-10
Number of Operations per Global Subtransaction 1-5
Probability of Read-Only Transaction 0.6
Probability of Read Operation 0.6
Number of Local Application Per Data Source 1
Time between Global Transactions for each Host 0-3s
Time between Local Transactions at Data Source 5-10s

1126

GTs increases. From Fig. 5, the response time of the
successful transactions rises with the increasing
number of GTs for both TAPCO and DSGT due to the
higher level of conflict. However, the response time of
TAPCO is about half of the DSGT due to its parallel
processing. The LTs submitted to TAPCO incur
ignorable response time because they access a single
data source. When the number of GTs are low (low
level of conflicts), DSGT has fewer communication
messages than TAPCO (not shown). However, this
number grows sharply when the level of conflicts
increases due to transaction aborts and partial
(potentially cascading) rollbacks. In contrast, TAPCO
still requires low number of communication messages
at high level of conflicts as it avoids cascading aborts.

Fig 6 shows that the response time increases as
disconnectivity increases. The response time of
TAPCO is always approximately half of DSGT. As the

duration of the disconnected data sources increases, the
global throughput drops for both TAPCO and DSGT.
For TAPCO, as the data sources are still available to
the LT, the local throughput slightly increases.

5. Conclusions and Future Directions

 We proposed TAPCO, Transactional Agents for
Pervasive COmputing, as a transaction management
infrastructure for pervasive environment. It utilizes
mobile agents to resolve conflicts among transactions
and build a globally agreed upon schedule before
execution at the local level. TAPCO preserves ACID
properties, allows parallel processing of global
transactions, and accommodates dynamic changes of
ad hoc environment. Unlike some existing solutions,
TAPCO does not impose any restrictions on the nature
of disconnectivity and the transactions. It handles
indirect conflicts without violating the local autonomy
of the data sources. TAPCO can be improved by
integrating intelligence to the mobile agents to enable
them to learn, initiate and process the transactions, and
negotiate with other agents or data sources.

6. References

[1] Brayner A., Alencar F., A semantic-serializability based fully-

distributed concurrency control mechanism for mobile multi-
database systems, Proceedings 16th International Workshop on
Database and Expert Systems Applications, 2005.

[2] Brayner A., Filho J., Sharing Mobile Databases in Dynamically
Configurable Environments, LNCS Vol. 2681/2003

[3] Bright M. W., Hurson A. R., Pakzad S. H., Automated
Resolution of Semantic Heterogeneity in Multidatabases, ACM
Transactions on Database Systems, Vol 19, 1994, pp: 212-253.

[4] Dirckze R. A., Gruenwald L., A pre-serialization transaction
management technique for mobile multidatabases, Mobile
Networks and Applications Vol 5 (4), Dec 2000, pp: 311–321.

[5] Georgakopoulos D., Rusinkiewicz M., Sheth A., On
Serializability of Multidatabase Transactions Through Forced
Local Conflicts, In Proceedings 7th IEEE International
Conference on Data Engineering, April 1991, pp: 314 – 323.

[6] Haller K., Schudt H., Turker C., Decentralized Coordination of
Transactional Processes in Peer-to-Peer Environments, ACM
Conference on Information and Knowledge Management, 2005

[7] Jiao Y., Hurson A. R., Application of mobile agents in mobile
data access systems – a prototype. Journal of Database
Management, Vol.15 (4), 2004, pp: 1-24.

[8] Lim J. B., Hurson A. R., Transaction processing in mobile,
heterogeneous database systems, IEEE Transactions on
Knowledge and Data Engineering, 2002, pp: 1330-1346.

[9] Perich F., Joshi A., Finin T., Yesha Y., On Data Management
in Pervasive Computing Environments, IEEE Transactions on
Knowledge and Data Engineering, Vol.16, 2004, pp: 621-634.

[10] Perich F., Joshi A., Yesha Y., Finin T., Neighborhood-
Consistent Transaction Management for Pervasive Computing
Environments, Database and Expert Systems Applications,
LNCS Vol. 2736/2003

[11] Yang B., Hurson A. R., Semantic-Aware and QoS-Aware
Image Caching in Ad Hoc Networks, IEEE Transactions on
Knowledge and Data Engineering, Vol. 19 (12), 2007, pp:
1694-1707

Fig. 4. System Throughput with Number of GTs

 Fig. 5. Response Time with Number of GTs

 Fig. 6. Response Time with Time Between Disconnections

1127

	Transactional Agents for Pervasive Computing
	Recommended Citation

	ISCC2008_Camera_Ready

