高エネルギーにおけるニュートリノ とバリオンの相互作用を研究するに あたって

宮 本 道 子

§1 いろいろな相互作用

ニュートリノとバリオンの相互作用として昔からよく知られたβ崩壊につい て考えてみたい。β崩壊は $N \rightarrow P + e + \overline{\nu}$ 又は $N + \nu \rightarrow P + \overline{e}$ とも書かれる。こ のような 相互作用を数式で書き表わしたい。 一般に スカラーな相互作用は, $C_{S}(\overline{\psi}_{P}\psi_{N})(\overline{\psi}_{e}\psi_{\nu})$ のように書く。 $\psi_{P}, \psi_{N}, \psi_{e}, \psi_{\nu}$ はそれぞれ プロトン, ニュ ートロン, エレクトロン, ニュートリノの波動函数を表わす。もし相互作用が ベクトルであると, $C_{V}(\overline{\psi}_{P}\gamma_{\mu}\psi_{N})(\overline{\psi}_{e}\gamma_{\mu}\psi_{\nu})$ のように書き表わすことが出来る。 アクシアルベクトルな相互作用の場合は $C_{4}(\overline{\psi}_{P}\gamma_{\mu}\gamma_{5}\psi_{N})(\overline{\psi}_{e}\gamma_{5}\psi_{\nu})$ のように 書かれる。テンソルな相互作用の場合は,

$$\sigma_{\mu\nu} = rac{i}{2} (\gamma_{\mu}\gamma_{
u} - \gamma_{
u}\gamma_{\mu})$$

とすると、 $C_r(\overline{\phi}_P\sigma_{\mu\nu}\phi)(\overline{\phi}_e\sigma_{\mu\nu}\phi_{\nu})$ のように書き表わされる。 C_v , C_s , C_4 , C_P , C_r によって、それぞれの相互作用定数を表わすものとする。

§2 粒子の満たす波動方程式

スピン $\frac{1}{2}$ の相対論的粒子の振幅を一般に、 $\psi = \begin{pmatrix} u \\ v \end{pmatrix}$ のように考えると、これらの振幅は、質量がゼロのとき次の方程式を満たす。

 $(\boldsymbol{E} - \boldsymbol{\sigma} \boldsymbol{\cdot} \boldsymbol{P})\boldsymbol{u} = \boldsymbol{0}$

 $\pm t$, $(E + \boldsymbol{\sigma} \cdot \boldsymbol{P}) v = 0$

ニュートリノについては実験によって,振幅は一成分であって,

$$(E+\boldsymbol{\sigma}\boldsymbol{\cdot}\boldsymbol{P})v=0$$

となる。(Lee と Yang による)

電子については, 質量を m とすると,

$$(E - \boldsymbol{\sigma} \cdot \boldsymbol{P})\boldsymbol{u} = m\boldsymbol{v}$$
$$(E + \boldsymbol{\sigma} \cdot \boldsymbol{P})\boldsymbol{v} = m\boldsymbol{u}$$

のように書けることが知られている。

§3 プロジェクション・オペレーター プロジェクション・オペレーターは, $a = \frac{1}{2}(1+i\gamma_5)$

であるが, これを 75 のマトリックス表現

$$i\gamma_{5} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1)

を用いて表わすと,

$$a = \frac{1}{2}(1+i\gamma_5) = \frac{1}{2} \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$$
$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

となる。 $\psi = \begin{pmatrix} u \\ v \end{pmatrix}$ としたから, $a\psi = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ v \end{pmatrix}$, 同様に $\overline{a} = \frac{1}{2}(1-i\gamma_5)$ となるから, これを(1)を用いて同様なマトリックス表現をすると,

となって、 $\vec{a}\psi = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \\ 0 \end{pmatrix}$ となる。ここで、このプロジェクション・ オペレーターには次の性質がある。

$$a^{2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = a$$
$$\overline{a}^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \overline{a}$$
$$a\overline{a} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 0$$
$$\overline{a}a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$
$$\overline{a} + a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$$

§4 β崩壊の相互作用プロジェクション・オペレーターによる表現

§1で、いろいろな相互作用を考えたが、これらの組合せで、一つのカップ リングコンスタントGを持つような β 崩壊を考えてみると、

$$G(\overline{a}\overline{\psi}_{p}\gamma_{\mu}a\psi_{N})(\overline{a}\overline{\psi}_{e}\gamma_{\mu}a\psi_{\nu})$$
(2)

のようになるが,

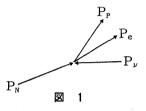
$$\gamma_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \boldsymbol{\gamma} = \begin{pmatrix} 0 & -\boldsymbol{\sigma} \\ \boldsymbol{\sigma} & 0 \end{pmatrix}$$

 $\tilde{a} \gamma_{\mu} = \gamma_{\mu} a a^2 = a$ というこれらのマトリックスの性質を用いて, (2)を変形すると,

$$G(\overline{a}\overline{\psi}_{P}\gamma_{\mu}a\psi_{N})(\overline{a}\overline{\psi}_{e}\gamma_{\mu}a\psi_{\nu})$$
$$=G(\overline{\psi}_{P}\overline{a}\gamma_{\mu}a\psi_{N})(\overline{\psi}_{e}\overline{a}\gamma_{\mu}a\psi_{\nu})$$
$$=G(\overline{\psi}_{P}\gamma_{\mu}a\psi_{N})(\overline{\psi}_{e}\gamma_{\mu}a\phi_{\nu})$$

となる。

§ 5 β崩壊の振幅の計算



ポーラライズした中性子を考えると、二つのプロトンスピンの状態について、 次のポーラライズしたときの プロジェクション・オペレーター $\frac{1}{2}(1+iW_N\gamma_5)$ と $\frac{1}{2}(1+iW_s\gamma_5)$ を用いると、

$$\sum_{\text{proton spin}} T^*T = G^2 \text{spur}\{\gamma_{\nu}a(\not\!\!P_P + M)\gamma_{\mu}a(\not\!\!P_N + M) \times [(1+i\not\!\!W_e\gamma_5)/2]\} \times \text{spur}\{\gamma_{\nu}a(\not\!\!P_e + m)[(1+i\not\!\!W_e\gamma_5)/2]\gamma_{\mu}a\not\!\!P_{\nu}\}$$
$$= 4G^2M^2E_eE_{\nu}(1+\cos\theta_{\nu})(1-\varepsilon V_e)^{(a)} \stackrel{(b)}{(c)} \tag{4}$$

となる。Mはバリオンの質量, $\varepsilon = \pm 1$, θ_{ν} は中性子のスピンの方向と放出された反ニュートリノの方向のなす角である。又, $a = a_{\mu} \gamma_{\mu}$ である.

- (a) Schweber: Relativistic Quantum Field Theory.
- (b) R. P. Feynman : The Theory of Fundamental Processes.
- (c) Springer Tracts in Modern Physics

Ergebniss der exakten Natur-wissenshaften 52 1970.

§6 コーク・モデル

ここで、コーク・モデルを取って考えるのであるが、中性子と陽子の波動函数の SU(6) コーク・モデルの表現は、

(3)

$$P_{\pm} = \frac{\sqrt{2}}{3} \{\pm (n_{0\pm}(1)p_{0\pm}(2)p_{0\pm}(3) + n_{0\pm}(2)p_{0\pm}(1)p_{0\pm}(3) + n_{0\pm}(3)p_{0\pm}(1)p_{0\pm}(2)) \mp \frac{1}{2}n_{0\pm}(1)(p_{0\pm}(2)p_{0\pm}(3) + p_{0\pm}(2)p_{0\pm}(3)) + n_{0\pm}(2)(p_{0\pm}(1)p_{0\pm}(3) + p_{0\pm}(3)p_{0\pm}(1)) + n_{0\pm}(3)(p_{0\pm}(1)p_{0\pm}(2) + p_{0\pm}(1)p_{0\pm}(2)) + p_{0\pm}(1)p_{0\pm}(2)\}$$

$$P_{\pm\frac{1}{2}} \longleftrightarrow N_{\pm\frac{1}{2}} , \quad p_{0\pm} \longleftrightarrow n_{0\pm}$$
(5)

となるので、図1における陽子と中性子の相互作用が po コークと no コークの 相互作用と考えられるので、(5)式の各コークからなる項の和として振幅が考え られる。そこで、(4)式において、もしかりにコークによって計算した確率振幅 の和が、

 $4G^2M_{\Xi^-}^2$, $E_{\ell}E_{\nu}(1+\cos\theta_{\nu})(1-\varepsilon V_{\ell})$

となると考えると、 バリオンの質量が 0.938 GeV であるのに対して p_0 , n_0 コ ークの質量が 0.39 GeV^(注) であるので、コークによる相互作用定数はバリオン による相互作用定数の約 $\frac{0.938}{0.39} \approx 2.4$ 倍になると考えられる。以前の Nonleptonic Hyperon Decay と同様にコーク・モデルを取り、(注)において表にす るコークの定義と質量を用いて、 β 崩壊だけではなく、もっと一般的なニュー トリノとバリオンの相互作用についての研究を始めることにしたい。

Symbol in SU(4)	in SU(3)	Q	Is	С	Y	S	質 量
u	\$ 0	$\frac{2}{3}$	$\frac{1}{2}$	0	$\frac{1}{3}$	0	$0.39\mathrm{GeV} = \frac{1}{2}\rho = \frac{1}{2}\omega$
d	no	$-\frac{1}{3}$	$-\frac{1}{2}$	0	$\frac{1}{3}$	0	$0.39\mathrm{GeV} = \frac{1}{2}\rho = \frac{1}{2}\omega$
s	λο	$-\frac{1}{3}$	0	0	$-\frac{2}{3}$	-1	$0.51\mathrm{GeV} = \frac{1}{2}\phi$
c		$\frac{2}{3}$	0	1	$-\frac{2}{3}$	0	$1.55\mathrm{GeV} = \frac{1}{2}\phi_i$

 (a) Summer Instituteon Particle Physics (SLAC) August 2-13, 1976 by Prof. J. D. Jackson.

 (b) 日本数学会,日本物理学会 創立100年記念における講演, The Experimental Basis for the New Quark Spectroscopy by Prof. W. K. H. Panofsky (USA).

Summary

A discussion of the study of the interaction of neutrino with baryon in high-energy

Michiko Miyamoto

In this paper, I discussed the theory of β -decay as an ordinary type interaction of neutrino with baryon, taking the quark model as I previously have done. Recently, decision of quark masses is an interesting topic of our field. Fortunately, Prof. W. K. H. Panofsky had lectured on it at the 100th anniversary meeting of the Japan Physical Science Association, and I have based these notes on his remarks.