
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Jan 2000 

A Systolic Image Difference Algorithm for RLE-Compressed A Systolic Image Difference Algorithm for RLE-Compressed 

Images Images 

Fikret Erçal 
Missouri University of Science and Technology, ercal@mst.edu 

Mark Allen 

Hao Feng 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
F. Erçal et al., "A Systolic Image Difference Algorithm for RLE-Compressed Images," IEEE Transactions on 
Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers (IEEE), Jan 2000. 
The definitive version is available at https://doi.org/10.1109/71.852397 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' 
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution 
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/71.852397
mailto:scholarsmine@mst.edu


A Systolic Image Difference Algorithm
for RLE-Compressed Images
Fikret Ercal, Senior Member, IEEE, Mark Allen, and Hao Feng

AbstractÐA new systolic algorithm which computes image differences in run-length encoded (RLE) format is described. The binary

image difference operation is commonly used in many image processing applications including automated inspection systems,

character recognition, fingerprint analysis, and motion detection. The efficiency of these operations can be improved significantly with

the availability of a fast systolic system that computes the image difference as described in this paper. It is shown that for images with a

high similarity measure, the time complexity of the systolic algorithm is small and, in some cases, constant with respect to the image

size. A formal proof of correctness for the algorithm is also given.

Index TermsÐSystolic algorithm, image difference, image compression, run-length encoding.

æ

1 INTRODUCTION

BINARY image processing is used in many areas including
robot vision and industrial inspection [1], [2], character

recognition, fingerprint analysis, motion detection for safety
and security [3], [4], feature extraction [5], map analysis [6],
etc. It is a common practice to build special purpose
hardware to process binary images in real-time. There are
numerous proposals and implementations of such opera-
tions in hardware including convolution [7], template
matching, component labeling [8], morphological opera-
tions, min/max filtering [9], thinning [10], etc. To speed up
the process, most hardware approaches utilize pipelining
[1], array processors, or systolic architectures [7], [8], [9],
[10].

While there are software approaches to processing
binary images in compressed form (e.g., run-length encod-
ing (RLE)) to save time and space, hardware approaches
rarely operate in compressed mode. To the best of our
knowledge, there are no hardware implementations of
fundamental image operations which process images in
compressed mode without decompressing them. Combined
with the power of the hardware, this approach is expected
to result in significant performance increases. In this study,
we describe a systolic architecture to process binary images
in compressed form.

One of the areas where such a system would have
significant impact is the inspection of printed circuit boards
(PCBs). This work is mainly motivated by the need to speed
up the PCB inspection process [2]. Online automatic
inspection of PCBs requires acquisition and processing of
gigabytes of binary image data in a matter of seconds. Most
PCB inspection systems use a reference based approach

which requires comparison of the board image against the

original CAD design. Therefore, the binary image difference

operation is a fundamental step in the inspection process

and the system performance critically depends on the speed

of this operation. To increase the performance further, run-

length encoding (RLE) is used for storage and operations.
Systolic systems use cellular iterative computations and

perform global tasks through exchange of local data in a

pipelined fashion [11]. Since most of the image processing

operations exhibit high local dependencies among data

elements, systolic machines are widely used in image

processing applications such as morphological operations,

binary template matching [9], thinning [10], convolution [7],

etc. The straightforward parallel method for computing

these iterative-convergent operators is through a globally

synchronous updating mode: All variables are updated at

once, based on the values calculated during the previous

step, before another iteration step is initiated. Since systolic

machines are designed to exploit spatial information and

most of the spatial locality information is lost in compressed

domain, most systolic image processing algorithms pro-

posed so far are based on operations on pixel data. It is

extremely difficult to design systolic algorithms which

operate on compressed image data. Fortunately, some

compression techniques such as RLE preserve part of the

information pertaining to spatial locality allowing us to

design a systolic system that finds the difference between

two binary images represented in RLE.
In the next section, we elaborate on the RLE-based image

difference algorithm. The following sections describe the
parallel systolic system which computes the difference
between the corresponding rows of two images represented
in compressed form, i.e., RLE. (see Fig. 1). In Section 4, a
formal proof of correctness for the systolic algorithm is
provided. The last section gives simulation results for the
systolic system which demonstrate that, for images with a
high similarity measure, the time complexity of the systolic
algorithm is small and in some cases constant with respect
to the image size.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 5, MAY 2000 433

. F. Ercal is with the Computer Science Department, University of Missouri,
Rolla, MO 65401. E-mail: ercal@umr.edu.

. M. Allen is with Hewlett Packard, 3000 Waterview Parkway, Richardson,
TX 75080. E-mail: markall@rsn.hp.com.

. H. Feng is with Microsoft, One Microsoft Way, Redmond, WA 98052.
E-mail: haof@microsoft.com.

Manuscript received 11 Sept.1998; accepted 9 Nov. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 107382.

1045-9219/00/$10.00 ß 2000 IEEE



2 IMAGE DIFFERENCE

In this section, we provide a definition of the image
difference problem and discuss a sequential algorithm to
solve the problem on run-length encoded bitstrings.

Regardless of what encoding method is used, the inputs
in the image difference problem both represent strings of
binary data of the same length b. Let img1 and img2 be
arrays representing these unencoded bitstrings of length b.
Thus, for each location i in the range 1 to b, img1[i] has a
value of one or zero based on whether image one has a
foreground or a background-colored pixel in the ith
location, respectively, and img2 is equivalently defined.

The output of the operation also represents a string of
binary data of length b. The encoding of the output will
matter later but not in the definition of the difference
operation. Let difference be an array representing the
unencoded output.

The desired output after an image difference operation is
defined as follows:

Definition of Image Difference. For each i in the range 1 to b,
difference[i] = img1[i] � img2[i], where � represents the

exclusive-or operation.

An example image difference operation is shown in
Fig. 1.

When using run-length encoding, the two inputs and the
output are represented as arrays of 2-tuples of integers. In
each tuple, the first element is the start of the run and the
second element is the run's length. Each array of tuples
must use a strictly increasing sequence of first elements of
the tuples. By definition, none of the intervals represented
by the tuples for a single bitstring may overlap. In the input
it is permissible, in general, for two intervals in a single
bitstring to be directly adjacent to each other, and in the
output it is possible for this to occur as well; however, an
additional pass can be made at the end to ensure the
encoding is completely compressed. Note that only the
foreground pixels are represented in the encoding.

The sequential algorithm for finding the image difference
of two RLE encoded bitstrings is a single pass through the
two arrays simultaneously, which merges them together
into a single RLE encoded bitstring. We start at the
beginning of the two arrays, and for each iteration, we
determine the XOR of the top run of both bitstrings, take the
smaller of the resulting runs, and leave the remainder in the
array it came from. This sequential algorithm clearly has a
time complexity of O(k) where k is the number of runs in
the two images. Also, it should be noted that this time
complexity is the same for the best, worst, and average case.

3 RLE-BASED SYSTOLIC IMAGE DIFFERENCE

ALGORITHM

If we let k be an upper bound on the number of runs in a

single input bitstring, then the XOR operation can clearly

not produce more than 2�k runs, thus our systolic

architecture will use 2�k cells. Each cell will have two

registers, each capable of storing two integers to represent a

run, as shown in Fig. 2. Initially, the first register of each cell

will be used to store the array of runs representing the first

image, and the second register of each cell will store the

array of runs for the second image. After the algorithm has

terminated, the first register of the cells will represent the

result of the XOR operation and the second register of all

cells will be empty.
For notation, we will call the first register RegSmall and

the second register RegBig. Also, we will refer to runs by

their starting and ending points rather than the starting

points and lengths which are actually stored. Thus, if cell i

contains two runs, where the first one starts at location 10

and has length 5 and the second one starts at location 12

and has length 8, our notation will indicate this as

cell[i].RegBig.start = 10 cell[i].RegBig.end = 14
cell[i].RegSmall.start = 12 cell[i].RegSmall.end = 19

434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 5, MAY 2000

Fig. 1. Example of the image difference operation.

Fig. 2. Architecture of a cell, and array of cells forming the systolic system.



Now we will describe the main steps of the algorithm

which will be put into a loop to form the final algorithm.

These steps will be executed by each cell individually, and

are written below to be executed by an arbitrary cell i.

Steps used in main algorithm.
1.) The purpose of this step is to put the ªsmallerº run into
RegSmall and the ªbiggerº run into RegBig.

if (cell[i] has a run in both of its registers) then
if ((cell[i].RegSmall.start > cell[i].RegBig.start) ||

((cell[i].RegSmall.start == cell[i].RegBig.start) &&
(cell[i].RegSmall.end > cell[i].RegBig.end))) then

swap the contents of RegSmall and RegBig
endif

else if (cell[i] has a run in only RegBig) then
move the contents of RegBig to RegSmall and set
RegBig to empty

endif

2.) Perform the XOR operation in cell i (independently
from all other cells containing other runs). And to avoid any
ambiguity as to where the resulting runs are stored in the
cell, we can describe the XOR more explicitly. Each cell
executes the following:

oldSmallend = RegSmall.end
RegSmall.end = min(RegSmall.end, RegBig.start-1)
RegBig.start = min(RegBig.end+1,

max(oldSmallend+1, RegBig.start))
RegBig.end = max(oldSmallend, RegBig.end)

3.) Shift the data in RegBig to the right, and receive data
from the left into RegBig.

Finally, we can put these three steps together into a loop

to form the complete algorithm which is executed by each

cell i.

Algorithm for cell i:
while (not receiving the termination signal along input F)

do step-1 ; step-2 ; step-3 ;
if (there is no data in RegBig) then

send the termination signal along output C
endif

endwhile

Externally, when all cells are sending the termination
signal along output C, then the termination signal is sent
along input F so that all the cells stop processing.

At this point, the runs stored along RegSmall in the cells
form an array of runs which are ordered, do not overlap,
and correctly represent the XOR of the original two
bitstrings. A formal proof for this assertion is provided in
the next section. Note that it is possible for there to exist
empty cells between these runs, however. Fig. 3 illustrates
the steps of a systolic run using the input from Fig. 1.

4 PROOF oF CORRECTNESS

There are three pieces to prove in this section. First, we
must show that the algorithm does halt after a certain
number of steps. Second, we must show that the resulting
array of runs when the algorithm terminates is ordered and
that none of the resulting sequences overlap. And third, we
must show that the resulting array of runs does indeed
represent the XOR of the original two bitstrings.

4.1 Proof for Termination

The first part is quite trivial to show by induction. We will
use the following two corollaries which lead directly to our
first theorem.

Corollary 1.1. At the end of iteration i, the first i cells do not
have any runs stored in RegBig.

Corollary 1.2. At no point in the algorithm will there exist a
nonempty cell beyond location k1� k2 where k1 is the number

ERCAL ET AL.: A SYSTOLIC IMAGE DIFFERENCE ALGORITHM FOR RLE-COMPRESSED IMAGES 435

Fig. 3. Execution of the systolic algorithm on the inputs from Fig. 1.



of runs in the first image and k2 is the number of runs in the

second image.

Proof of Corollary 1.1. Base case: If we refer to the state

before any iterations have been completed as the ªendº

of iteration 0, then the assertion is vacuously true.
To have a somewhat less trivial base case, we can also

consider the state at the end of iteration 1. For this part,
all we need to note is that Step 3 is the last step of the
iteration. Thus, if there were anything in RegBig for cell 1
before Step 3, it would not be there after Step 3.

Induction step: Suppose that after iteration i it is the
case that the first i cells do not have any runs stored in
RegBig. We will now show that after the i� 1st iteration,
they still do not have any runs in RegBig and cell i� 1
also has no run stored in RegBig.

Since none of the first i cells contain a run in RegBig,
Step 1 where the smaller run is moved to the top will
make no changes to the first i cells. Step 2 where the XOR
is performed will also not cause any change. Step 3
where the data in RegBig is shifted right will not bring in
any new data to these first i cells, nor will cell i� 1 have
any data in RegBig after Step 3. Therefore, the first i� 1
cells have no data in RegBig after the i� 1st iteration. tu

Proof of Corollary 1.2. Note first that the total number of

runs in the system never increases. Step 2 may some-

times reduce two runs into one, but none of the steps will

ever produce more runs than the step started with. Next,

note that only Step 3 is capable of causing the location of

the rightmost nonempty cell to increase, and when this

happens it results in a run being moved from RegBig to

RegSmall in Step 1 at the beginning of the next iteration,

thus decreasing the number of runs stored in RegBig

across all the cells. And since no steps cause the number

of runs stored in RegBig of the cells to increase, this

increase in the location of the rightmost nonempty cell

can only happen a limited number of times.
More specifically, at the start of the algorithm there

are k1 cells containing a run in RegSmall and k2 cells
containing a run in RegBig. After Step 1 of the first
iteration, there are max�k1; k2� cells containing a run in
RegSmall and min�k1; k2� cells containing one in RegBig.
At this point, the rightmost nonempty cell is at location
max�k1; k2�, and based on the previous discussion, this
can only increase min�k1; k2� times to a maximum value
of max�k1; k2� �min�k1; k2�, which clearly reduces to
k1� k2. tu

Now that the two corollaries are proven, we can restate

our theorem about termination.

Theorem 1. The systolic XOR algorithm terminates after at most

k1� k2 steps, where k1 is the number of runs in the first

image and k2 is the number of runs in the second image.

Proof of termination. By Corollary 1.1, after iteration

k1� k2, the first k1� k2 cells have no runs stored in

RegBig. By Corollary 1.2 there are no nonempty cells

beyond location k1� k2. Thus, by iteration k1� k2 the

only nonempty cells are ones which have no runs stored

in RegBig, which means that the termination condition is

satisfied by iteration k1� k2. tu
4.2 Proof for Proper Ordering

In this section, we prove that the resulting array of runs

when the algorithm terminates is ordered and that none of

the resulting sequences overlap. This part takes somewhat

longer to prove than the termination. First, we will

introduce some more notation to be able to refer qualita-

tively to all the various possible states a cell can be in. These

states are shown in Fig. 4.

436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 5, MAY 2000

Fig. 4. List of qualitatively different cell states.



The first two columns of Fig. 4 show all the possible cell

states, and the third column shows the result of performing

Steps 1 and 2 on each of these cells. The reason for the

pairings between columns 1 and 2 is that the ªaº states and

the ªbº states are related in the sense that any ªbº state will

turn into the corresponding ªaº state after Step 1 is

performed, and any ªaº state will be unchanged by a Step 1.
We wish to prove that the runs stored along RegSmall

and RegBig of the cells are always ordered. More

specifically, we show the following.

Theorem 2. At the end of each iteration, for every cell i, and

every cell j to its right �j > i�,
1. if both cells i and j contain runs in RegSmall, then

cell[i].RegSmall.end < cell[j].RegSmall.start, and
2. if both cells i and j contain runs in RegBig, then

cell[i].RegBig.end < cell[j].RegBig.start.

We can write the theorem in a format more conducive to

proof as follows. Since each iteration of the algorithm

consists of three steps and the third is so simple, we focus

the corollary below on the first two steps. For notation, we

refer to the state of cell i before an iteration begins as

cell[i].before, and the state of the cell after the first, second,

and third steps as cell[i].after1, cell[i].after2, and

cell[i].after3, respectively. Note that the current iteration is

not included because it would unduly clutter the notation.

Thus, the iteration being considered must be made clear

from context.

Corollary 2.1. At any iteration, for every cell i, and for every cell

j to its right �j > i�,
1. if both cells i and j contain runs in RegSmall after

Step 2, then

cell�i�:after2:RegSmall:end
< cell�j�:after2:RegSmall:start;

2. if both cells i and j contain runs in RegBig after Step 2,
then

cell�i�:after2:RegBig:end
< cell�j�:after2:RegBig:start;

3. if cell i has a run in RegSmall and in RegBig after
Step 2, then

cell�i�:after2:RegSmall:end
< cell�i�:after2:RegBig:start;

and
4. if cell i has a run in RegSmall and cell j has one in

RegBig after Step 2, then

cell�i�:after2:RegSmall:end
< cell�j�:after2:RegBig:start:

5. If after Step 3 some cell k between cells i and j
(including i itself) has no run in RegSmall, and if cell i

has a run in RegBig and cell j has a run in RegSmall,
then

cell�i�:after3:RegBig:end
< cell�j�:after3:RegSmall:start:

Note that parts three, four, and five of the above
corollary are included only because they are useful in
proving the induction step. The proof of Corollary 2.1 is by
induction on the number of iterations and it is provided in
the Appendix. The first four parts are reasonably intuitive;
however, the fifth part may not be. In the proof given in the
Appendix, the first four parts follow rather directly from
some simple inequalities, while the fifth part requires more
reasoning.

Once Corollary 2.1 is proven, it is fairly easy to show
Theorem 2:

Proof of Theorem 2. Execution of Step 3 of the algorithm
does not have any effect on the truth of the first part of
Corollary 2.1. Thus, if the first inequality from
Corollary 2.1 is shown to be true between cells i and j
after Steps 1 and 2 are performed, then the first part of
Theorem 2 is true, too. If part two of the corollary is
shown to be true between cells i and j after Steps 1 and 2,
then part two of the theorem is true for all cells i� 1 and
j� 1, which covers all pairings which do not use the first
cell. And since RegBig of this first cell is empty, the
pairings involving it are vacuously true. tu

4.3 Correctness Proof for the Resulting RLE String

To conclude the formal proof of correctness for our systolic
algorithm, we need to show that the resulting array of runs
does indeed represent the XOR of the original two
bitstrings. This part is rather easy compared to the previous
section. The idea is to view the runs of the two bitstrings as
a set of many distinct smaller bitstrings and observe that the
only changes made to this set involve XORs among these
bitstrings. This, combined with the fact that XOR is
associative, implies that the final state is the correct XOR
of the original two bitstrings.

In more detail, the definition of the image difference
problem was given as difference[i] = img1[i] � img2[i], for
each i in the range 1 to b, where � represents the exclusive-
or operation, and where b is the number of pixels in the
image.

We can easily extend this to apply to a set of bitstrings
instead of merely two bitstrings. We could write this as

difference�i� �
0 if an even number of bitstrings from our set

have a one in bit i; or

1 if an odd number of bitstrings from our set

have a one in bit i:

8>>><>>>:
For two bitstrings, these are clearly equivalent defini-

tions of the difference. For any set of bitstrings, we will view
the difference of the entire set according to the definition
above.

To make this definition useful we must make the
observations that

ERCAL ET AL.: A SYSTOLIC IMAGE DIFFERENCE ALGORITHM FOR RLE-COMPRESSED IMAGES 437



Corollary 3.1. if the runs of a bitstring are viewed as a set of
smaller bitstrings, then the XOR of this set is the original
bitstring, and

Corollary 3.2. letting xor(A) represent the bitstring which
results from XORing the bitstrings contained in the set A, we
have for arbitrary sets of bitstrings A and B that xor(A [ B) �
xor({xor(A), xor(B)}).

Proof of Corollary 3.1. The first observation follows from
the fact that none of the runs in the original bitstring can
overlap, therefore each location in the difference array
will be a one if the original bitstring had a one, and a zero
if the original had a zero in the specified location. tu

Proof of Corollary 3.2. The second observation is true
because for each location in the difference array,

. if a resulting bit in xor(A [ B) is a one, then the
total number of runs between A and B that had a
one in that location must have been odd. There-
fore, one of the sets had an odd number of ones
and the other must have had an even number,
and between xor(A) and xor(B) one has a one and
the other has a zero. Thus, xor({xor(A), xor(B)})
has a one in the specified bit,

. and if a resulting bit in xor(A [ B) is a zero, then
the total number of runs between A and B that
had a one in that location must have been even.
Therefore, either both sets had an odd number of
ones, or they both had an even number of ones in
the specified bit. Thus, xor(A) and xor(B) either
both have a one or both have a zero, and either
way this causes xor({xor(A), xor(B)}) to have a
zero in the specified bit. tu

Now we wish to use these corollaries to prove that the
image difference produced by the algorithm is correct.

Theorem 3. The image difference produced by the systolic
algorithm is the same as the correct XOR defined in Section 2.

Proof of Correctness. We can let A be the set of runs
contained in the first image, and let B be the set of runs
in the second image. Thus, based on our first observa-
tion, xor(A) is the first image and xor(B) is the second
image, so the final result we seek is xor({ xor(A), xor(B)}),
which according to our second observation is equal to
xor(A [ B).

Now that we have expressed the desired result as an
XOR over the set of all runs contained in the two images,
we must show that although the set of runs being
considered changes at each step of the algorithm, the
resulting XOR is still the same after each iteration.

Clearly, Steps 1 and 3 of a given iteration do not
change the set of runs under consideration. Only the
second step causes any changes. And since XOR is an
associative operation, we can say that xor(A [ B) is xor(A
[ {xor(B)}) by an argument very similar to the one used
in our second observation above. Letting B be a pair of
runs XORed in a cell during Step 2, we see that the XOR
of the set of runs before Step 2 is the same as the XOR of
the new set of runs after Step 2. Thus, we have now
shown that at any point in the algorithm, if C is the set of
runs contained in the systolic system, then xor(C) is the

correct XOR (i.e., xor({xor(A), xor(B)})). And due to
Theorems 1 and 2, when the iterations are over, the final
result will be stored in RegSmall in a sorted and
nonoverlapping manner, thus making xor(C) equal to
the bitstring represented directly by the runs of C. That
is, the bitstring stored in the end is indeed the correct
XOR. tu

5 ALGORITHM PERFORMANCE

In this section, we present experimental results to show that
the systolic algorithm obtains the final result very quickly
when the bitstrings being XORed are highly similar.

First, another upper bound can be put on the number of
steps the algorithm will take. When we proved termination
above, we showed it would stop in at most k1� k2 steps
where k1 is the number of runs in the first bitstring, and k2
is the number of runs in the second bitstring. As stated
below, we also believe that it is bounded by the number of
runs in the image difference, although we have not yet
proven this.

Observation. If the runs of the two input bitstrings are
encoded such that none of the runs are adjacent (in other
words, if the bitstring is compressed as much as
possible), then the systolic XOR algorithm terminates
after at most k3� 1 steps, where k3 is the number of runs
in the output from the systolic algorithm (note the output
from the systolic algorithm will not always be com-
pressed optimally).

If we let the similarity of two images be measured by the
number of runs in the final result, then the above
observation implies that the systolic algorithm has the
potential to run faster the more similar two bitstrings are.

A simulation program was written to test the algorithm
on a large number of randomly generated input cases. The
size for the image rows was varied from 128 to 2048 pixels.
The ªonº pixels in the first image were chosen in runs of
length 4 to 20, and the second image was obtained by
flippping some of the bits of the first image in either
direction (1 ! 0, 0 ! 1). Here, these changes are called
ªerrorsº and they were in runs of length 2 to 6. The
percentage of ªonº pixels in the first image and of the errors
in the second image was varied by changing the average
distance between the runs.

The empirical testing shows that for medium amounts of
error (when the number of pixels changed was less than 30
percent of the total image) the dominating factor for the
number of iterations was the difference between the
number of runs in the two images. This was true
irrespective of the sizes of the images and varied only
slightly over different densities.

This is demonstrated in Fig. 5, which shows the average
number of iterations taken by the algorithm as a function of
the percentage of pixels with errors. In this figure, the image
size is 10,000 pixels with approximately 250 runs in the
original image, which translates to a density of 30 percent.
The pattern is similar for smaller images, but the variation is
higher. The other two sets of data show the average
difference in the number of runs in the two images, which

438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 5, MAY 2000



correlate very closely with the number of iterations up
through 30-40 percent, and the number of runs in the XOR
produced by the algorithm which is the upper bound we
have not proven yet.

In explanation of the high correlation between the
number of iterations taken and the difference in the number
of runs in the two images, we notice that after the first
iteration the larger number of runs will be stored along
RegSmall. Then if the shift-right procedure in Step 3 causes
a run to be pushed into this group of runs along the end,
then all the runs at the end will need to be pushed to the
right a cell. And clearly the number of steps taken by this
chain reaction will be the length of this group of runs at the
end, which is the difference between the number of runs in
the two images.

When the number of pixels changed is much greater than
30 percent of the total image, a different factor begins to
dominate. For the smaller amounts of difference, there will
be lots of empty cells left behind throughout the array, thus
the only significant data movement will be at the end as
discussed in the previous paragraph. But as the number of
differences increases and thus, the number of empty cells
decreases, more and more data movement will be required
thus pushing the algorithm closer to the upper bound.

Fig. 5 demonstrates the correlation between the number
of iterations taken by the algorithm and the difference in the
number of runs in the two images and it demonstrates an
upper bound as the number of runs in the XOR after the
algorithm finishes; however, it does not give a good
impression of the algorithm's speed. This can be seen in
the next table which focuses on smaller amounts of error.

Table 1 shows the average number of iterations taken by
both the sequential and the systolic algorithm on an image

of size ranging from 128 to 2,048 pixels. In the first case, the
errors are kept at approximately 3.5 percent of the image,
thus causing both the systolic and the sequential versions to
take linearly more time as the image size increases. In the
second case, however, the number of errors is fixed at six
runs each of size 4 pixels, thus while the sequential
algorithm still takes large amounts of time, the systolic
algorithm averages just over six iterations regardless of how
large the image gets.

6 CONCLUSIONS AND FUTURE RESEARCH

This paper has shown that a systolic array can perform an
image difference operation on RLE encoded images very
quickly if the two images are highly similar. Indeed, the
number of iterations taken is bounded above by the number
of runs left in the XOR, and for similar images, the number
of iterations is tightly correlated with the difference
between the number of runs in the two images.

ERCAL ET AL.: A SYSTOLIC IMAGE DIFFERENCE ALGORITHM FOR RLE-COMPRESSED IMAGES 439

TABLE 1
Average Systolic Iterations versus Sequential Iterations for

Small Amounts of Errors (Length of Runs: 4-20,
Length of Error Runs: 2-6)

Fig. 5. Number of iterations as a function of the percent of pixels with errors plotted along side two of the dominating factors in the algorithm's running

time.



Although a parallel solution of the image difference
problem can easily be performed on uncompressed data in
constant time if the number of processors available is
proportional to the number of pixels in the images, there
is no known parallel algorithm which performs the same
operation in compressed mode. To the best of our
knowledge, this paper demonstrates the first effective
parallel solution which operates on compressed data
directly. This method has the advantage of using a smaller
number of processors, and it does not require the time to
convert between RLE format and the bitmap mode when
the original image is in RLE format. Here, we note that, in
any practical application, k will be a lot larger than the
number of systolic cells available. To solve this problem of
disparity between the number of runs and the PEs, for
each computation phase, at most k runs are loaded to the
systolic cells. To do this effectively, the image rows must
be partitioned into sections of equal length (in pixels) in
such a way that in each section one of the image rows will
contain k runs while the other image row will contain less
than k runs covering the same number of image pixels.
This partitioning phase can be overlapped with the
systolic computation, or marking of the image rows can
be done beforehand during the image acquisition phase.
Another important issue to mention here is how to
perform input/output between the systolic cells and the
image memory in a cost effective manner. Our timing
simulations suggest that this problem can be solved by
overlapping I/O with the XOR computation. Indeed, this
overlapping strategy is adopted in our current implemen-
tation of the systolic array [13] which uses Field Program-
mable Gate Arrays (FPGAs) [14].

In both the case of highly similar and highly different

images, the number of iterations taken seems to be

dominated by the frequent need to push a whole set of

runs to the right to make room for a new entry. If a

broadcast bus existed which could run at the same

frequency as the rest of the systolic system, it might be

possible to perform these shifts more efficiently, thus

significantly decreasing the running time. Thus, one area

of future research should be modifying the algorithm to run

more quickly on a model with a fast broadcast bus, such as

a reconfigurable mesh [12]. Additionally, the task of

combining the adjacent runs in different cells at the end

of the algorithm is left as a future research. This task also is

not fast on a pure systolic system, but could be performed

quickly with the help of a broadcast bus. We are also

working on a proof to show that our observation stated in

Section 5 does indeed hold.

APPENDIX

In the induction proof below, we will consider cell i and

cell j in any of the possible states shown in Fig. 4 and show

that the five parts of Corollary 2.1 hold for each possible

pairing. Fortunately, these possibilities can be grouped

together into a relatively small number of cases. For

notation, we refer to the state of cell i before an iteration

begins as cell[i].before, and the state of the cell after the first,

second, and third steps as cell[i].after1, cell[i].after2, and

cell[i].after3, respectively. Note that the current iteration is

not included because it would unduly clutter the notation.

Thus, the iteration being considered must be made clear

from context.
In the inequalities proven below for each pairing, certain

observations will be used several times. The following

inequalities can be verified by examining Fig. 4.

Cells 1a-3a, 1b-3b, 5a, 5b, 6a, 6b, and 8a:

cell:after2:RegSmall:end � cell:before:RegSmall:end

Cells 1a-3a, 5a, 6a, and 8a:

cell:before:RegSmall:start � cell:after2:RegSmall:start

Cells 1a-3a, 1b-3b, 5a, 5b, 6a, 6b, and 8b:

cell:after2:RegSmall:end � cell:before:RegBig:start

Cells 1b-3b, 5b, 6b, and 8b:

cell:before:RegBig:start � cell:after2:RegSmall:start

Cells 1a-4a, and 5b:

cell:after2:RegBig:end � cell:before:RegBig:end

Cells 1a-5a, and 1b-5b:

cell:before:RegBig:start � cell:after2:RegBig:start
cell:before:RegSmall:start � cell:after2:RegBig:start

Cells 1b-4b, and 5a:

cell:after2:RegBig:end � cell:before:RegSmall:end:

Now, we are finally ready for the induction proof on the

number of iterations.

Proof of Corollary 2.1

Base case. We must show that after Steps 1 and 2 of

iteration 1, for all cells i and j where j > i, the first four

inequalities of Corollary 2.1 hold for all possible pairings

of states that cells i and j could have. And, we must

show that the fifth part is true for any possible pairing

after the third step, too.
Note that since the initial configuration has no holes,

the following pairings are not possible:

. state 8a followed by any other than 8a or 9

. state 8b followed by any other than 8b or 9

. state 9 followed by any other than 9.

Now, we show the inequalities for all other pairings.
Note that the actual assertion being shown in all cases is

if cell[i].after.AppropriateRegister and
cell[j].after.AppropriateRegister both contain runs,
then

the stated inequality holds.

And the inequality is shown using the list that was
developed immediately before the proof, plus the
obvious inequalities that follow from the fact that the
runs in the before state (which is the initial input to the
problem) are ordered. That is,

440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 5, MAY 2000



cell�i�:before:RegSmall:end < cell�j�:before:RegSmall:start
cell�i�:before:RegBig:end < cell�j�:before:RegBig:start:

. Inequality 1:

- any state but 8b followed by 1a-6a, 7, 8a, or 9:

cell�i�:after2:RegSmall:end
� cell�i�:before:RegSmall:end
< cell�j�:before:RegSmall:start
� cell�j�:after2:RegSmall:start

- any state but 8a followed by 1b-6b, or 8b:

cell�i�:after2:RegSmall:end
� cell�i�:before:RegBig:end
< cell�j�:before:RegBig:start
� cell�j�:after2:RegSmall:start

- state 8a followed by 8a or 9: trivial

- state 8b followed by 8b or 9: trivial

- Inequality 2:

- state 1a-4a, 5b, 6a, 6b, 7, 8a, 8b, or 9
followed by any:

cell�i�:after2:RegBig:end
� cell�i�:before:RegBig:end
< cell�j�:before:RegBig:start
� cell�j�:after2:RegBig:start:

- state 1b-4b, or 5a followed by any:

cell�i�:after2:RegBig:end
� cell�i�:before:RegSmall:end
< cell�j�:before:RegSmall:start
� cell�j�:after2:RegBig:start:

- Inequality 3: This is much simpler than the
previous steps. A simple inspection of all
possible states in the third column of Fig. 4
shows that in all cases

cell�i�:after2:RegSmall:end
< cell�i�:after2:RegBig:start:

- Inequality 4: This doesn't quite follow di-
rectly from parts 2 and 3 because cell i might
not have a run in RegBig. The only times it
will have a run in RegSmall, but not RegBig is
if it starts in state 6a, 6b, 8a, or 8b. Since both
registers in states 6a and 6b have the same
ending point, we easily get that for any cell j
to the right,

cell�i�:after2:RegSmall:end
� cell�i�:before:RegSmall:end
� cell�i�:before:RegBig:end
< cell�j�:before:RegBig:start
� cell�j�:after2:RegBig:start:

And for states 8a and 8b, we have the

advantage that 8a cannot be followed by

anything other than 8a or 9, and 8b cannot be

followed by anything other than 8b or 9.

Thus, the ªafterº state of cell j will never have

a run in RegBig to worry about.
- Inequality 5: For some cell k between i and j

(including i) to end up with no run in
RegSmall after the iteration is complete, it
must have started in state 4a, 4b, 7, or 9. Since
state 9 cannot be followed by anything but
another cell in state 9 at the start of the first
iteration, our inequality is vacuously true for
that state.

Focusing on cell k having state 4a, 4b, or 7
initially, we see that the starting points of the
two runs in cell k form a nice barrier for any
runs in any cells preceding k. And naturally,
the run which ends up in cell[i].RegBig after
the iteration comes from behind this barrier
(or if it doesn't, then our inequality is
vacuously true again).

More specifically, we have

cell�i�:after3:RegBig:end
� cell�iÿ 1�:after2:RegBig:end;

w h i c h i s i n t u r n e q u a l t o e i t h e r
c e l l [ i - 1 ] . b e f o r e . R e g S m a l l . e n d o r
cell[i-1].before.RegBig.end. And either way,
we have

cell�iÿ 1�:before:RegSmall:end
< cell�k�:before:RegSmall:start

cell�iÿ 1�:before:RegBig:end
< cell�k�:before:RegBig:start;

which gives us

cell�i�:after3:RegBig:end
� cell�iÿ 1�:after2:RegBig:end
< cell�k�:before:RegSmall:start
� cell�k�:before:RegBig:start:

And since cell j is to the right of k, we know
that both

cell�k�:before:RegSmall:end
< cell�j�:before:RegSmall:start

and

cell�k�:before:RegBig:end
< cell�j�:before:RegBig:start

and one of these is in turn

ERCAL ET AL.: A SYSTOLIC IMAGE DIFFERENCE ALGORITHM FOR RLE-COMPRESSED IMAGES 441



� cell�j�:after2:RegSmall:start;

which, being in RegSmall, is the same as
cell[j].after3.RegSmall.start.

Induction step: Now suppose we know that during
the steps of the kth iteration it is the case that for any cells
i and j where j > i, the five inequalities of Corollary 2.1
hold for all possible pairings of states that cells i and j

could have. We must show that the first four inequalities
all still hold after the first two steps of the k� 1st
iteration, and the fifth one holds after the third step.

Note that we cannot rule out any pairings this time, so
we must use the extra information provided in the
induction step to prove the inequalities for all pairings.

Also, note that the actual assertion being shown in all
cases is

if cell[i].after.AppropriateRegister and
cell[j].after.AppropriateRegister both contain

runs, then
the stated inequality holds.

And the inequality is shown using the list that was
developed immediately before the proof, plus the
inequalities that follow from the induction hypothesis.

. Inequality 1:

- any state but 8b followed by 1a-6a, 7, 8a, or 9:
same as base case

- any state but 8a followed by 1b-6b, or 8b:
same as base case

- 8a followed by 1b-6b, or 8b:

cell�i�:after2:RegSmall:end
� cell�i�:before:RegSmall:end
< cell�j�:before:RegBig:start
� cell�j�:after2:RegSmall:start:

- 8b followed by 1a-6a, 7, 8a, or 9:

cell�i�:after2:RegSmall:end
� cell�i�:before:RegBig:end

< cell�j�:before:RegSmall:start;
since there exists k between i and j (specifi-
cally k � i) such that cell k has no run in
RegSmall at the end of the previous iteration.
And continuing, we have

cell�j�:before:RegSmall:start
� cell�j�:after2:RegSmall:start:

- Inequality 2: The exact same reasoning used
in the base case applies here too. Conveni-
ently, no possible pairings were skipped.

- Inequality 3: Again, the same reasoning used
in the base case applies.

- Inequality 4: Here, we can again use the
information contained in the induction
hypothesis to our advantage. Based on part
1, we know that since cell j is to the right of i,

cell�i�:before:RegSmall:end
< cell�j�:before:RegSmall:start:

And putting this together with the other

known inequalities we have that

- any state but 8b followed by any:

cell�i�:after2:RegSmall:end
� cell�i�:before:RegSmall:end
< cell�j�:before:RegSmall:start
� cell�j�:after2:RegBig:start:

- state 8b followed by any:

cell�i�:after2:RegSmall:end
� cell�i�:before:RegBig:end
< cell�j�:before:RegBig:start
� cell�j�:after2:RegBig:start:

- Inequality 5: For some cell k between i
and j (including i) to end up with no run
in RegSmall after the iteration is com-
plete, it must have started in state 4a, 4b,
7, or 9. Our argument from the base case
still works for states 4a, 4b, and 7, so we
now need only argue that the inequality
still holds if cell i starts in state 9 at the
beginning of this iteration.

In the same way that the starting

points of the two runs in cell k formed

a nice barrier in the other states, it forms

the same barrier in state 9 here due to the

induction hypothesis.
More specifically, we have

cell�i�:after3:RegBig:end
� cell�iÿ 1�:after2:RegBig:end

which is in turn equal to either cell[i-

1].before.RegSmall.end or cell[i-1].befor-

e.RegBig.end. And either way, we have

cell�iÿ 1�:before:RegSmall:end
< cell�j�:before:RegSmall:start; and
cell�iÿ 1�:before:RegSmall:end
< cell�j�:before:RegBig:start

due to part 1 and parts 3 and 4 of the

induction hypothesis, and

cell�iÿ 1�:before:RegBig:end
< cell�j�:before:RegSmall:start
cell�iÿ 1�:before:RegBig:end
< cell�j�:before:RegBig:start

due to part 2 and part 5 of the induction

hypothesis. And this gives us

442 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 5, MAY 2000



cell�i�:after3:RegBig:end
� cell�iÿ 1�:after2:RegBig:end

< cell�j�:before:RegSmall:start; and
cell�i�:after3:RegBig:end

� cell�iÿ 1�:after2:RegBig:end
< cell�j�:before:RegBig:start

and one of these is in turn

� cell�j�:after2:RegSmall:start;

which, being in RegSmall, is the same as
cell[j].after3.RegSmall.start. tu

ACKNOWLEDGMENTS

This work was supported in part by the Department of
Navy (Contract # N00164-97-C-0008) through a subcontract
from Automation Engineering Inc. The authors would like
to thank Robert Bible Jr., Jodi Bible, and Dr. Mark Burnett
from AEI as well as anonymous referees for many helpful
comments.

REFERENCES

[1] P.P. Jonker and E.R. Komen, ªA Scalable Real-Time Image
Processing Pipeline,º Proc. 11th Int'l Conf. Pattern Recognition
(IAPR), vol. 4, 1992. Conference D: Architectures for Vision and
Pattern Recognition, pp. 142±146.

[2] F. Ercal, F. Bunyak, F. Hao, and L. Zheng, ªA Fast Modular RLE-
Based Inspection Scheme for PCBs,º Proc. Int'l Society for Optical
Eng., (SPIE)ÐArchitectures, Networks, and Intelligent Systems for
Manufacturing Integration, vol. 3,203, pp. 49±59, Oct. 1997.

[3] S. Gil, R. Milanese, and T. Pun, ªComparing Features for Target
Tracking in Traffic Scenes,º Pattern Recognition, vol. 29, no. 8,
pp. 1,285±1,296, 1996.

[4] H. Kawasumi, H. Sekii, N. Enomoto, H. Ohata, and A. Okazaki,
ªDetecting Intruders using Time-Series Data by Projection Pattern
of Silhouette,º Electrical Engineering in Japan, vol. 119, no. 1,
pp. 62±73, 1997.

[5] G.M. Emelyanov, N.V. Kurmyshev, and O.Y. Yuvzhik, ªProce-
dures and Algorithms for Detecting and Determining the
Orientation of Objects in Binary Images,º Pattern Recognition and
Image Analysis, vol. 7, no. 3 pp. 373±378, 1997.

[6] G. Agam, J. Frydman, O. Amiram, and I. Dinstein, ªEfficient
Morphological Processing of Maps and Line-Drawings Based on
Directional Interval Coding,º Proc. SPIEÐThe Int'l Soc. for Optical
Eng., vol. 3,168 pp. 41±51, 1997.

[7] N.K. Ratha, A.K. Jain, and D.T. Rover, ªConvolution on Splash 2,º
Proc. IEE Symp. FPGAs for Custom Computing Machines, Apr. 1995.

[8] A. Rasquinha and N. Ranganathan, ªC3L: A Chip for Connected
Component Labelling,º IEEE 10th International Conf. VLSI Design,
pp. 446±51, Jan. 1997.

[9] M. Djunatan and T. Mengko, ªA Programmable Real-Time
Systolic Processor Architecture for Image Morphological Opera-
tions, Binary Template Matching and Min/Max Filtering,º 1991
IEEE Int'l Symp. Circuits and Systems, vol. 1, pp. 65±68, 1991.

[10] N. Ranganathan and K.B. Doreswamy, ªA Systolic Algorithm and
Architecture for Image Thinning,º Proc. 5th Great Lakes Symp.
VLSI, Mar 1995.

[11] Vipin Kumar, A. Grama, A. Gupta, and G. Karypis, Intro. to
Parallel Computing: Design and Analysis of Algorithms. Benjamin/
Cummings Publishing Company Inc., 1994.

[12] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, ªThe
Power of Reconfiguration,º J. Parallel Distributed Computing,
vol. 13, pp. 139±153, 1991.

[13] F. Ercal, H. Pottinger, V.S. Balakrishnan, and M. Agarwal, ªDesign
and Implementation of a Systolic Array Based RLE Image
Processor Using an FPGA,º http://vision1.cs.umr.edu/
~systolic/Project/detail.html.

[14] J.V. Oldfield and R.C. Dorf, Field Programmable Gate Arrays. John
Wiley and Sons, Inc., 1995.

Fikret Ercal received the BS (with first-class
honors) and MS degrees in electrical engineering
from Istanbul Technical University, and the PhD
degree in computer science from the Ohio State
University in 1988. Between 1988-1990, he was
an assistant and associate professor at Bilkent
University, Ankara. He is currently a professor at
UMR and the director of the computer vision
laboratory. Dr. Ercal is the recipient of three
Faculty Excellence Awards from UMR. He is an

associate editor of the International Journal of Parallel and Distributed
Systems and Networks, executive committee member and the news-
letter editor for the IEEE Technical Committee on Parallel Processing.
He has published extensively in the areas of parallel computing,
computer vision, and image processing.

Mark Allen received the BS degree in mathe-
matics and the MS in computer science from the
University of Missouri at Rolla in 1996 and 1998,
respectively. He currently works for Hewlett
Packard in Richardson, Texas. His research
interests include parallel processing, reconfigur-
able computing, and quantum computing.

Hao Feng received the BS from Northwestern
Polytechnical University, Xi'an, China, and MS
from University of Missouri-Rolla in computer
science in 1995 and 1998, respectively. Cur-
rently, he works for Microsoft in Redmond,
Washington. His research interests include
parallel algorithms, reconfigurable computing,
and image proccessing.

ERCAL ET AL.: A SYSTOLIC IMAGE DIFFERENCE ALGORITHM FOR RLE-COMPRESSED IMAGES 443


	A Systolic Image Difference Algorithm for RLE-Compressed Images
	Recommended Citation

	A systolic image difference algorithm for RLE-compressed images

