
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1989

Fault Diagnosis Using First Order Logic Tools Fault Diagnosis Using First Order Logic Tools

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Barbara A. Smith

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
R. W. Wilkerson and B. A. Smith, "Fault Diagnosis Using First Order Logic Tools," Proceedings of the 32nd
Midwest Symposium on Circuits and Systems, 1989, Institute of Electrical and Electronics Engineers
(IEEE), Jan 1989.
The definitive version is available at https://doi.org/10.1109/MWSCAS.1989.101851

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MWSCAS.1989.101851
mailto:scholarsmine@mst.edu

Fault Diagnosis using First Order Logic Tools

Barbara A. Smith
Department of Computer Science

University of Dayton
Dayton, OH 45469

Ralph W. Wilkerson
Department of Computer Science

University of Missouri-Rol!a
Rolla, MO 65401

Abstract

While numerous diagnostic expert systems have been
successfully developed in recent years, they are almost
uniformly based on heuristic reasoning techniques (i.e.
shallow knowledge) in the form of rules. This paper reports
on an automated circuit diagnostic tool implementing
Reiter’s theory of diagnosis based on deep knowledge (i.e.
knowledge based on certain design information) and using
first order logic as the representation language. In this
approach, the automated diagnostician uses a description
of the of the system structure and observations describing
its performance to determine if any faults are apparent. If
there is evidence that the system is faulty, the diagnostician
uses the system description and observations to ascertain
which component(s), if faulty, would explain the behavior.
In particular, Reiter’s method finds all combinations of
components which explain this behavior.

The inference mechanism which is incorporated as part
of the diagnostic tool is based on bidirectional constraint
propagation. When all components are assumed to be
functioning correctly, the reasoning can be done in a
“forward” fashion with the outputs of the components
determined by inputs. This represents simulation of the
operation of the device. However, when one or more
components is assumed to be functioning abnormally, the
reasoning task becomes more complex and simulation is
no longer sufficient for discovering contradictions. The
output of an abnormally functioning component cannot be
predicted from its inputs. However, there may be enough
constraints on the operation of the other components in the
device that the outputs of the malfunctioning component
may be predicted from the behavior and interconnections
of the other components. This may require that inferences
be made about the value of inputs based on output values
of a functioning component. Thus, the reasoning proceeds
in both a forward (outputs determined from inputs by
simulation) and backward (inputs determined from outputs
by inferences) fashion. A prototype version of the
diagnostic program which finds all diagnoses has been
developed and successfully demonstated on several small
but nontrivial combinational and sequential circuits.
1 Diagnosis from first principles

Raymond Reiter [Re871 has developed what he terms
a theory of diagnosis. The goal of the theory development
is to establish a firm foundation on which to develop
automated diagnosticians. His theory is most general and
is applicable to many areas of diagnosis. However, the
focus of this paper is the diagnosis of circuit faults so
examples and extensions to Reiter’s work will be in that
field. The first point to note about Reiter’s work is that it is
theoretical in nature. He makes no statements to indicate
that an automated diagnostician based on the theory has
been built. De Kleer and Williams [OW87] also refer to
Reiter’s theory as unimplemented. Part of the work of this
paper involves an implementation of a diagnostician based
on Reiter’s theory.

Because of the generality of Reiter’s theory, issues
which are the central focus of some of the earlier work on

diagnosis from first principles are ignored. One of these
issues is that of the representation logic. Since the theory
is independent of the representation logic, the underlying
theorem prover can be implemented in a manner
appropriate for the diagnostic domain. In contrast, the
diagnostic systems of Genesereth, Davis, and de Kleer and
Williams seem to be dependent on a particular type of
inference mechanism. However, Reiter has not
demonstrated that the approach of his theory is more
general than the approaches of these other researchers.
The examples and representation which he uses are the
same as those of the other researchers.

In the following section, this terminology is expanded
and rephrased within the context of Reiter’s general theory.
The definitions are taken from [Re87]. We begin with the
concept of a system which is to be diagnosed. This concept
is central to the first principles approach. A system is a pair
(SD, COMPONENTS) where SD is the system description
represented as a set of first-order sentences and
COMPONENTS is a finite set of constants representing the
constituent parts of the system. This approach to diagnosis
uses the description of a correctly functioning set of
components and does not assume any particular mode of
failure. Thus the concept of a malfunctioning component
must be very general. The predicate AB(component) is used
for this purpose.

The name and type of each component is specified in
components and gafe types. The interconnections of the
components are given, as are the observed input and output
values. This type of constraint might be absent or quite
general, depending on the device to be diagnosed. For
example, values might be constrained to be integer or
positive in some application or without any constraint in
another application. The correct behavior of each
component as a function of its input@) is described by the
gate descriptions.

The generality of the approach and representation does
not preclude the use of domain specific information
concerning faults. It is not necessary to know the ways in
which a component can be faulted. However, Reiter states
that if such information is available, it can be included in the
system description. The general form of such information is:

COMPONENT-TYPE(x) A AB(x) =.
FAULT,(x) v .._ v FAULT,(x)

Also necessary for diagnosis is one or more sets of
observations of the system. An observation is simply
defined to be a finite set of first order sentences. As
discussed earlier, the goal of diagnostic work is to
determine the component(s) which if ABnormal would
explain the observed behavior. Since the system
description and observations have an underlying logical
representation, the concept of a diagnosis is tied to logical
consistency. Formally, Reiter defines a diagnosis for a
device with constituent COMPONENTS, and a system
description SD under a set of observations OBS to be a
minimal set A 5 COMPONENTS such that

SD U OBS U -tAB(c) I c E COMPONENTS - A }
U [AB(c) I C E A }

is consistent. A slightly simpler characterization of a
diagnosis for (SD, COMPONENTS, OBS) is a minimal set A
such that SD UOBS U{lAB(c) I CECOMPONENTS-A)
is consistent. For a proof of the equivalence of the two
definitions see CRe871.

First, a
diagnosis must be minimal. As will be seen, Reiter has
developed an elegant means of identifying the minimal sets
of components which form the diagnoses. Secondly, in
order to identify a diagnosis, there must be a consistency
test for the logic used in the representation. This second
point presents a serious problem since, in general, there is
no decision procedure for determining the consistency of a
first order logic formula. Does Reiter’s approach have any
merit? The answer is yes. There is no decision procedure
for the general question of consistency but for certain
domains the question of consistency is decidable. This is
true, for example, in the area of boolean circuits.

Two major points arise from this definition.

There are a number of similarities between the work of
Reiter and that of de Kleer and Williams. For example, what
Reiter terms a diagnosis, de Kleer and Williams refer to as
a minimal candidate. The difference, however, between
their work is not just a matter of nomenclature. Reiter’s
approach appears more general than that of de Kleer and
Williams and provides a formal basis for studying diagnosis
from first principles. In order to determine the diagnoses,
Reiter makes use of the concept of a conflict set which was
developed by de Kleer [dK76]. A conflict set for (SD,
COMPONENTS, OBS) is a set {c,, ... ,c,} such that
SD U OBS U {,AB(c,), ... , 7AB(c,)} is inconsistent. A

conflict set is minimal if and only if no proper subset of it is
a conflict set for (SD, COMPONENTS, 06s).

Reiter’s procedure for determining diagnoses for (SD,
COMPONENTS, OBS) is based on determining what he
terms the minimal hitting sets for the collection of conflict
sets for (SD, COMPONENTS, 06s). Define a minimal hitting
set as follows:

Let C be a collection of sets. A hitting set for C is set
H S U such that H fl S # { } for each S E C. A hitting set
for 2% minimal iff no proper subset of it is a hitting set
for C.

The following theorem, which Reiter proves, ties together
the concepts of minimal hitting sets,‘ conflict sets and
diagnoses.

Theorem: ASCOMPONENTS is a diagnosis for (SD,
COMPONENTS, 06s) iff A is a minimal hitting set for
the collection of conflict sets for (SD, COMPONENTS,

Thus the problem of computing diagnoses becomes one
of computing the minimal hitting sets for the conflict sets of
(SD, COMPONENTS, 06s). Note that the problem is
phrased in terms of conflict sets not minimal conflict sets as
is the case in the work of de Kleer and Williams. Since the
conflict set returned by the reasoning component need not
be minimal, the reasoning component may be simpler.

Reiter provides an elegant means of computing hitting
sets through the use of a hitting set (HS) tree. Minimal
hitting sets are determined by a pruned HS-tree. Reiter
defines an HS-tree as follows:

06s).

Let F be a collection of sets. An HS-tree for F is a
smallest edge-labeled and node-labeled tree with the
following properties:

(1) The root is labeled by ,/ if F is empty. Otherwise
the root is labeled by a set o f f .

(2) If n is a node of T , define H (n) to be the set of
edge labels on the path in Tfrom the root node to n. If
n is labeled by ,/ then it has no successor nodes in T.
If n is labeled by a set C of F then for each U E C, n has
a successor node no joined to n by an edge labeled by
0 . The label for no is a set S E F such that
S n H(n,) = { } if such a set S exists. Otherwise, ,/ is the
label for no.

Reiter states that H(n) for a node n labeled by ,/ is a hitting
set for F and each minimal hitting set for F is H(n) for some
node n for which ,/ is the label. Since only minimal hitting
sets are desired, a pruned HS-tree will be constructed in
such a way that H(n) for any node labeled by is a minimal
hitting set.

Some concerns arise in applying the concept of an
HS-tree to the process of computing diagnoses. First, the
collection of sets F is not explicitly known. In the diagnostic
process, F is the set of conflict sets for (SD, COMPONENTS,
06s). Secondly, the determination of a set ~ E F is
computationally expensive since f is computed by the
reasoning component. Thus it is necessary to use a method
which incrementally builds and prunes the HS-tree so that
only minimal hitting sets are found and the number of
invocations of the reasoning component is kept small. The
method as stated by Reiter is:

(1) Generate the pruned HS-tree breadth first,
generating nodes at any fixed level in the tree in
left-to-right order.

(2) Reusing node labels: If node n is labeled by a set
S E F , and i f n’ is a node such that H(n’) n S = { }, then
label n‘ by S. Such a node n’ requires no access to F.
The label of node n’ is underlined to indicate that it is
a reused label.

(3) Tree pruning:
(i) If node n is labeled by ,/ and node n’ is such that

H(n) C H(n’) , then close the node n’. A label is not
computed for n’ nor are any successor nodes
generated. A closed node is denoted by x .

(ii) If node n has been generated and node n‘ is
such that H(n’) = H(n) then close node n’.

(iii) If nodes n and n’ have been respectively
labeled by sets Sand S’of F , and if S‘ is a proper
subset of S, then for each a E S - S’ mark as redundant
the edge from node n labeled by a. A redundant edge,
together with the subtree beneath it, may be removed
from the HS-tree with preserving the property that the
resulting pruned HS-tree will yield all minimal hitting
sets for F. A redundant edge in a pruned HS-tree is
indicated by cutting it with ”)(”.

In the context of the diagnostic process, an access to F
in the HS-tree algorithm is an invocation of the inference
mechanism. When a label for a node n must be computed
(that is, the node cannot be closed or relabeled) then the
underlying reasoning component must return one of two
values. If there exists a conflict set S such that
H(n) f l S = { }, then the reasoning component must return S
otherwise the value ,/ is returned. Thus the reasoning
component is passed the set COMPONENTS - H(n) as well
as the system description and observations. If
SD U OBS U {7AB(c) I c E COMPONENTS - H(n)} is
consistent, then ,/ is returned. Otherwise, a conflict set (not
necessarily minimal) is returned. It should be noted again
that the underlying reasoning component must be a
decision procedure for determining consistency. In general,
such decision procedures do not exist. However, in some
domains, decision procedures do exist.

Single fault diagnoses are determined by the nodes
labeled with at level 1 in the tree. If diagnoses of
cardinality k or less are desired, then the construction of the
HS-tree can be halted as soon as level k is complete. Thus,
the single fault assumption which is prevalent in diagnostic
work fits in well with the HS-tree.

2 Inference Based on Constaint Propagation

Reiter’s theory is independent of the implementation of
the underlying inference mechanism. The only requirement
is that the inference mechanism be a decision procedure for
the domain of the diagnostic problem. In general, a
refutational theorem prover is a semi-decision procedure.

The procedure for building the hitting set tree uses all
of the pruning techniques suggested by Reiter. These are
the reuse of node labels, closing of nodes, and the removal
of redundant edges. The last is not necessary if the
inference mechanism returns only minimal conflict sets. We
have no such guarantee of minimality, however. In addition,
we have implemented two heuristics which can further
decrease the number of conflict sets which must be
computed.

Reusing the label of an existing node in the HS-tree as
the label for a new node saves a call to the underlying
theorem prover. As the HS-tree grows, there may be
several labels which could be reused. The label with the
smallest number of elements is chosen. This can be a
valuable heuristic since every element of the set labeling a
node generates a node at the next level. Further, after a
conflict set is returned by the inference mechanism, a check
is made to determine whether that conflict set could be used
to label an existing node which has not yet been expanded.
If the new label would have fewer elements, the node is
relabeled.

Our experience has shown that the removal of
redundant edges usually does not decrease the number of
calls to the theorem prover. Typically, those nodes which
are removed by the pruning are closed or can be relabeled
and thus do not require that a conflict set be computed.
Whether this is an anomaly of the circuit examples we have
studied or a feature of the general diagnostic domain is
unknown. However, the overhead incurred by the removal
of redundant edges is very small compared to the
computation cost of even one unnecessary invocation of the
theorem prover.

Consequently, our diagnostic program consists of
essentially two parts. The first consists of those routines
which implement the construction of the pruned HS-tree of
Reiter, including the heuristics discussed above. The
diagnoses of the given circuit will be read from the pruned
HS-tree when it is completely constructed. A diagnosis is
the collection of edge labels on the path from the root to a
node in the HS-tree which is labeled by 4.

An inference mechanism is a procedure which applies
inference rules to a collection of assumptions in order to
derive additional information. In a diagnostician which is
based on Reiter’s theory of diagnosis, it is the role of the
inference mechanism to determine whether the system
description and observations are consistent when a
particular set of components is assumed to be functioning
in an (unspecified) abnormal manner. If so, the set of
components is a diagnosis for the system. Otherwise, the
inference mechanism must identify a set of components,
known as a conflict set, for which the assumption that the
components were functioning correctly resulted in the
inconsistency. The conflict set will allow the correct
combination of components to be tested so that the set of
diagnoses can be determined. Clearly, the inference
mechanism plays a central role in diagnosis.

The inference mechanism is a theorem prover, although

the domain of the theorem prover is usually specialized. A
theorem prover is sound when the conclusions drawn by it
are true when the premises are true. In a theorem proving
environment, the goal is to find the proof. If a set of clauses
is to be shown to be valid, the clauses are negated and a
refutation is sought. If a theorem prover is guaranteed to
find a refutation when one exists, the theorem prover is said
to be refutationally complete.

The behavior of a theorem prover for first order logic
cannot be predicted if a refutation does not exist. The
theorem prover may halt. If so, and if the theorem prover
is complete, then it can be correctly concluded that the
original clauses are satisfiable. However, the theorem
prover may never halt. The question of determining the
consistency of a set of clauses in first order logic is
undecidable; that is, there is not procedure which can in all
cases determine whether the clauses are consistent or
inconsistent. Since there are, however, procedures which
are sound and complete for determining inconsistency in
first order logic, the problem is said to be semi-decidable.

When reasoning within a specific domain, it is common
to use focusing techniques in conjunction with a general
theorem prover. When one knows how the proof is likely to
be found or where the proof will not be found, the use of
weighting strategies or specific inference rules can be
helpful in directing the theorem prover.

The use of constraint propagation as the inference
mechanism is appropriate for the diagnostic domain. This
can be seen by considering the source of an inconsistency
in X = SD U OBS U {-AB(c) I c E CcCOMPONENTS}. If
the system description is correct, then X is consistent. An
inconsistency in X will occur when a behavior predicted by
X differs from the observed behavior. Therefore, the
emphasis should be placed on the determination of
predicted values. If a weighting function is used, the function
should attach more importance to unit equality clauses.
These clauses will determine the value of the inputs and
outputs of the components.

When techniques such as weighting functions and
special inference rules are used in this manner, the goal is
to guide the inference mechanism so that in some ways it
mimics what a human would do in the given situation. When
given a diagram of a circuit or other device and values for
inputs and outputs, a person would use the known values to
determine the unknown, internal values in the circuit. The
new values would be calculated by applying the laws or
rules which govern the correct operation of the components.
When all components are assumed to be functioning
correctly, the reasoning can be done in a ”forward” fashion
with the outputs of the components determined by inputs.
This represents simulation of the operation of the device.

When one or more components is assumed to be
functioning abnormally, the reasoning task becomes more
complex and simulation is no longer sufficient for
discovering contradictions. The output of an abnormally
functioning component cannot be predicted from its inputs.
However, there may be enough constraints on the operation
of the other components in the device that the outputs of the
malfunctioning component may be predicted from the
behavior and interconnections of the other components.
This may require that inferences be made about the value
of inputs based on output values of a functioning
component. Thus, the reasoning proceeds in both a forward
(outputs determined from inputs by simulation) and
backward (inputs determined from outputs by inferences)
fashion. Note that the possibility exists that neither forward
nor backward reasoning will be able to determine all of the
values in the device.

The preceding discussion represents an informal
description of constraint propagation The basis of the
method lies in the determination of a new value (either an
input or output of a component) whenever enough

301

information about other inputs and outputs is known. The
connections between components, which in this work are
assumed to be ideal, function as conduits of values. When
a new value is determined, the components which led to the
determination of the value are recorded along with the
value. These components are referred to as the antecedants
of the value. When a contradiction is found, the antecedants
determine the components in the conflict set.

The value of a particular input or output of a component
can usually be determined in more than one way. When two
values are calculated for the same input or output, a
coincidence is said to have occurred. The two values may
be identical, in which case nothing need be done. The two
values may be consistent but establish a new constraint.
For example, the output of a component may at one point
be determined to be some variable value represented as
x,. The same output might be determined to be 0 by another
set of constraints. The coincidence is consistent and also
establishes that x, = 0. The third possibility is that the
values disagree which means that an inconsistency has
been found. The antecedants of the inconsistency are the
union of the antecedants of the two values.

When using constraint propagation as an inference
mechanism, the choice of what value to propagate next is
usually controlled by a queue. The queue may be structured
in a first-in-first-out manner or the values in the queue may
be ordered in some way. For example, if the size of the
antecedant set is significant, the queue is ordered on that
basis. This is the case in diagnosis when the inference
mechanism must return minimal conflict sets.

3 Implementation Details

The representation of a device is basic to the operation
of the inference mechanism. A global variable,
COMPON€NTS, is a list of the names of all components in
the device. Each component is an atom and has the
following properties associated with it.

ABnormal: T or nil

type: EXORG, ANDG, ORG, etc.

numinputs: Integer representing the number of input
lines of the component. The input lines
are referred to as IN1. IN2,

numoutputs: Integer representing the number of output
lines of the component. The output lines
are referred to as OUTl, OUT2,

line values: All of the input and output values lor a
component are stored on the property list
of the component under the input or output
name.

The value for a particular input or output is an ordered
list of value information. Each element of the list contains
the value associated with the input or output at a particular
time or state. The value information for a state consists of
the value itself and the list of antecedant components which
determined the value. State numbers can be any
non-negative integer, although the value information is
stored in order starting with the information for state 0.

The variable Connection-List, also global, defines the
connections. Each element of Connection-List is a pair
which describes a connection between two components, for
example, ((OUTl EX1) (IN1 W)). The order of the elements
in the list, both within the pair and within Connection-List, is
not significant.

Each output of a component type has associated with it
the pattern which defines the function that the output
represents and the inputs to which the function is applied.
This is stored on the property list of the component type
under the output name. For example, OUTl of EXORG
would have the pattern (EXOR IN1 IN2) associated with it.
The definition of function is stored under the property
definition on the function name. Definitions must be
provided for all functions of the components.

The information concerning the components,
connections, output patterns, function definitions, and
observed values is defined once for the device to be
diagnosed. When the inference mechanism is invoked, the
values associated with the components’ inputs and outputs
are initialized to null values. The inference mechanism then
uses the observed values along with the data stored on the
property lists to determine consistency or compute the
conflict set.

When the inference mechanism is invoked to determine
the label for a node, n, the following operations precede the
call. First, the property ABnormal is set to T for all
components in H(n) and it is set to nil for all members of
COMPONENTS - H(n). Second, elements which define
each output of every abnormal component to be a unique
variable are added to the observed values. The antecedant
list of such a variable value is empty.

The inference mechanism is invoked by calling the
function Process-Values and passing it the observed values.
The list of values is processed one element at a time. When
a value from the list is processed, it is compared to the
value already stored on the component for the particular
input or output. If an inconsistency is found, the inference
mechanism immediately returns the conflict set, which is the
union of the antecedants of the inconsistent values. If no
inconsistency is found, the value being processed is stored
on the property list as long as it provides new information.
A value provides new information if it is more specific. For
example, if the value already stored is a variable and the
value being processed is a constant, the stored value is
updated to the constant value. If the stored value is a
constant, it is not replaced by a variable.

When a new value is recorded, that value is propagated
through the device in two ways. Based on the information
in the Connection-List, the value is passed along the defined
connections. These new values are added to the list of the
values to be processed. The other way that a value can be
propagated is through a component. If a component is not
abnormal, values may be propagated by applying the
definition of the function of the component. However, values
cannot be propagated through a malfunctioning component.

The values are not processed in any particular order
and, as a result, the conflict sets returned by the inference
mechanism are not necessarily minimal. However, the
conflict sets are kept close to minimal. When the value
being processed agrees with the already recorded value,
the two antecedant lists may not be the same as a value can
oflen be determined in more than one way. When this
occurs, the antecedant list with the fewer components is
retained.

REFERENCES

[Da84] Davis, R., Diagnostic reasoning based on structure
and behavior, Artificial Intelligence 24 (1984) 347-410.

[dK76] de Kleer, J., Local methods for localizing faults in
electronic circuits, MIT AI Memo 394 Cambridge, MA
(1 976).

[DIN871 de Kleer, J., and Williams, E., Diagnosing multiple
faults, Artificial Intelligence, 32 (1987) 97-130.

[Ge82] Genesereth, M., Diagnosis using hierarchical
design models, Proceedings of the National
Conference on Artifical Intelligence,Pittsburgh, PA

[Ge84] Genesereth, M., The use of design descriptions in
automated diagnosis, Artificial Intelligence 24 (1984)

[Re871 Reiter, R., A theory of diagnosis from first
principles, Artificial Intelligence, 32 (1987) 57-95.

(August, 1982) 278-283.

41 1-436.

302

	Fault Diagnosis Using First Order Logic Tools
	Recommended Citation

	Fault diagnosis using first order logic tools

