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Abstract 

While numerous diagnostic expert systems have been 
successfully developed in recent years, they are almost 
uniformly based on heuristic reasoning techniques (i.e. 
shallow knowledge) in the form of rules. This paper reports 
on an automated circuit diagnostic tool implementing 
Reiter’s theory of diagnosis based on deep knowledge (i.e. 
knowledge based on certain design information) and using 
first order logic as the representation language. In this 
approach, the automated diagnostician uses a description 
of the of the system structure and observations describing 
its performance to determine if any faults are apparent. If 
there is evidence that the system is faulty, the diagnostician 
uses the system description and observations to ascertain 
which component(s), if faulty, would explain the behavior. 
In particular, Reiter’s method finds all combinations of 
components which explain this behavior. 

The inference mechanism which is incorporated as part 
of the diagnostic tool is based on bidirectional constraint 
propagation. When all components are assumed to be 
functioning correctly, the reasoning can be done in a 
“forward” fashion with the outputs of the components 
determined by inputs. This represents simulation of the 
operation of the device. However, when one or more 
components is assumed to be functioning abnormally, the 
reasoning task becomes more complex and simulation is  
no longer sufficient for discovering contradictions. The 
output of an abnormally functioning component cannot be 
predicted from its inputs. However, there may be enough 
constraints on the operation of the other components in the 
device that the outputs of the malfunctioning component 
may be predicted from the behavior and interconnections 
of the other components. This may require that inferences 
be made about the value of inputs based on output values 
of a functioning component. Thus, the reasoning proceeds 
in both a forward (outputs determined from inputs by 
simulation) and backward (inputs determined from outputs 
by inferences) fashion. A prototype version of the 
diagnostic program which finds all diagnoses has been 
developed and successfully demonstated on several small 
but nontrivial combinational and sequential circuits. 
1 Diagnosis from first principles 

Raymond Reiter [Re871 has developed what he terms 
a theory of diagnosis. The goal of the theory development 
is to establish a firm foundation on which to develop 
automated diagnosticians. His theory is most general and 
is applicable to many areas of diagnosis. However, the 
focus of this paper is the diagnosis of circuit faults so 
examples and extensions to Reiter’s work will be in that 
field. The first point to note about Reiter’s work is that it is 
theoretical in nature. He makes no statements to indicate 
that an automated diagnostician based on the theory has 
been built. De Kleer and Williams [OW87] also refer to 
Reiter’s theory as unimplemented. Part of the work of this 
paper involves an implementation of a diagnostician based 
on Reiter’s theory. 

Because of the generality of Reiter’s theory, issues 
which are the central focus of some of the earlier work on 

diagnosis from first principles are ignored. One of these 
issues is that of the representation logic. Since the theory 
is independent of the representation logic, the underlying 
theorem prover can be implemented in a manner 
appropriate for the diagnostic domain. In contrast, the 
diagnostic systems of Genesereth, Davis, and de Kleer and 
Williams seem to be dependent on a particular type of 
inference mechanism. However, Reiter has not 
demonstrated that the approach of his theory is more 
general than the approaches of these other researchers. 
The examples and representation which he uses are the 
same as those of the other researchers. 

In the following section, this terminology is expanded 
and rephrased within the context of Reiter’s general theory. 
The definitions are taken from [Re87]. We begin with the 
concept of a system which is to be diagnosed. This concept 
is central to the first principles approach. A system is a pair 
(SD, COMPONENTS) where SD is the system description 
represented as a set of first-order sentences and 
COMPONENTS is a finite set of constants representing the 
constituent parts of the system. This approach to diagnosis 
uses the description of a correctly functioning set of 
components and does not assume any particular mode of 
failure. Thus the concept of a malfunctioning component 
must be very general. The predicate AB(component) is used 
for this purpose. 

The name and type of each component is specified in 
components and gafe types. The interconnections of the 
components are given, as are the observed input and output 
values. This type of constraint might be absent or quite 
general, depending on the device to be diagnosed. For 
example, values might be constrained to be integer or 
positive in some application or without any constraint in 
another application. The correct behavior of each 
component as a function of its input@) is described by the 
gate descriptions. 

The generality of the approach and representation does 
not preclude the use of domain specific information 
concerning faults. It is not necessary to know the ways in 
which a component can be faulted. However, Reiter states 
that if such information is available, it can be included in the 
system description. The general form of such information is: 

COMPONENT-TYPE(x) A AB(x) =. 
FAULT,(x) v .._ v FAULT,(x) 

Also necessary for diagnosis is one or more sets of 
observations of the system. An observation is simply 
defined to be a finite set of first order sentences. As 
discussed earlier, the goal of diagnostic work is to 
determine the component(s) which if ABnormal would 
explain the observed behavior. Since the system 
description and observations have an underlying logical 
representation, the concept of a diagnosis is tied to logical 
consistency. Formally, Reiter defines a diagnosis for a 
device with constituent COMPONENTS, and a system 
description SD under a set of observations OBS to be a 
minimal set A 5 COMPONENTS such that 



SD U OBS U -tAB(c) I c E COMPONENTS - A }  
U [AB(c) I C E A }  

is consistent. A slightly simpler characterization of a 
diagnosis for (SD, COMPONENTS, OBS) is a minimal set A 
such that SD UOBS U{lAB(c) I CECOMPONENTS-A) 
is consistent. For a proof of the equivalence of the two 
definitions see CRe871. 

First, a 
diagnosis must be minimal. As will be seen, Reiter has 
developed an elegant means of identifying the minimal sets 
of components which form the diagnoses. Secondly, in 
order to identify a diagnosis, there must be a consistency 
test for the logic used in the representation. This second 
point presents a serious problem since, in general, there is 
no decision procedure for determining the consistency of a 
first order logic formula. Does Reiter’s approach have any 
merit? The answer is yes. There is no decision procedure 
for the general question of consistency but for certain 
domains the question of consistency is decidable. This is 
true, for example, in the area of boolean circuits. 

Two major points arise from this definition. 

There are a number of similarities between the work of 
Reiter and that of de Kleer and Williams. For example, what 
Reiter terms a diagnosis, de Kleer and Williams refer to as 
a minimal candidate. The difference, however, between 
their work is not just a matter of nomenclature. Reiter’s 
approach appears more general than that of de Kleer and 
Williams and provides a formal basis for studying diagnosis 
from first principles. In order to determine the diagnoses, 
Reiter makes use of the concept of a conflict set which was 
developed by de Kleer [dK76]. A conflict set for (SD, 
COMPONENTS, OBS) is a set {c,, ... ,c,} such that 
SD U OBS U {,AB(c,), ... , 7AB(c,)} is inconsistent. A 

conflict set is minimal if and only if no proper subset of it is 
a conflict set for (SD, COMPONENTS, 06s). 

Reiter’s procedure for determining diagnoses for (SD, 
COMPONENTS, OBS) is based on determining what he 
terms the minimal hitting sets for the collection of conflict 
sets for (SD, COMPONENTS, 06s). Define a minimal hitting 
set as follows: 

Let C be a collection of sets. A hitting set for C is set 
H S U such that H fl S # { } for each S E C. A hitting set 
for 2% minimal iff no proper subset of it is a hitting set 
for C. 

The following theorem, which Reiter proves, ties together 
the concepts of minimal hitting sets,‘ conflict sets and 
diagnoses. 

Theorem: ASCOMPONENTS is a diagnosis for (SD, 
COMPONENTS, 06s) iff A is a minimal hitting set for 
the collection of conflict sets for (SD, COMPONENTS, 

Thus the problem of computing diagnoses becomes one 
of computing the minimal hitting sets for the conflict sets of 
(SD, COMPONENTS, 06s). Note that the problem is 
phrased in terms of conflict sets not minimal conflict sets as 
is the case in the work of de Kleer and Williams. Since the 
conflict set returned by the reasoning component need not 
be minimal, the reasoning component may be simpler. 

Reiter provides an elegant means of computing hitting 
sets through the use of a hitting set (HS) tree. Minimal 
hitting sets are determined by a pruned HS-tree. Reiter 
defines an HS-tree as follows: 

06s). 

Let F be a collection of sets. An HS-tree for F is a 
smallest edge-labeled and node-labeled tree with the 
following properties: 

(1) The root is labeled by ,/ if F is empty. Otherwise 
the root is labeled by a set o f f .  

(2) If n is a node of T ,  define H ( n )  to be the set of 
edge labels on the path in Tfrom the root node to n. If 
n is labeled by ,/ then it has no successor nodes in T. 
If n is labeled by a set C of F then for each U E C, n has 
a successor node no joined to n by an edge labeled by 
0 .  The label for no is a set S E  F such that 
S n H(n,) = { } if such a set S exists. Otherwise, ,/ is the 
label for no. 

Reiter states that H(n) for a node n labeled by ,/ is a hitting 
set for F and each minimal hitting set for F is H(n) for some 
node n for which ,/ is the label. Since only minimal hitting 
sets are desired, a pruned HS-tree will be constructed in 
such a way that H(n) for any node labeled by is a minimal 
hitting set. 

Some concerns arise in applying the concept of an 
HS-tree to the process of computing diagnoses. First, the 
collection of sets F is not explicitly known. In the diagnostic 
process, F is the set of conflict sets for (SD, COMPONENTS, 
06s). Secondly, the determination of a set ~ E F  is 
computationally expensive since f is computed by the 
reasoning component. Thus it is necessary to use a method 
which incrementally builds and prunes the HS-tree so that 
only minimal hitting sets are found and the number of 
invocations of the reasoning component is kept small. The 
method as stated by Reiter is: 

(1) Generate the pruned HS-tree breadth first, 
generating nodes at any fixed level in the tree in 
left-to-right order. 

(2) Reusing node labels: If node n is labeled by a set 
S E F ,  and i f  n’ is a node such that H(n’ )  n S = { }, then 
label n‘ by S. Such a node n’ requires no access to F. 
The label of node n’ is underlined to indicate that it is 
a reused label. 

(3) Tree pruning: 
(i) If node n is labeled by ,/ and node n’ is such that 

H(n)  C H(n’ ) ,  then close the node n’. A label is not 
computed for n’ nor are any successor nodes 
generated. A closed node is denoted by x . 

(ii) If node n has been generated and node n‘ is 
such that H(n’ )  = H(n)  then close node n’. 

(iii) If nodes n and n’ have been respectively 
labeled by sets Sand S’of F ,  and if S‘ is a proper 
subset of S, then for each a E S - S’ mark as redundant 
the edge from node n labeled by a. A redundant edge, 
together with the subtree beneath it, may be removed 
from the HS-tree with preserving the property that the 
resulting pruned HS-tree will yield all minimal hitting 
sets for F.  A redundant edge in a pruned HS-tree is 
indicated by cutting it with ”)(”. 

In the context of the diagnostic process, an access to F 
in the HS-tree algorithm is an invocation of the inference 
mechanism. When a label for a node n must be computed 
(that is, the node cannot be closed or relabeled) then the 
underlying reasoning component must return one of two 
values. If there exists a conflict set S such that 
H(n)  f l  S = { }, then the reasoning component must return S 
otherwise the value ,/ is returned. Thus the reasoning 
component is passed the set COMPONENTS - H(n)  as well 
as the system description and observations. If 
SD U OBS U {7AB(c) I c E COMPONENTS - H(n)}  is 
consistent, then ,/ is returned. Otherwise, a conflict set (not 
necessarily minimal) is returned. It should be noted again 
that the underlying reasoning component must be a 
decision procedure for determining consistency. In general, 
such decision procedures do not exist. However, in some 
domains, decision procedures do exist. 



Single fault diagnoses are determined by the nodes 
labeled with at level 1 in the tree. If diagnoses of 
cardinality k or less are desired, then the construction of the 
HS-tree can be halted as soon as level k is complete. Thus, 
the single fault assumption which is prevalent in diagnostic 
work fits in well with the HS-tree. 

2 Inference Based on Constaint Propagation 

Reiter’s theory is independent of the implementation of 
the underlying inference mechanism. The only requirement 
is that the inference mechanism be a decision procedure for 
the domain of the diagnostic problem. In general, a 
refutational theorem prover is a semi-decision procedure. 

The procedure for building the hitting set tree uses all 
of the pruning techniques suggested by Reiter. These are 
the reuse of node labels, closing of nodes, and the removal 
of redundant edges. The last is not necessary if the 
inference mechanism returns only minimal conflict sets. We 
have no such guarantee of minimality, however. In addition, 
we have implemented two heuristics which can further 
decrease the number of conflict sets which must be 
computed. 

Reusing the label of an existing node in the HS-tree as 
the label for a new node saves a call to the underlying 
theorem prover. As the HS-tree grows, there may be 
several labels which could be reused. The label with the 
smallest number of elements is chosen. This can be a 
valuable heuristic since every element of the set labeling a 
node generates a node at the next level. Further, after a 
conflict set is returned by the inference mechanism, a check 
is made to determine whether that conflict set could be used 
to label an existing node which has not yet been expanded. 
If the new label would have fewer elements, the node is 
relabeled. 

Our experience has shown that the removal of 
redundant edges usually does not decrease the number of 
calls to the theorem prover. Typically, those nodes which 
are removed by the pruning are closed or can be relabeled 
and thus do not require that a conflict set be computed. 
Whether this is an anomaly of the circuit examples we have 
studied or a feature of the general diagnostic domain is 
unknown. However, the overhead incurred by the removal 
of redundant edges is very small compared to the 
computation cost of even one unnecessary invocation of the 
theorem prover. 

Consequently, our diagnostic program consists of 
essentially two parts. The first consists of those routines 
which implement the construction of the pruned HS-tree of 
Reiter, including the heuristics discussed above. The 
diagnoses of the given circuit will be read from the pruned 
HS-tree when it is completely constructed. A diagnosis is 
the collection of edge labels on the path from the root to a 
node in the HS-tree which is labeled by 4. 

An inference mechanism is a procedure which applies 
inference rules to a collection of assumptions in order to 
derive additional information. In a diagnostician which is 
based on Reiter’s theory of diagnosis, it is the role of the 
inference mechanism to determine whether the system 
description and observations are consistent when a 
particular set of components is assumed to be functioning 
in an (unspecified) abnormal manner. If so, the set of 
components is a diagnosis for the system. Otherwise, the 
inference mechanism must identify a set of components, 
known as a conflict set, for which the assumption that the 
components were functioning correctly resulted in the 
inconsistency. The conflict set will allow the correct 
combination of components to be tested so that the set of 
diagnoses can be determined. Clearly, the inference 
mechanism plays a central role in diagnosis. 

The inference mechanism is a theorem prover, although 

the domain of the theorem prover is usually specialized. A 
theorem prover is sound when the conclusions drawn by it 
are true when the premises are true. In a theorem proving 
environment, the goal is to find the proof. If a set of clauses 
is to be shown to be valid, the clauses are negated and a 
refutation is sought. If a theorem prover is guaranteed to 
find a refutation when one exists, the theorem prover is said 
to be refutationally complete. 

The behavior of a theorem prover for first order logic 
cannot be predicted if a refutation does not exist. The 
theorem prover may halt. If so, and if the theorem prover 
is complete, then it can be correctly concluded that the 
original clauses are satisfiable. However, the theorem 
prover may never halt. The question of determining the 
consistency of a set of clauses in first order logic is 
undecidable; that is, there is not procedure which can in all 
cases determine whether the clauses are consistent or 
inconsistent. Since there are, however, procedures which 
are sound and complete for determining inconsistency in 
first order logic, the problem is said to be semi-decidable. 

When reasoning within a specific domain, it is common 
to use focusing techniques in conjunction with a general 
theorem prover. When one knows how the proof is likely to 
be found or where the proof will not be found, the use of 
weighting strategies or specific inference rules can be 
helpful in  directing the theorem prover. 

The use of constraint propagation as the inference 
mechanism is appropriate for the diagnostic domain. This 
can be seen by considering the source of an inconsistency 
in  X = SD U OBS U {-AB(c) I c E CcCOMPONENTS}. If 
the system description is correct, then X is consistent. An 
inconsistency in X will occur when a behavior predicted by 
X differs from the observed behavior. Therefore, the 
emphasis should be placed on the determination of 
predicted values. If a weighting function is used, the function 
should attach more importance to unit equality clauses. 
These clauses will determine the value of the inputs and 
outputs of the components. 

When techniques such as weighting functions and 
special inference rules are used in this manner, the goal is 
to guide the inference mechanism so that in some ways it 
mimics what a human would do in the given situation. When 
given a diagram of a circuit or other device and values for 
inputs and outputs, a person would use the known values to 
determine the unknown, internal values in the circuit. The 
new values would be calculated by applying the laws or 
rules which govern the correct operation of the components. 
When all components are assumed to be functioning 
correctly, the reasoning can be done in a ”forward” fashion 
with the outputs of the components determined by inputs. 
This represents simulation of the operation of the device. 

When one or more components is assumed to be 
functioning abnormally, the reasoning task becomes more 
complex and simulation is no longer sufficient for 
discovering contradictions. The output of an abnormally 
functioning component cannot be predicted from its inputs. 
However, there may be enough constraints on the operation 
of the other components in the device that the outputs of the 
malfunctioning component may be predicted from the 
behavior and interconnections of the other components. 
This may require that inferences be made about the value 
of inputs based on output values of a functioning 
component. Thus, the reasoning proceeds in both a forward 
(outputs determined from inputs by simulation) and 
backward (inputs determined from outputs by inferences) 
fashion. Note that the possibility exists that neither forward 
nor backward reasoning will be able to determine all of the 
values in the device. 

The preceding discussion represents an informal 
description of constraint propagation The basis of the 
method lies in the determination of a new value (either an 
input or output of a component) whenever enough 
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information about other inputs and outputs is known. The 
connections between components, which in this work are 
assumed to be ideal, function as conduits of values. When 
a new value is determined, the components which led to the 
determination of the value are recorded along with the 
value. These components are referred to as the antecedants 
of the value. When a contradiction is found, the antecedants 
determine the components in the conflict set. 

The value of a particular input or output of a component 
can usually be determined in more than one way. When two 
values are calculated for the same input or output, a 
coincidence is said to have occurred. The two values may 
be identical, in which case nothing need be done. The two 
values may be consistent but establish a new constraint. 
For example, the output of a component may at one point 
be determined to be some variable value represented as 
x,. The same output might be determined to be 0 by another 
set of constraints. The coincidence is consistent and also 
establishes that x, = 0. The third possibility is that the 
values disagree which means that an inconsistency has 
been found. The antecedants of the inconsistency are the 
union of the antecedants of the two values. 

When using constraint propagation as an inference 
mechanism, the choice of what value to propagate next is  
usually controlled by a queue. The queue may be structured 
in a first-in-first-out manner or  the values in the queue may 
be ordered in some way. For example, if the size of the 
antecedant set is significant, the queue is ordered on that 
basis. This is the case in diagnosis when the inference 
mechanism must return minimal conflict sets. 

3 Implementation Details 

The representation of a device is basic to the operation 
of the inference mechanism. A global variable, 
COMPON€NTS, is a list of the names of all components in 
the device. Each component is an atom and has the 
following properties associated with it. 

ABnormal: T or nil 

type: EXORG, ANDG, ORG, etc. 

numinputs: Integer representing the number of input 
lines of the component. The input lines 
are referred to as IN1. IN2, ... . 

numoutputs: Integer representing the number of output 
lines of the component. The output lines 
are referred to as OUTl, OUT2, ... . 

line values: All of the input and output values lor  a 
component are stored on the property list 
of the component under the input or output 
name. 

The value for a particular input or output is an ordered 
list of value information. Each element of the list contains 
the value associated with the input or output at a particular 
time or state. The value information for a state consists of 
the value itself and the list of antecedant components which 
determined the value. State numbers can be any 
non-negative integer, although the value information is  
stored in order starting with the information for state 0. 

The variable Connection-List, also global, defines the 
connections. Each element of Connection-List is a pair 
which describes a connection between two components, for 
example, ((OUTl EX1) (IN1 W)). The order of the elements 
in the list, both within the pair and within Connection-List, is  
not significant. 

Each output of a component type has associated with it 
the pattern which defines the function that the output 
represents and the inputs to which the function is applied. 
This is stored on the property list of the component type 
under the output name. For example, OUTl of EXORG 
would have the pattern (EXOR IN1 IN2) associated with it. 
The definition of function is stored under the property 
definition on the function name. Definitions must be 
provided for all functions of the components. 

The information concerning the components, 
connections, output patterns, function definitions, and 
observed values is defined once for the device to be 
diagnosed. When the inference mechanism is invoked, the 
values associated with the components’ inputs and outputs 
are initialized to null values. The inference mechanism then 
uses the observed values along with the data stored on the 
property lists to determine consistency or compute the 
conflict set. 

When the inference mechanism is invoked to determine 
the label for a node, n, the following operations precede the 
call. First, the property ABnormal is set to T for all 
components in H(n) and it is set to nil for all members of 
COMPONENTS - H(n). Second, elements which define 
each output of every abnormal component to be a unique 
variable are added to the observed values. The antecedant 
list of such a variable value is empty. 

The inference mechanism is invoked by calling the 
function Process-Values and passing it the observed values. 
The list of values is processed one element at a time. When 
a value from the list is processed, it is compared to the 
value already stored on the component for the particular 
input or output. If an inconsistency is found, the inference 
mechanism immediately returns the conflict set, which is the 
union of the antecedants of the inconsistent values. If no 
inconsistency is found, the value being processed is stored 
on the property list as long as it provides new information. 
A value provides new information if it is more specific. For 
example, if the value already stored is a variable and the 
value being processed is a constant, the stored value is 
updated to the constant value. If the stored value is a 
constant, it is  not replaced by a variable. 

When a new value is recorded, that value is propagated 
through the device in two ways. Based on the information 
in the Connection-List, the value is passed along the defined 
connections. These new values are added to the list of the 
values to be processed. The other way that a value can be 
propagated is through a component. If a component is not 
abnormal, values may be propagated by applying the 
definition of the function of the component. However, values 
cannot be propagated through a malfunctioning component. 

The values are not processed in any particular order 
and, as a result, the conflict sets returned by the inference 
mechanism are not necessarily minimal. However, the 
conflict sets are kept close to minimal. When the value 
being processed agrees with the already recorded value, 
the two antecedant lists may not be the same as a value can 
oflen be determined in more than one way. When this 
occurs, the antecedant list with the fewer components is 
retained. 
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