
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

16 Jul 2007

Specification of Non-Functional Requirements for Contract Specification of Non-Functional Requirements for Contract

Specification in the NGOSS Framework for Quality Management Specification in the NGOSS Framework for Quality Management

and Product Evaluation and Product Evaluation

Manooch Amoozdeh

Nektarios Georgalas

Xiaoqing Frank Liu
Missouri University of Science and Technology, fliu@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
M. Amoozdeh et al., "Specification of Non-Functional Requirements for Contract Specification in the
NGOSS Framework for Quality Management and Product Evaluation," Proceedings of the 5th International
Workshop on Software Quality (WoSQ'07), Institute of Electrical and Electronics Engineers (IEEE), Jul
2007.
The definitive version is available at https://doi.org/10.1109/WOSQ.2007.12

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/WOSQ.2007.12
mailto:scholarsmine@mst.edu

Specification of Non-functional Requirements for Contract Specification in
the NGOSS Framework for Quality Management and Product Evaluation

Xiaoqing (Frank) Liu
University of Missouri-

Rolla
Computer Science Dept.

fliu@umr.edu

Manooch Azmoodeh
BT GCTO

Adastral Park
Martlesham Heath IP5 3RE

 manooch.azmoodeh@bt.com

Nektarios Georgalas
BT GCTO

Adastral Park
Martlesham Heath IP5 3RE
nektarios.georgalas@bt.com

Abstract
The community of Operation Support Systems (OSS)

for telecom applications defined a set of fundamental
principles, processes, and architectures for developing
the Next Generation OSS through the
TeleManagement Forum TMF. At the heart of NGOSS
lies the notion of a “Contract” which embodies the
specification of services offered by an OSS component
for quality management and product evaluation.
However, TMF does not provide any method (or
process) for specification of the non-functional part in
the NGOSS contract specification. In this paper, we
develop a systematic approach for specifying non-
functional requirements of telecom OSS applications
for contracts in the NGOSS framework for quality
management and evaluation. Specifically, two
categories of non-functional specification techniques
are explored: qualitative and quantitative.
Furthermore, we introduce two quantitative non-
functional requirements specification methods: crisp
and elastic to expand the capability of the current
NGOSS contract specification method since only
qualitative non-functional specification is currently
available from TMF.

1. Introduction

Software industry and in particular Information

and Communication Technology (ICT) Service
Providers (SPs) is facing a formidable challenge in the
face of immense competition in the marketplace.
These challenges include improving quality, continual
reduction in cost and time to market, as well as
increasing business agility by developing, integrating,
deploying and adapting their Operational Support

Systems (OSS). OSS of an SP comprise service
surround capabilities which span all business
processes from service fulfillment (ordering, service
provisioning, etc) to service assurance (fault and
performance management) to billing for service usage
as well as key business functions such as
supply/partner chain management.

Currently, SPs typically own ~1000 disparate
OSS systems which are developed and built using
different middleware and software platforms and often
integrated using a plethora of methods (EAI, service
bus, integration hub, etc.). Furthermore, for each
service/product, bespoke integration of OSS
applications is used to provide OSS functions, leading
to much duplication of OSS capabilities and adding to
the complexity of the overall system architecture. As
service/product offerings evolve, the OSS applications
need to be (re)configured to react to such changes. All
these activities are often error-prone, expensive,
manual, and time consuming. To complicate matters
further, as SPs also use many legacy and COTS
application packages, little ‘standards’ is used to ease
the so called ‘integration tax’.

The Telco industry is responding to these
challenges by specifying a set of fundamental
principles for architecting the Next Generation OSS –
NGOSS OSS through the TeleManagement Forum
TMF [7, 11]. These principles are further elucidated
in section 2. In particular interest, NGOSS has defined
a lifecycle methodology so that OSS application
development can be traced from business requirements
right down to deployed systems [7]. At the heart of
NGOSS lies the notion of a “Contract” which
embodies the specification of services offered by an
OSS component. These “contracts” are to be defined

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

independent of technologies/platforms used to
implement them, so that they will capture ‘business’
needs of an SP and thus be preserved as software
techniques change.

A key challenge in specifying ‘contracts’ in the
NGOSS framework is how Non Functional
Requirements - NFRs are specified. This paper
examines the current approach to NFR specification in
the NGOSS framework and its weakness, and
proposes a novel approach based on an elastic
quantitative specification technique. These are
discussed in sections 2, 3, and 4. A detailed example
of non-functional requirements specification of a
‘contract’, based on the NGOSS framework is
presented in section 5. Finally section 6 provides
concluding remarks and impacts of our approach and
our future work.

2. NGOSS - Life Cycle Methodology and
Contract Specification

The OSS community in the global telecom

industry has defined a set of fundamental principles
for architecting the Next Generation OSS – NGOSS
through the TMF [11]. In a nutshell, NGOSS [7]
applies a top-level approach for the specification of an
OSS architecture where:
• Technology Neutral and Technology Specific

Architectures are separated.
• The more dynamic “business process” logic is

separated from the more stable “component”
logic.

• Components present their services through well
defined “contracts” with clear semantics.

• Policies are used to provide a flexible control of
behavior in an overall NGOSS system.

• The infrastructure services such as naming,
invocation, directories, transactions, security,
persistence, etc are provided as a common
deployment and runtime framework for use by all
OSS components and business processes over a
service bus.

• A common Shared Information and Data
Model – SID, where all data used by components,
processes and policies will follow an agreed
standard format.

• A business process framework eTOM [12] is a
framework where business processes
encompassing al aspects of operating an IT
enterprise from fulfillment to assurance and
billing activities are mapped from top level
abstract description to more detailed

decompositions.
Furthermore, NGOSS specifies a rigorous

methodology for architecting an OSS. The NGOSS
life cycle is depicted in figure 1. There are four views
of an OSS. The Business view captures business
requirements irrespective of how automated
computerised system will realise them. The System
view describes the automated system capabilities in a
technology neutral manner. The Implementation view
describes technology specific system capabilities; and
finally the deployment view captures the run-time
components of the system.

Figure 1. NGOSS life cycle

The key to a NGOSS architecture is the notion of
“contract” in each viewpoint of the lifecycle. A
contract specification includes the functional aspect of
an OSS capability (such as billing, trouble ticketing,
order handling, etc.) as well as non-functional
requirements to aid procurement of third party
components as well as guiding design decisions for
developing an OSS application. While this approach to
automation of life cycle of an OSS can be applied to
functional aspects of the overall system, non-
functional requirements of an OSS systems are largely
expressed as rather vague qualitative statements which
are not amenable to further analysis and have little
value while making design decisions in subsequent
phases in the life cycle [4, 5].

3. Approaches to Non-Functional
Requirements Specification for NGOSS
CONTRACTS for Quality Management
and Product Evaluation

Unlike Functional Requirements (FR) whose

significance has been widely recognized, Non-
Functional Requirements (NFRs) are poorly
understood [10]. Research of non-functional
requirements has focused on their analysis instead of

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

specification [1, 6]. In fact, neglecting non-functional
requirements has been counted as one of the top risks
of requirement engineering. The problem of incorrect
specification of non-functional requirements often
leads to disputes in business contracts, wrong design
and implementation trade-off decisions, poor customer
satisfaction, and loss in competition.

The basic description of a NGOSS contract, no
matter the view being represented, is made up of five
main parts: general contract view, functional part, non-
functional part, management part, and view specific
model part. The non-functional part defines aspects
which govern or restrict the bounds of operation of the
capabilities specified by a contract [8].

No examples of non-functional parts of a contract
have been given in the NGOSS contract specification
yet [8, 9]. TMF does not provide any method (or
process) for specification of a non-functional part in
the NGOSS contract specification except the
exemplary list of fields [8]. In the exemplary list, all
fields are in text, and they are qualitative. The reason
that qualitative non-functional requirements
specification is often used in practice is that it is easy
to develop. It is sometimes difficult to identify metrics
to quantify a non-functional characteristic, or it is too
complex and time-consuming to use metrics to
quantify them. However, qualitative non-functional
requirements specified in text sometimes may be hard
to use for making design decisions and selecting
reusable components in the product development
process, and very difficult to validate since they may
be ambiguous and subject to different interpretations
by different stakeholders. For example, assume that
we have a qualitative non-functional requirement for a
billing system in a telecom company:

R1 “the performance of the billing system shall be
high”.

Firstly, how to measure the performance may be
unclear to developers. Secondly, “high” is qualitative
and can be interpreted differently by different people.

Therefore, we propose that quantitative non-
functional requirements specification needs to be used
instead if precise requirements specification is needed
in NGOSS specifications. Below is an example of
quantitative performance requirements specification:

R2: The response time of search of a customer
account in a billing system is no more than one (1)
second.

This requirement is precise and can be easily
validated. An implementation of the billing system
either satisfies it or not since it is crisp. However, in
telecom industry, a billing system which slightly

violates the requirement is usually considered to be
fine. It leads to the development of elastic quantitative
non-functional requirements specification in NGOSS
discussed below.

4. Towards Elastic Quantitative Non-
Functional Requirements Specification in
NGOSS for Quality Management and
Product Evaluation

In this section, we further propose to enhance

capability of existing NGOSS contract specification
which currently is limited to be only qualitative by
developing elastic quantitative non-functional
requirements specification which enables trade-offs in
a development process. Non-functional requirements
enforce constraints on a system or service. Clarity of
non-functional requirements, such as availability, is
vital to for efficient business operation and product
development.

We propose two methods for quantitative
specification of a non-functional requirement in
NGOSS: 1) crisp, and 2) elastic. A crisp quantitative
non-functional requirement imposes a rigid constraint
on a non-functional characteristic of a system or
service. It is either satisfied or dissatisfied.
Considering the following crisp quantitative non-
functional requirement:

R3: The worst-case latency of billing must be less
than one (1) second.

If the billing of a system takes 1.05 seconds for a
test case in the testing process, it does not satisfy the
above requirement, and the system realization is not
acceptable. Crisp quantitative requirements are easy to
validate. The crisp quantitative non-functional
requirement specification is used widely in industry.
Actually, BT has adopted it in specification of
performance of operations for its telecom capabilities.

Elastic quantitative non-functional requirements
specification for NGOSS is based on works on
imprecise requirements specification [2]. An elastic
quantitative non-functional requirement imposes an
elastic constraint on a non-functional characteristic of
a system or service using a membership function of a
qualitative term to characterize its satisfaction. Below
is an example of an elastic quantitative non-functional
requirement:

R4: The worst-case latency of billing must be
SHORT,
where SHORT is a linguistic term in fuzzy logic
whose membership function characterizes satisfaction
of the above requirement as shown in Figure 2. In the

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

figure, one (1) represents the highest level of
requirement satisfaction by a realization of system or
service, and zero (0) represents the lowest level of
requirement satisfaction by a system realization or
service.

 If the billing of a system realization takes 0.8
seconds in the worst case in the testing process, its
satisfaction degree is one which is the highest. It
indicates that it completely satisfies the requirement. If
it takes 1.5 seconds in the worst case, its satisfaction
degree is around 0.5 and it partially satisfies the
requirement although it is acceptable. In the elastic
non-functional requirement specification, a minimal
threshold for its metric value is usually specified. It
indicates that a system realization whose metric value
is below this threshold is not acceptable. For example,
if the billing of a system realization takes three (3)
seconds in the worst case which is greater than the
threshold of two (2) seconds, its satisfaction degree is
zero (0) and it is completely unacceptable.

Figure 2. Satisfaction function for requirement R4

Elastic quantitative non-functional requirements
specification enables trade-offs in the design of a
system and selection of reusable components, which is
impossible if crisp quantitative non-functional
requirements specification method is used. This is
absolutely important when a design trade-off decision
for resolving a conflict among non-functional
requirements, which often exists in many applications,
needs to be made. For example, suppose that we need
to select a reusable billing component for a new
product. Assume that there is a reusable component
COMP1 which provides the functionality needed for
the new product, and its worst case latency of
COMP1’s billing is 1.01 seconds. Different results can
be obtained using crisp and elastic requirements
specification techniques.

We discuss crisp non-functional requirements
specification for the new product first. Assume that
crisp requirement R3 is its latency requirement.
COMP1 can not be reused for the new project since it
violates the above requirement.

Now we discuss how to use elastic non-functional
requirements specification technique for the new

product. Assume that the elastic requirement R4 is its
latency requirement. Based on this requirement,
COMP1 can be reused for the new project since it has a
satisfaction level which is close to one (1) which is the
highest and far greater than the minimal threshold of
satisfaction based on its satisfaction function in Figure
2. This result is much more desirable and practical
than the one obtained using crisp non-functional
requirement specification discussed above in many
applications. In addition, the elastic quantitative non-
functional requirements specification also makes non-
functional requirements easily evaluated and validated
than qualitative non-functional requirements
specification.

To overcome problem of the lack of guidance and
example for specification of non-functional
requirements for a NGOSS contract in NGOSS
standard documents, a complete contract example,
CRM-SM&O Customer Problem Handling, is
developed by adding its non-functional part in a
incomplete contract provided by NGOSS [9] using
qualitative, crisp quantitative, and elastic quantitative
non-functional requirements specification techniques
discussed above.

5. An Example of Non-functional
Specification for a NGOSS Contract

TMF is working on a draft of examples of a

NGOSS contract which contains no examples of non-
functional parts [9]. In this draft, a contract in NGOSS
business view contains multiple capabilities. A
capability in turn contains multiple processes.

We now extend a contract example, CRM-SM&O
Customer Problem Handling, in the draft [9] by adding
its non-functional part to illustrate the above
framework. It deals with both customer order and
service order handling. Here is a description of its
business capabilities [9]:

This Contract defines interaction between
Customer Relationship Management and Service
Management areas within an enterprise (as
represented by the relevant eTOM CRM and SM&O
processes [12].

It directly interacts with two processes in eTOM
for this Contract, at eTOM Level 2 [12]:

• Order Handling (in OPS-CRM)
• Service Configuration & Activation (in OPS-

SM&O).
They are decomposed into eTOM level 3

processes in a CRM and SM&O fulfillment process
flow, such as validate customer order and activate

0

1

1 2 Second

Satisfaction degree

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

service [9]. Next, we are going to complete the non-
functional part for the contract example. It will contain
examples of three specification techniques: qualitative,
crisp quantitative, and elastic quantitative non-
functional requirements specification. It must be noted
that it is deliberately restricted to a simple scenarios
and simple data since it is intended to illustrate
principals. Actual requirements may vary from
company to company.

In the specification of non-functional part for the
following example of contract, we still use the
categorization of non-functional requirements
recommended by TMF [8] although we would suggest
replacing the category of deployment with category of
quality in a business view contract since it is supposed
to be deployment independent.

NGOSS Contract Example – CRM-SM&O
Fulfillment Information Handling

Other parts in the contract [9]
Business View – Non-Functional

Deployment-Related
• Availability

ER1: Availability of all business capabilities
specified in the contract must not be lower than
99.99%.
• Performance

ER2: Performance of all business capabilities
specified in the contract must be very good.

This requirement is specified qualitatively, and in
many cases it may be appropriate although it may have
different interpretations from different stakeholders
and may be hard to validate. We can transform it into
more precise requirements if the qualitative
requirements specification is not appropriate.
Performance is usually characterized by sub-
characteristics, such as time-efficiency and resource-
efficiency. ER2 can be transformed into lower level
requirements based on its sub-characteristics. An
example of such requirements may look as follows:

ER2,1: The time-efficiency of all business
capabilities specified in the contract must be very
good.

Once again, this requirement is qualitative and is
not precise. The time-efficiency is usually
characterized by several metrics, such as latency and
throughput. Non-functional requirements can be
derived from ER2,1 based on these metrics. It can be
illustrated by using latency as an example. Before
transformation, we need to extend the definition of

metric latency of an operation to a capability. We can
define latency of a capability of handling a customer
order to be the time needed for completing it after a
customer request is received. An example of non-
functional requirements for capability handling a
customer order can be derived from ER2,1 as follows:

ER2,1,1: The latency of handling a customer order
should be SHORT.

An example of satisfaction function can be
defined for SHORT of ER2,1,1 as follows:

Figure 3. Satisfaction function for latency requirement ER2,1,1

In this figure, one (1) represents total satisfaction
and zero (0) represents total dissatisfaction. Basically,
it indicates that if a capability realization takes more
than ten days to complete a customer order, it is totally
unacceptable; if it takes no more than five days, it
achieves the highest level of satisfaction; and if it
takes between five and ten days, its satisfaction level
is gradually decreased as number of days is increased.
The numbers used in this example are for illustration
only.
• Safety

There is no safety requirement for business
capabilities in this contract.

Organization-Related
• Business Environment

ER3: Some of business processes may be business
environment specific.
• Organization Limitations

ER4: Some of business processes may be
organization specific
• Market Limitations

ER5: Some of business processes may be market
specific
• Financial Limitations

ER6: Financial loss from cancellation of customer
orders due to service delay must be MINIMAL.

An example of satisfaction function can be
defined for MINIMAL of ER4 in Figure 4. In this
figure, one (1) represents total satisfaction and zero (0)
represents total dissatisfaction. Basically, it indicates
that if percentage of revenue lost from cancelled
orders due to service delay is no more than two (2)

Number of days 0 15 10 5

1

Satisfaction degree

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

percent, it achieves the highest level of satisfaction; if
percentage of revenue lost from cancelled orders due
to service delay is equal to or more than five (5)
percent, it is totally unacceptable; and its satisfaction
level is gradually decreased when percentage of
revenue lost from cancelled orders due to service
delay is increased from two (2) to five (5) percent. The
numbers used in this example are for illustration only.

Figure 4. Satisfaction function for minimal financial loss due

to service delay

Legal-Related

• Regulatory Limitations

None identified
• Legal limitations

ER7: Customer order data must not be released
for public usage without consent.

Miscellaneous

None identified

6. Concluding Remarks

The quality problems, increased cost, and lack of
agility in building OSS applications are caused by lack
of standards, methodologies, and data / component /
process description languages and implementations
that are often technology specific and are constantly
subject to change, and hence creating a barrier to
business agility and quality management as
requirements change as well as new middleware’s are
introduced. NGOSS of TMF has already laid out the
foundations for a rigorous methodology which enables
high level and more abstract business focused models
of OSS applications be designed for a given software
platform. A key enabler for increased use of NGOSS
is the concept of a “contract”.

In this paper, we developed a framework for
contract based non-functional requirements
specification using qualitative, crisp quantitative, and
elastic quantitative non-functional requirements
specification techniques. An example of non-
functional specification of a NGOSS contract has been

presented based on these techniques. The quantitative
non-functional requirements specification techniques,
especially elastic non-functional requirements
specification which enables trade-offs in a
development process, enhance capability of current
NGOSS contract specification which is only
qualitative currently.

Future works include aggregation of non-
functional requirements and integration of the
proposed approaches with other methods in valued
based software engineering [13].

7. References
[1] L. Cysneiros and J. Leite, “Nonfunctional requirements:
from elicitation to conceptual models,” IEEE Tran. Software
Engineering, vol. 30, pp.328-350, May 2004.
[2] Xiaoqing (Frank) Liu and John Yen, “An Analytic
Framework for Specifying and Analyzing Imprecise
Requirements”, Proc. of the 18th IEEE International
Conference on Software Engineering (ICSE-1996), pp. 60-
69, Berlin, Germany, March, 1996.
[3] Xiaoqing (Frank) Liu, “Specification of Non-
Functional Requirements and Its Application for NGOSS
Contract Specification”, BT Internal report, July 2005.
[4] Georgalas N, Azmoodeh M, “Using MDA in
Technology-independent Specifications of NGOSS
Architectures”, 1st European Workshop on MDA (MDA-IA
2004), Enschede, The Netherlands, March 2004.
[5] Georgalas N., Azmoodeh M., Clark T., Evans A.,
Sammut P., Willans J., “MDA-Driven Development of
standard-compliant OSS components: the OSS/J Inventory
Case-Study”, Proceedings of the 2nd European Workshop
on Model Driven Architecture with emphasis on
Methodologies and Transformations (EWMDA 2004),
Canterbury, UK, 7-8 September 2004.
[6] J. Mylopoulos, L.Chung, and B. Nixon, “Representing
and using non-functional requirements: a process-oriented
approach,” IEEE Trans. Software Engineering, vol. 18,
pp.483-497, June 1992.
[7] TeleManagement Forum - New Generation Operations
Systems and Software,
http://www.tmforum.org/browse.asp?catID=1911.
[8] TeleManagement Forum, NGOSS Architecture
Technology Neutral Specification: Contract Description:
Business and System Views, TMF 053B, Feb., 2004.
[9] TeleManagement Forum, NGOSS Contract Examples:
Examples of the NGOSS Lifecycle and Methodology for
NGOSS Contract Definition, GB-921 Addendum N, Team
Draft 4, 2005.
[10] B. Paech and D. Kerkow, “Non-Functional
requirements engineering - Quality is essential,” REFSQ’04,
2004.
[11] www.tmforum.org.
[12] TMF eTOM process framework, from
www.tmforum.org.
[13] Liguo Huang and Barry Boehm, “How Much Software
Quality Investment Is Enough: A Value-Based Approach”,
IEEE Software, September/October 2006.

0

1
Percentage of revenue
lost from cancelled
orders due to service
delay

100 2

Satisfaction degree

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

	Specification of Non-Functional Requirements for Contract Specification in the NGOSS Framework for Quality Management and Product Evaluation
	Recommended Citation

	Specification of non-functional requirements for contract specification in the NGOSS framework for quality management and product evaluation Fifth International Workshop on Software Quality (WoSQ'07)

