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Feedback Control of Low Dimensional Models of Transition to Turbulence

John A. Burns John Singler

Center for Optimal Design and Control
Interdisciplinary Center for Applied Mathematics
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0531

Abstract— The problem of controlling or delaying transition
to turbulence in shear flows has been the subject of numerous
papers over the past twenty years. This period has seen the
development of several low dimensional models for parallel
shear flows in an attempt to explain the failure of classical linear
hydrodynamic stability theory to correctly predict transition.
In recent years, ideas from robust control theory have been
employed to attack this problem. In this paper we use these
models to develop a scenario for transition that employs
both classical bifurcation theory and robust control theory. In
addition, we present numerical results to illustrate the ideas
and to show how feedback can be used to delay transition.
We close with a specific conjecture and discuss some previous
results along this line.

I. INTRODUCTION AND PROBLEM FORMULATION

During the past decade we have seen enormous advances

in the development of new approaches to the problem of

transition to turbulence. Although there is no single math-

ematical framework that describes transition to turbulence

for all possible flows, new approaches to (non-classical)

linear hydrodynamic stability theory have provided improve-

ments in the fundamental understanding of this process.

This new linear theory replaces eigenvalue analysis with

pseudo-spectrum and uses ideas from robust control theory

to deal with system sensitivity and uncertainty. In fact, one

of the most important potential applications of these new

approaches is to the problem of designing feedback flow

controllers.

In the late 1980’s and early 1990’s Henningson, Reddy,

Schmid, Trefethen and co-workers began to develop a new

approach to hydrodynamic stability that is based on a linear

theory, but differs from classical linear hydrodynamic sta-

bility in that pseudo-spectrum plays the central role in their

work. The observation that linearization about a nontrivial

laminar flow leads to a non-normal problem is the key to

this theory. The references [2], [17], [18], [19], [20] and [27]

provide the foundations for this work and the recent book

by Schmid and Henningson [24] provides an excellent and

modern treatment of this area. Much of this work focuses

on the idea that small initial conditions can produce large

transient growth due to the non-normality of the linear part

of the equations and eventually the nonlinear terms become

This research was supported in part by the Air Force Office of Scientific
Research under grant F49620-03-1-0243.

important. The exact role (other than the mixing property)

that the nonlinearity plays in producing transition has not

been clarified. Motivated by flow control problems, Bamieh,

Dahleh, Farrell and Ioannou (see [4], [5], [6], [13], [14]) and

others focused on the linear response to small random forcing

at the boundary as a mechanism for transition. This effort is

important because it also suggests that boundary control has

the potential to significantly delay or eliminate transition in a

wide variety of shear flows. Almost all of this work focuses

on linear input-output theory and again the nonlinearity is

not fully investigated.

One reason the nonlinearity is relegated to a minor role

in the mostly linear theory is that the nonlinear term F is

conservative, i.e. 〈F (z), z〉 = 0 where 〈·, ·〉 is an energy inner

product on an appropriate state space. Thus, the nonlinear

term conserves energy and it is argued that the response to

the non-normal linearized system dominates in determining

the onset of transition. In this short note we discuss this

issue and use some low dimensional model problems to

illustrate how the nonlinear term can greatly impact system

sensitivity, transition and control design. During the past ten

years several low dimensional models have been proposed to

illustrate the ideas and to test the scenarios that come from

this linear analysis (see [3], [7], [16], [21], [28], [29], [30]).

Paper [3] by Baggett and Trefethen provides an excellent

comparison of these models. We focus on low dimensional

models that are known to exhibit robustness problems. These

models provide some insight into the role that the nonlinear

term plays in the mechanism that leads to transition. Also,

we illustrate that feedback may be used to control a fully

developed flow.

A. The Motivating Flow Control Problem

Consider the incompressible Navier-Stokes equations de-

fined on a channel Ω = R × (0, 1) × R by

∂

∂t
−→u (t) + (−→u (t) · ∇)−→u (t) = −∇p(t) +

1
Re

∆−→u (t), (1)

div−→u (t) = 0, (2)

where −→u (t) = [u(t, x, y, z), v(t, x, y, z), w(t, x, y, z)]T and

(x, y, z) ∈ Ω. Let
−→
U (x, y, z) = [U(y), 0, 0]T be a laminar

flow with stream-wise (x-direction) velocity u(y) varying

only in the cross-stream direction (y-direction) and define ũ
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by

−→u =
−→
U + ũ.

The fluctuation equations for ũ are given by

∂

∂t
ũ + (ũ · ∇)ũ = −∇p̃ +

1
Re

∆ũ

− (
−→
U · ∇)ũ − (ũ · ∇)

−→
U

and the linearized equations become

∂

∂t
ũ = −∇p̃ +

1
Re

∆ũ − (
−→
U · ∇)ũ − (ũ · ∇)

−→
U .

Representing the wall normal velocity v and wall normal

vorticity ω in terms of Fourier modes in the streamwise x-

direction and spanwise z-direction, the linearized equations

may be written in operator form

d

dt

[
ω̂
v̂

]
= A(Re)

[
ω̂
v̂

]
,

where

A(Re) =
[

Lsq Lc

0 Los

]
,

with Lsq , Los and Lc are the Squire, Orr-Sommerfeld and

coupling operators, respectively (see [22] and [24]). The

important point is that the operator A(Re) is highly non-

normal and has the form A(Re) = [ 1
ReA0 +R] where A0 is

a negative definite self-adjoint differential operator and R is

a bounded linear operator defined on an appropriate Hilbert

(state) space Z.

If one applies a control on a subset Γc of the boundary

Γ = ∂Ω of the channel Ω and includes the nonlinear term,

then the controlled fluctuation equation has the form

ż(t) = [A0(Re) + R]z(t) + F (z(t)) + Bu(t) + Gε,

where B is a unbounded linear operator and F (·) is a

conservative non-linear function in the sense that

〈F (z), z〉 = 0 (3)

for all z ∈ Z (see [10] for details). Here, the operator

G will also be unbounded if the “small” external constant

disturbance ε is located on the boundary Γ = ∂Ω. In order

to develop practical and convergent numerical algorithms for

computing feedback control laws, one should consider the

non-normality of the linear operator A(Re). Moreover, it

is important to understand the role that the nonlinear term

plays in the stability and robustness of the resulting closed-

loop system. For example, it is known (see [1]) that such

systems can be infinitely sensitive to small perturbations at

the boundary. We shall focus on a specific low dimensional

model of the type commonly found in the literature cited

above to illustrate this sensitivity and to demonstrate how

feedback control can be employed to stabilize a fully devel-

oped chaotic flow.

B. Low Dimensional Models of Parallel Shear Flows

We consider a 2D and 3D system that is typical of those

found in the papers [3], [7], [16], [21], [28], [29] and

[30]. However, we focus on the role that small constant

disturbances play in transition and illustrate how feedback

can delay or eliminate transition in these cases. Both systems

have the form

ż(t) = A(R)z(t) + ‖z(t)‖Sz(t) + Bu(t) + Gε, (4)

where A(R) = [ 1
RA0+R], A0 < 0 is diagonal and S = −S∗

is skew-adjoint. In particular, the 2 dimensional system is

defined by

A(R) =
[ −α/R 1

0 −β/R

]
, S =

[
0 −1
1 0

]
(5)

and

B =
[

0
1

]
, G =

[
1
1

]
. (6)

The 3 dimensional system is defined by

A(R) =

⎡
⎣ −α/R 1 0

0 −β/R 1
0 0 −γ/R

⎤
⎦ , (7)

S =

⎡
⎣ 0 −b1 −b2

b1 0 b3

b2 −b3 0

⎤
⎦ (8)

and

B =

⎡
⎣ 0

0
1

⎤
⎦ , G =

⎡
⎣ 1

1
1

⎤
⎦ , (9)

where all constants are positive. Both models have the

property that the linear operator A(R) is stable for all R > 0
and the 2 dimensional nonlinear model is also dissipative.

In particular, the nonlinear 2 dimensional system defined

by (5)-(6) has a compact global attractor. The non-linear 3
dimensional system defined by (7)-(9) is more complex, but

exhibits features very similar to those one finds in Plane

Couette flows.

II. MODEL PROBLEMS

As noted above, the problem with classical linear analysis

is that it fails to predict the correct critical Reynolds number

that yields transition. For plane Couette flows the linearized

equations are always stable and theoretically one should not

see transition if the initial flow state is sufficiently close to the

Plane Couette flow. However, if one views a “small” constant

disturbance as a perturbation of the conservative nonlinear
term, then standard bifurcation theory under uncertainty

yields a transition scenario which matches many flow cases.

Understanding this mechanism is crucial to the development

of feedback control laws. The following simple models are

sufficient to illustrate the basic ideas and to demonstrate how

feedback might be useful in the delaying of transition.
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A. The 2 Dimensional Model

In this case we set α = 1.2 and β = 1.4. We call the

eigenvector zTS = [ 1 0 ]T corresponding to the smallest

eigenvalue −α/R the TS state because of the similarity to

the Tollmien-Schlichting waves in plane Poiseuille flows. We

refer to the vector zOB = [ 1 1 ]T as the oblique state.

Observe that A(R) is stable for all R > 0. In addition,

one can show that this 2 dimensional system has a compact

global attractor (see Figures 1 and 2). If ε = 0, then the

zero z0 = 0 equilibrium is locally asymptotically stable for

all R. However, the radius δ(R) of the largest ball about z0

that lies in the domain of attraction converges to 0 and is

approximately given by δ(R) = O(R−2). Figure 3 shows

how and why the oblique initial state transitions before the

TS initial state as observed in [24]. When one adds a small

“uncertainty” such as an ε = .0001 perturbation to the

nonlinear term, there is a subcritical bifurcation near R = 6
as illustrated in Figure 4. In this case all initial states near

z0 = 0 transition. In Figure 5 one sees the “tunnelling effect”

observed in many flows (see [24]). Finally, Figure 6 shows

that if one applies a LQR feedback control to this system,

then the closed-loop system looks much like the R = 4 open-

loop system. Here feedback delays the transition. The LQR

control was computed with weighting matrices Q = I2 and

r = 25.

We turn now to the 3D system to illustrate the same

transition scenarios and to investigate the application of

feedback to a fully developed chaotic flow.
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Fig. 1. Phase portrait without disturbance (α = 1.2, β = 1.4, R = 4,
ε = 0). The green lines are the stable manifold and the black lines are
the unstable manifolds for the hyperbolic critical points. The union of the
five equilibrium and unstable manifolds is the global attractor. The basin of
attraction for the zero equilibrium lies between the stable manifolds.

B. The 3 Dimensional Model

Here we have a more complex system and, for various

values of the parameter R > 1, this system exhibits peri-

odic, quasi-periodic and chaotic attractors. For all the runs

presented below, we set α = .5, β = .75, γ = 1.0,

b1 = 1, b2 = .5 and b3 = .25. We denote the eigenvector

zTS = [ 1 0 0 ]T corresponding to the smallest eigen-

value −α/R, the TS state. The vector zOB = [ 1 1 1 ]T

is called the oblique state. If 9.5 < R < 23, then there is a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Fig. 2. Phase portrait without disturbance (α = 1.2, β = 1.4, R = 6,
ε = 0). The green lines are the stable manifold and the black lines are
the unstable manifolds for the hyperbolic critical points. The union of the
five equilibrium and unstable manifolds is the global attractor. The basin of
attraction for the zero equilibrium lies between the stable manifolds.
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Fig. 3. Phase portrait without disturbance (α = 1.2, β = 1.4, R = 6,
ε = 0). Here we zoom in near the zero equilibrium. The green lines are
the stable manifold and the black lines are the unstable manifolds for the
hyperbolic critical points. The oblique initial condition transitions to the
stable equilibrium while the TS initial condition remains stable. The union
of the five equilibrium and unstable manifolds is the global attractor. The
basin of attraction for the zero equilibrium lies between the stable manifolds.

chaotic (local) attractor and all solutions with initial states z̄
satisfying ‖z̄‖ < 1 will either approach this attractor or the

zero equilibrium. All the results presented below are based on

R = 10 and initial states z̄ satisfying ‖z̄‖ = 10−4. In Figure

7 one sees that the oblique initial state zOB transitions to the

chaotic attractor with a transition time of approximately 50
seconds. However, Figure 8 shows that the TS initial state

zTS returns to the zero state. As for the 2D model, if one sets

ε = 10−6, then the TS initial state zTS also transitions to

the chaotic attractor. As illustrated in Figure 9 the transition

time increases to approximately 100 seconds.

In order to test the feedback control, we computed a LQR

controller and used a “capturing” algorithm that turns on the

control only if t > 150 and the trajectory “wanders” into the

domain of attraction for the closed-loop system. A version

of this method was suggested Yorke and co-workers in the

papers [25] and [26].

Remark It is interesting to note that even this “simple”

3D model problem is more complex than it might first

seem. For example, it not obvious that this system (for the

given parameters) is dissipative. Although there is numerical

3142



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Fig. 4. Phase portrait with disturbance (α = 1.2, β = 1.4, R = 6,
ε = 0.0001). The disturbance of size ε = 0.0001 produces a subcritical
bifurcation and there are only three critical points. The green lines are the
stable manifold and the black lines are the unstable manifolds for the single
hyperbolic critical point. The union of the three equilibrium and the unstable
manifolds is the global attractor.
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Fig. 5. Phase portrait with disturbance (α = 1.2, β = 1.4, R = 6,
ε = 0.0001). Here we zoom in near the zero equilibrium. The dashed
lines are the nullclines and the disturbance of size ε = 0.0001 produces a
subcritical bifurcation. There are only three critical points. The green lines
are the stable manifold and the black lines are the unstable manifolds for the
single hyperbolic critical point. The union of the three equilibrium and the
unstable manifolds is the global attractor. However, all initial states above
the stable manifold transition to the distant stable equilibrium.

evidence that suggests there is an chaotic attractor inside the

ellipsoid

ELIP (ρ) =
{
(u, v, w) : u2 + v2/4 + w2 < ρ

}
for for ρ = 1.02, we do not have a rigorous proof to justify

this statement. On the other hand, if δ > 0 and the non-linear

term is modified by adding a dissipative term of the form

Fδ(z) = F (z) − δzp

where

zp �
[

up vp wp
]T

and p is an odd integer greater than 1, then it is easy to prove

that the perturbed dynamical system is dissipative and there

exist a global chaotic attractor.

To illustrate the impact of feedback for the case here,

we wait until the flow is fully chaotic (t > 150 for both

initial states) and then only turn on the feedback control

law when ‖z(t)‖ < 1. The weighting matrices for the LQR

problem were Q = I3 and r = 1. Figures 10, 11 and 12
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Fig. 6. Phase portrait with disturbance (α = 1.2, β = 1.4, R = 6,
ε = 0.0001) with a LQR feedback controller. The disturbance of size
ε = 0.0001 no longer produces a subcritical bifurcation and again there
are five critical points. The green lines are the stable manifold and the black
lines are the unstable manifolds for the two hyperbolic critical points. The
union of the three equilibrium and the unstable manifolds is the global
attractor. The basin of attraction for the zero equilibrium lies between the
stable manifolds and is much greater than the open loop system with no
disturbance.
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Fig. 7. Solutions of the 3D system (α = .5, β = .75, γ = 1.0, R = 10,
ε = 0.0) with oblique initial data of norm ‖z0‖ = 10−4. This initial data
transitions to a chaotic attractor.

show the closed-loop responses, a comparison of open-loop

and closed-loop energies and the control history, respectively.

Here, the feedback control with capturing stabilizes the fully

developed flow.

Note it is the perturbation of the conservative nonlinear

term that provides the transition mechanism. Even a small

perturbation to the condition

〈F (z), z〉 = 0

can produce changes in the bifurcation diagrams such as

shown in Figures 13 and 14. In particular, if ε �= 0 then

the perturbed nonlinear term becomes

Fε(z) = F (z) + Gε

so that

〈Fε(z), z〉 = 〈F (z), z〉 + 〈Gε, z〉 = 〈Gε, z〉 = ε(u + v + w)

is no longer conservative and not definite.
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Fig. 8. Solutions of the 3D system (α = .5, β = .75, γ = 1.0, R = 10,
ε = 0.0) and the TS initial data. If the TS initial data has norm ‖z0‖ =
10−4, then there is no transition.
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Fig. 9. Solutions of the 3D system with constant disturbance (α = .5,
β = .75, γ = 1.0, R = 10, ε = 10−6), The initial state is given by the
TS initial data with norm ‖z0‖ = 10−4. There is a subcritical transition to
a chaotic attractor.

III. CONCLUSIONS

The two models considered here have mathematical struc-

tures and features common to many shear flow control

problems. The examples above clearly show that it might

be possible to develop a rigorous theoretical framework to

explain some transition scenarios as a subcritical “bifurcation

under uncertainly”. The linear part of such non-normal

systems is extremely important in understanding sensitivity

and control design.

Clearly these model problems do not provide anything

closely resembling a theoretical foundation for infinite di-

mensional flows. However, the examples do provide insight

in to such problems. The papers [11], [12] and [22] provide

more realistic applications of similar control ideas to tur-

bulent boundary layers. The book [15] by Gad el Hak is a

valuable source of flow control applications. Also, the papers

[8], [9] provide examples where infinite dimensional theory

can be applied to such systems. Moreover, in view of recent

rigorous resolvent estimates for plane Couette flows (see [23]

it is reasonable to conjecture that a similar analysis of the
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Fig. 10. Solutions of the closed-loop 3D system with constant disturbance
(α = .5, β = .75, γ = 1.0, R = 10, ε = 10−6). The initial state is
given by the oblique initial data with norm ‖z0‖ = 10−4. The capturing
feedback control law is turned on at t = 150 and the fully developed flow
is stabilized by t = 190 seconds.
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Fig. 11. Open-loop and closed-loop energy for the 3D system with constant
disturbance (α = .5, β = .75, γ = 1.0, R = 10, ε = 10−6). The initial
state is given by the oblique initial data with norm ‖z0‖ = 10−4. The red
line is open-loop energy and the blue line is closed-loop energy.

nonlinearity might be successful for this infinite dimensional

system.

Finally, it is interesting to note that providing rigorous

proofs that these “simple” models are dissipative is not
simple. In fact, the existence of a chaotic attractor is clearly

dependent on the choice of the parameters in the mixing

matrix S above.
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