
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

26 Sep 2005

Structured Object-Oriented Co-Analysis/Co-Design of Hardware/Structured Object-Oriented Co-Analysis/Co-Design of Hardware/

Software for the FACTS Powers System Software for the FACTS Powers System

Matt Ryan

Sojan Markose

Xiaoqing Frank Liu
Missouri University of Science and Technology, fliu@mst.edu

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
M. Ryan et al., "Structured Object-Oriented Co-Analysis/Co-Design of Hardware/Software for the FACTS
Powers System," The 29th Annual IEEE International Conference on Computer Software and Applications,
Institute of Electrical and Electronics Engineers (IEEE), Sep 2005.
The definitive version is available at https://doi.org/10.1109/COMPSAC.2005.147

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/COMPSAC.2005.147
mailto:scholarsmine@mst.edu

STRUCTURED OBJECT-ORIENTED CO-ANALYSIS/CO-DESIGN OF
HARDWARE/SOFTWARE FOR THE FACTS POWER SYSTEM

Matt Ryan*†, Sojan Markose, Xiaoqing (Frank) Liu†‡,
Bruce McMillin†‡

Ying Cheng†‡

Department of Computer Science
Intelligent Systems Center

University of Missouri – Rolla
{mjr, smy78, fliu, ff}@umr.edu

Department of Electrical and Computer
Engineering

University of Missouri – Rolla
ycheng@umr.edu

Abstract

There are several approaches to the hardware/software
design in embedded systems, ranging from the traditional
sequential methods which focus on the determination of
the hardware architecture prior to software design, to
newer object-oriented approaches that attempt to apply
software engineering methods to hardware design
without a systematic process. This paper discusses a
structured object-oriented methodology for the integrated
co-analysis and co-design of hardware/software systems
using an extended High Order Object-oriented Modeling
Technique (HOOMT). This methodology offers a uniform
method for hardware and software developers to jointly
develop the specifications for and partitioning of the
hardware and software components of a system, as well
as developing the interfaces between components, and
allows easy design migration of components between
hardware and software. In this paper it is applied to the
co-analysis/co-design of the hardware and software of a
simulated advanced power grid control system.

Keywords
Hardware/Software Co-analysis, Hardware/Software Co-
design, Structured Object-Oriented Method, Concurrent
Process, Integration, Embedded Systems

1. Introduction

The conventional hardware/software design approach
is a sequential process that traditionally consists of
gathering the requirements for the proposed system,
determining and developing the hardware and architecture

*
Supported in part by NSF IGERT grant DGE-9972752.

†
Supported in part by the UMR Intelligent Systems Center.

‡
Supported in part by NSF MRI grant CNS-0420869.

of the system, and then developing the software that is
intended to run on the system. However, this sequential
development paradigm is proving to be inefficient for
embedded systems that rely heavily on their software
components. The design of the architecture prior to
software development can put harmful restrictions on the
software being developed [7]. In addition, a lack of
coordinated interaction between the hardware designers
and the software designers can lead to additional
problems in the integration and testing of the system.
Another possible issue lies with the partitioning of the
system into hardware and software components. An early
(and fixed) partitioning may not provide the most
efficient division of functionality between hardware and
software.

In an effort to improve the development of hardware/
software systems, a number of concurrent design, or co-
design, methodologies have been proposed. These
methodologies typically involve the specification of a
target system to some level, at which point the
hardware/software partitioning is performed, and further
design and development of the hardware and software
components takes place concurrently, with some amount
of communication between the hardware and software
designers. Of particular interest in recent years has been
the introduction of object-oriented paradigms into the co-
design field. Object-oriented design methods can be very
useful in hardware/software co-design by providing a
uniform method for hardware/software system
specification. A uniform modeling method can provide
developers with increased understanding of both the
hardware and software components. Object-oriented
methods also provide two other strengths: they allow for
component reuse, and they focus on data relationships
that are important in the development of large systems.
Finally, the use of object-oriented methods can allow for
greater flexibility in deciding when and how to do the
partitioning of the components, as well as any potential
re-partitionings that may be necessary.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

1.1. Related Work

Green, Morris, and Evans [1] have proposed a
MOOSE (Model-based object-oriented system
engineering) approach in which a behavioral model of the
system is constructed and then transformed into
implementations for both hardware and software through
several intermediate levels, and then they are synthesized.
This research effort recognizes the need to delay the
partition of system into hardware and software
components to allow for the examination of the overall
functional behavior of the complete system. However,
the partitioning is done only after the multiple
transformations are made on the models throughout the
process.

In [2], Machado, Fernandes, and Santos present a three
level co-design approach to the development of real-time
applications which allows the implementation of
industrial control-based information systems. Even
though this research provides an interesting method for
the object-oriented co-design of real time applications, it
does not specify when or how to partition the system into
hardware and software components.

Rashid, Passos, and Halverson [3] propose a new
object-oriented hardware/software co-design method
called SHOOT (Software Hardware Object-Oriented
Technique). They specify three different types of objects
in this method: hardware, software, and optimizers. It
can be easily extended towards any scheduling technique.
However, this methodology does not address the issues
regarding separate treatment of hardware and software
components and their final integration.

A hardware/software co-design methodology for
distributed embedded systems called DESC (Distributed
Embedded System Codesign) was proposed in [4] by Lee,
Hsiung, and Chen. It introduces a two level partitioning
technique: (1) design exploration to determine the number
of processors for software execution and the hardware
cost; and (2) hardware/software co-partitioning to
produce a final system partitioning result. Although this
research addresses the issues involved in the co-design of
distributed embedded systems, like the MOOSE approach
it requires the generation of several different models
before the system can be partitioned into hardware and
software.

Previous work by one of the coauthors of this paper
developed the original High Order Object-oriented
Modeling Technique (HOOMT) [6]. The HOOMT
provides a structured object-oriented software design
methodology which is based on hierarchical model
development. The integration of structured methods with
object-oriented methods provides the uniformity and
reusability of the object-oriented approach with the
hierarchical decomposition of objects, their functions, and

their dynamic behaviors that is provided by the structured
method.

1.2. Structured Object-Oriented Co-analysis/Co-
design of Hardware/Software Using HOOMT

 In the development of embedded systems the
importance of the concurrent analysis (or co-analysis) is
often neglected, and emphasis is given to co-design and
implementation [5]. The importance of the analysis phase
lies in the fact that errors introduced in this phase are
more expensive to fix later on, especially in embedded
systems where both hardware and software components
are involved. Therefore, an effective analysis process
which can cater to both hardware and software is
necessary early in embedded systems development. Our
research proposes a co-analysis and co-design process
wherein the system requirements are analyzed by a joint
team of hardware and software engineers. The co-analysis
process gives equal importance to both hardware and
software aspects of the system and prevents the design
from becoming more hardware oriented or software
oriented.

The HOOMT was originally developed for the design
of software systems. It is extended to the hardware/
software co-analysis and co-design of embedded systems
with a little modification. This modification includes the
addition of constraints and the “port” concept to the
model (see Section 3 below). The HOOMT provides a
systematic approach that guides the co-analysis/co-design
and the partitioning of the design into its hardware and
software components. Unlike the other methods listed in
the previous section, this partitioning occurs in a very
natural fashion once the HOOMT models are created.

1.3. Background of the Advanced Power Grid
Control System

 Power network control has become an extraordinarily
difficult task due to the sheer size of such networks.
Indeed, as society has become more technology (and thus
power) oriented, and the size of the bulk power system
grid has increased, the importance of control has likewise
grown [8]. The need for better controls has been shown
many times, most visibly and spectacularly during the
Summer 2003 blackout in the North-eastern United
States. In order to prevent similar occurrences, it is
desirous to attempt to mitigate the effects of single
contingencies (such as line failures) as they occur, before
some combination of contingencies can lead to a
cascading failure scenario in which most or all of a grid
goes down.

The family of “Flexible Alternating Current
Transmission System” (FACTS) devices shows promise
for use as network-embedded controllers [8, 9]. There is

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

ongoing research to incorporate a number of FACTS
devices into a power grid network to act as a distributed,
fault-tolerant, and real-time constrained control system.
This paper looks at the integrated, object-oriented co-
analysis/co-design of a FACTS-augmented power system,
specifically a hardware-in-the-loop test system that is
currently being implemented to test FACTS control of a
simulated power system. This test system includes a
multiprocessor simulation engine that will use
mathematical formulae for simulating a power grid, and
send appropriate power generation commands to actual
power lines, which will have FACTS devices attached to
them.

The remainder of this paper is organized as follows.
Section 2 discusses the HOOMT process for co-analysis
and co-design. Section 3 presents a number of High
Order Object Model diagrams from the model system.
Section 4 presents a diagram from the Hierarchical Object
Information Flow Model of the system. Section 5
provides an example diagram from the system’s
Hierarchical State Transition Model. Section 6 discusses
the results of the modeling effort. Section 7 contains the
conclusion to the paper.

2. The HOOMT Process for Co-analysis and
Co-design

A HOOMT-based structured object-oriented method
for performing the co-analysis/co-design phase of
embedded systems development is shown in Figure 1. It

provides a unified method for the specification of the
target system, including both hardware and software
components. The partitioning of the hardware and
software components can be performed, and the interfaces
between components can be specified using the method.
Communication between hardware and software
engineers allows for component refinement and migration
between hardware and software. The produced
specifications can then be used for the later stages of the
development process.

During the implementation phase, communication
between the hardware and software engineers continues
so that new developments that affect the system design
can be examined. These developments may lead to
further rounds of co-design refinements and potential
component repartitioning. Upon creation of the hardware
and software components, traditional integration and
testing methods can be used to complete the system,
allowing for refinements to be made to the components
(or the design and specifications) as needed.

2.1. System Level Co-Analysis and Co-Design

The development process begins with the co-analysis
and co-design of the system by a joint group of hardware
and software engineers using the HOOMT. The first step
in the creation of the HOOMT models is the gathering of
the system requirements (top of Figure 2). Once the
requirements have been identified, a context object
diagram of the system is created, showing the system as a

Figure 1: The development process

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

single entity, as well as the external objects that the
system will interface with. The system object is then
structurally decomposed one level of abstraction down.
All high-order objects identified at the new abstraction
level must themselves be decomposed until a level of
abstraction is reached where the diagram consists of
primitive objects from either the hardware or the software
perspective. Additionally, refinements can be made to
the higher levels of abstraction in order to maintain
consistency. The three system level models of the system
are produced, with the lowest abstraction levels of the
object model showing the primitive objects, ready to be
partitioned into hardware or software components.
During the structured decomposition, the object-oriented
nature of the methodology allows developers to create
both hardware and software views of system objects.
These differing views might represent simulated or test-
bed versions of the components (versus actual deployed
versions), or may allow for an examination of the
tradeoffs involved in implementing the component in
either hardware or software.

2.2. Component Co-Analysis/Co-Design and
Migration

Once the system-level analysis is finished, an initial
partitioning into hardware and software components can
be performed (bottom of Figure 2). The hardware
engineers can take the specifications of the hardware
components and their associated interfaces, and proceed
with further lower-level component design of the
hardware in the embedded system. Likewise, the
software engineers will be able to proceed with the
continued design of the embedded system software.
Continued interaction between the hardware and software
engineers is required during these design steps so that
changes in hardware or software can be examined for
their cross-impact on the components and on the model.

Specifications changes may lead to refinements in
either or both the hardware and software component
specifications, or may lead to the migration of some
system components between hardware and software. The
ability to migrate components back and forth between
hardware and software during the design phase is one of
the major advantages of the structured, object-oriented
design process. Such migrations, made simpler by the
object-oriented nature of the models, allow for greater
flexibility in embedded systems design, particularly in
exploring the most efficient division between hardware
and software components prior to any actual
implementation. The final specifications of the
components and their interfaces produced by the co-
design step can then be taken for component
implementation.

Top Level

System

Object-

Oriented

model (C.O.D.)

Object-Oriented

Hardware/

Software model

at subsequent

levels

Hierarchical

Object

Information

Flow Model

Development

High Order

Object Model

Development

Hierarchical

State

Transition

Model

Development

Structured Decomposition Refinement

Structured Decomposition

and Refinement

Elaboration,

Refinement, and

Consistency Checking

Elaboration,

Refinement, and

Consistency Checking

Requirements

Analysis

Object-

Oriented

Hardware

component

models

Structured Decomposition

and Refinement

Object-

Oriented

Software

component

models

Structured Decomposition

and Refinement

Refinement and Migration

Hardware

HOIFM

Hardware

HOOM

Hardware

HSTM

Software

HOIFM

Software

HOOM

Software

HSTM

System Level Co-Analysis and

Co-Design

Component

Co-Analysis/

Co-Design

PARTITIONING

Figure 2: The HOOMT decomposition process

2.3. The HOOMT Models

 The HOOMT methodology currently uses three
models, the High Order Object Model (HOOM), the
Hierarchical Object Information Flow Model (HOIFM),
and the Hierarchical State Transition Model (HSTM).
The HOOM will be directly derived by the decomposition
of the object diagrams. The HOIFM will be developed
based upon the methods of the objects in the HOOM.
The HSTM is created to show the dynamic behavior of
the objects identified during decomposition. The same
levels of abstraction must be present in the three models
for consistency checking. Each of the three models
presents a different view of the system: the object view,
the functional view, and the behavioral view. The
primitive objects in the HOOM can then be partitioned
into strictly hardware and strictly software components.
The HOIFM and the HSTM combine to help define the
interfaces between components.

3. Structured Development of the HOOM for
Hardware/Software Co-analysis/Co-design

 The generation of the HOOM begins with the
production of a top level, “black box” view of the overall
system object and relevant external objects. For the
power system model, this top level, or context object
diagram, includes the FACTS Power System object, the
Contingency object, and the Service Provider (Utility)

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

object, and the relationships between these objects
(Figure 3). The boxes on the side of the objects show
(from top to bottom) the objects’ attributes, methods, and
constraints. (The addition of the constraints is one of the
significant modifications to the model.) It should be
noted that the constraints on the operation of the system
are here represented as high level requirements such as
“voltage stability”. The context object diagram captures
the interaction of the service provider with the power
system, as well as the interaction of errors (or
contingencies) on the power system.

Figure 3: Context object diagram of FACTS power

system

E
v
e

n
t

R

e
c
e
p

t
o
r

Figure 4: Decomposition of FACTS power system

object model

Decomposing the FACTS Power System object, we
find that it consists of the high order FACTS Device and
Simulated Power Transmission System objects, as well as
the primitive Placement object (Figure 4). The high level
constraints have been decomposed into lower-level
constraints. The Placement object represents a design-
time activity, initiated by the Service Provider, which
determines the optimal placements of FACTS devices
into an existing power grid. Around the sides of the
FACTS Power System object can be seen various

rectangular boxes, or ports. These ports represent
interfaces for relationships between external objects and
internal objects. These interfaces may be physical, code-
based, or simply model-based object interfaces (as a
method of retaining the proper abstraction).

The power transmission system may be decomposed
into two very different models. One is the actual physical
(or deployed) model, consisting of such objects as power
lines, power generations, power loads, buses, and sensors,
while the other is a hardware/software simulated model.
Despite the internal differences, however, the interfaces
of the two systems are identical. The target system for
this model is the hardware-in-the-loop simulation
mentioned above, in which several physical FACTS
devices are to be connected to a simulation engine which
will calculate the state of the simulated power grid and
then simulate that state for the FACTS devices.
Therefore it becomes necessary to refine the original
Power Transmission System object of the model into a
Simulated Power Transmission System object,
maintaining the external interactions as well as the
attributes, methods, and constraints of the original object.
Figure 5 shows the decomposition of Simulated Power
Transmission System into the Simulation Engine and HIL
Line objects, and the “set” relationship between the two
objects, which represents the power generation settings
sent by the Simulation Engine to the HIL Line.

Simulation Engine

(Load Flow)

HI L Line

sensor_data

power_system_config

configure_simulation()

accept_contingency()

send_sensor_data()

set_HIL_line()

compute_power()

generation_setpoint

change_HIL_Line_flow

()

sets

affects : Event

sensesuses

manipulates

limits, monitors

Figure 5: Simulated power transmission system

object model

 Of particular interest to our research is the FACTS
Device object. In the model, we have refined the generic
FACTS Device object into a UPFC (Unified Power Flow
Controller) FACTS Device object due to its use in the
target hardware-in-the-loop test system. Figure 6 shows
the decomposition of the UPFC FACTS device, in which
can be seen the Embedded Computer, the DSP Board, the
Interface Board, and the UPFC Power Electronics. It is
to be noted that the DSP Board is represented as
replacing the original abstract concept of the “Interface”
object between the embedded computer and the power
electronics. The “limits” and “monitors” relationships
seen in Figure 4 continue into the FACTS device, where

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

they go into the embedded computer. Similarly, the
“senses” and “manipulates” relationships are linked to the
UPFC Power Electronics object. Another salient feature
of this object model is the “CAN Bus” connection
between the embedded computer and the DSP board.
Along this connection data from the DSP board will be
passed up to the control programs on the embedded
computer, while the control programs will send back the
power line control settings to the DSP board, which will
then set the power electronics accordingly.

Figure 6: UPFC FACTS device object model

 The Embedded Computer object contains two of the
key software components of the FACTS device, the Long
Term Control and the Dynamic Control. The long term
control is a distributed maximum flow algorithm that runs
over the FACTS devices placed in a power system [10].
The function of the dynamic control is to respond in the
short term to fluctuations in the power line attached to the
FACTS device, in addition to providing a smooth
transition from the current power settings to new
setpoints generated by the long term control.

One of the principle goals of the co-analysis/co-design
process using the HOOMT is the structured
decomposition of the model to the point where individual
components (primitive objects) can be identified as either
hardware or software and partitioned accordingly for
implementation. If needed, the individual hardware and
software components could be further decomposed as
necessary, either by continued use of the HOOMT during
the co-analysis/co-design phase, or by other means during
the implementation phase. For example, once the
hardware components have been identified, it may be
desirable for the hardware engineers to further represent
these components using a language such as VHDL.
Primitive objects that represent well-known or pre-
existing components may need no further design.

4. Co-analysis and Co-design of the
Functionality of the FACTS Power System
Hardware and Software using the HOIFM

 The HOIFM is used in the HOOMT methodology to
represent the functional behavior and data flows of the
system being modeled. As with the object model, the
methods modeled in HOIFM can be decomposed from
the higher levels of abstraction. It is therefore desirable
to maintain the same level of abstraction between
methods that interact.

Figure 7: FACTS power system information flows

 Decomposition of the methods of the FACTS Power
System (from Figure 4) reveals the abstraction layer
shown in Figure 7, and the lower-level methods that are
present: those associated with the FACTS Device, the
FACTS placement algorithm, and the (Simulated) Power
Transmission System. Further decomposition of the
methods is done to analyze their functionalities.

5. Specification of the Behavior of the
Hardware/Software of the FACTS Power
System with the HSTM

 In order to capture the dynamic behavior of the system
being modeled, the HOOMT methodology provides the
HSTM. As with the HOIFM diagrams, it is important to
keep the same levels of abstraction for the state transition
diagrams as are found in the HOOM. Figure 8 shows the
top level state transition diagram for the FACTS Power
System. At this level of abstraction, the states are
relatively straightforward. The diagram begins with a
power grid without FACTS devices, and transitions to a
state in which FACTS placement locations are computed
(and FACTS devices are then placed into the power grid).
The three main operating states of the system at the top

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

level are the Working State (when the system is stable),
the Reconfiguring state (initiated typically by a
contingency), and a Degraded Operation state for when a
FACTS device cannot reconfigure the power settings. It
should be noted that the Reconfiguring state is a high-
level state, requiring further decomposition.

Figure 8: State chart: FACTS power system

 Performing further structured decomposition on the
Reconfiguring state of Figure 8 leads to some of the more
complex interactions of the model.

6. Development Results

 The HOOMT models presented in this paper were part
of the specifications of the system and its hardware/
software components developed using the HOOMT
process discussed in Section 2. Although power grids
have been in existence for many years, modeling them,
and in particular a FACTS-embedded power system, has
never been done using an object-oriented methodology.
The models we developed have undergone numerous
refinements of the objects, their relationships, and their
functionalities as understanding of the advanced power
grid control system and its components has increased, and
they continue to be refined and further decomposed as
necessary.

One particular refinement to the models was the
change mentioned in Section 3 from modeling a deployed
power transmission system to modeling a simulated
power transmission system. This refinement came after
much of the initial decomposition and partitioning of
many of the system components. The necessary changes
to the model affected a number of levels of abstraction.

7. Conclusions

 Embedded systems design is becoming increasingly
important. However, conventional design approaches

have distinct problems, such as a lack of concurrent
analysis, lack of a common analysis and design method
for hardware and software designers, and the need to
determine when and how to partition the system being
designed into hardware and software components. The
High Order Object-oriented Modeling Technique
provides a structured object-oriented methodology for
integrated co-analysis and co-design of hardware/
software for an embedded system. It provides a uniform
method for specification that allows hardware and
software designers to easily collaborate to create the
system specifications in a concurrent process. The
structured decomposition of the models provides the
partitioning of the system by identifying the hardware and
software components and their interfaces.

8. References

[1] P. Green, D. Morris, and G. Evans. “Software technology for
embedded systems”. Software Technology and Engineering
Practice, 1997. Proceedings of the Eighth IEEE International
Workshop on incorporating Computer Aided Software
Engineering, pp. 402-410, 14-18 July 1997.
[2] R. J. Machado, J. M. Fernandes, and H. D. Santos. “An
Object-Oriented Approach to the Co-Design of Industrial
Control-Based Information Systems.” 4th APCA Portuguese
Conference on Automatic Control (CONTROLO 2000), pp. 570-
575, Guimaraes, Portugal, Oct. 2000.
[3] O. Rashid, N. L. Passos, and R. H. Halverson. “An Object
Oriented Hardware/Software Co-design Paradigm.”
Proceedings of the ISCA 13th International Conference -
Computers and their Applications, pp. 440-443, March
1997.
[4] T. Y. Lee, P. A. Hsiung, and S. J. Chen. “DESC: A
Hardware-Software Codesign Methodology for Distributed
Embedded Systems.” IEICE Transactions on Information and
Systems, IEICE Publishers, Volume E84-D, Number 3, pp.
326-339, March 2001.
[5] B. P. Douglas. “Doing Hard Time: Developing Real-Time
Systems with UML,” Objects, Frameworks and Patterns.
Addison-Wesley, 1999.
[6] X. F. Liu, H. Lin, and L. Dong. “A Systematic Approach to
the Integration of Object Modeling with Structured Analysis
Based on High Order Object Model.” International Journal of
Computer and Information Science (IJCIS), 2(2):74-96, June
2001.
[7] G. Hellestrand. “The Engineering of Supersystems.” IEEE
Computer, 38(1):103-105, January 2005.
[8] M. D. Ilic. “Fundamental engineering problems and
opportunities in operating power transmission grids of the
future” Int'l Journal of Electrical Power & Energy Systems,
17(3):207-214, June 1995.
[9] B. McMillin, M. L. Crow. “Fault Tolerance and Security for
Power Transmission System Configuration with FACTS
Devices,” Proceedings of the 32rd Annual North American
Power Symposium, vol. 1, pp. 5.1-5.9, Waterloo, Ontario,
October 2000.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

	Structured Object-Oriented Co-Analysis/Co-Design of Hardware/Software for the FACTS Powers System
	Recommended Citation

	Structured object-oriented co-analysis/co-design of hardware/software for the FACTS powers system The 29th Annual IEEE International Conference on Computer Software and Applications

