
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Dec 2008 

PAS: Predicate-Based Authentication Services Against Powerful PAS: Predicate-Based Authentication Services Against Powerful 

Passive Adversaries Passive Adversaries 

Sriram Chellappan 
Missouri University of Science and Technology, chellaps@mst.edu 

Xiaole Bai 

Wenjun Gu 

Xun Wang 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/comsci_facwork/204 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
S. Chellappan et al., "PAS: Predicate-Based Authentication Services Against Powerful Passive 
Adversaries," Proceedings of the Computer Security Applications Conference, 2008, Institute of Electrical 
and Electronics Engineers (IEEE), Dec 2008. 
The definitive version is available at https://doi.org/10.1109/ACSAC.2008.23 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork/204
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ACSAC.2008.23
mailto:scholarsmine@mst.edu


PAS: Predicate-based Authentication Services
Against Powerful Passive Adversaries

Xiaole Bai† , Wenjun Gu† , Sriram Chellappan‡, Xun Wang+, Dong Xuan† and Bin Ma�

† Dept. of Computer Science and Engineering ‡ Dept. of Computer Science
The Ohio State University Missouri Univ. of Sci. and Tech.
Columbus, OH 43210 Rolla, MO 65409

{baixia, gu, xuan}@cse.ohio-stat.edu chellaps@mst.edu
+ Cisco System Inc. � David R. Cheriton School of Computer Science
San Jose, CA 95134 University of Waterloo

xunwan@cisco.com ON, Canada, N2L 3G1
binma@cs.uwaterloo.ca

Abstract
Securely authenticating a human user without assistance

from any auxiliary device in the presence of powerful pas-

sive adversaries is an important and challenging problem.

Passive adversaries are those that can passively monitor,

intercept, and analyze every part of the authentication pro-

cedure, except for an initial secret shared between the user

and the server. In this paper, we propose a new secure au-

thentication scheme called Predicate-based Authentication

Service (PAS). In this scheme, for the first time, the concept

of a predicate is introduced for authentication. We conduct

analysis on the proposed scheme and implement its proto-

type system. Our analytical data and experimental data il-

lustrate that the PAS scheme can simultaneously achieve a

desired level of security and user friendliness.

1 Introduction

Authenticating the identity of a human user to a server is
critical in security. While it is reasonable to assume that se-
crets initially shared between a user and a server were done
so securely, subsequent authentication may be conducted in
malicious environments, which could expose secrets to ad-
versaries for malicious impersonation later on. Some typical
instances have been reported in [5], [6] and [7]. The sig-
nificance of this issue arises from the recent dual trends of
increasingly mobile users and rapidly-advancing hardware
and software technologies that the malicious can exploit.

One natural approach that can be used in untrustworthy
environments is one-time passwords. However, they are
generally difficult to memorize. Users may have to store
them in or generate them with some auxiliary device (e.g.,
cell phones or one-time password generators) that is vulner-
able to theft. In some cases, one-time passwords are pro-

vided in a letter and sent to users, e.g., Nordea Bank in Fin-
land. Then users may also have to refer to the letter when
typing the passwords during authentication process, which
is both cumbersome and vulnerable to observation with hid-
den cameras. Thus the development of a secure authentica-
tion scheme that the general public can easily use is urgently
needed.

1.1 Problem Statement
In this paper, we address the issue of how a human user

can securely authenticate himself to a server in the presence
of powerful passive adversaries without assistance from any
auxiliary device.

Attack model: powerful passive adversaries. By pow-

erful, we mean adversaries that can monitor, intercept and
analyze each part of the authentication procedure (i.e., all
the inputs and outputs of the authentication process), ex-
cept for an initial secret pre-shared between the user and
the server. By passive, we consider adversaries that do not
disrupt the authentication process or change or create new
content transferred during the process. The common goal
of these adversaries is to subsequently impersonate the valid
user later on. We comment that this attack model is stronger
than “shoulder surfing”. Concealed input, e.g., fingerprints,
can successfully defend against shoulder surfing, but there
is no strong defense against our attack model, where the fin-
gerprint could be recorded.

User constraint: no auxiliary devices. In this paper, we
focus on the design of authentication procedures that can be
accomplished by most human users without help from any
auxiliary device. This constraint is important in a practi-
cal sense, and also raises significant design challenges. We
notice there are many interesting works in which users au-
thenticate themselves with the assistance of extra devices,

2008 Annual Computer Security Applications Conference

1063-9527/08 $25.00 © 2008 IEEE

DOI 10.1109/ACSAC.2008.23

433

2008 Annual Computer Security Applications Conference

1063-9527/08 $25.00 © 2008 IEEE

DOI 10.1109/ACSAC.2008.23

433

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



e.g., [3, 14–16, 18–20]. The major problems with these de-
vices are production and distribution costs, sensitivity to
theft and loss, and the inconvenience of carrying them.

Design goal: secure authentication. By secure authen-

tication, our objective is to protect users from malicious
impersonation after the authentication procedure has been
successfully accomplished in the presence of powerful pas-
sive adversaries. Clearly, authentication methods based on
a fixed input as the password for every login attempt cannot
achieve this.

1.2 Challenges
This problem’s essential difficulty lies in the user con-

straint, i.e., the authentication procedure should be handled
without any help from auxiliary devices.

To overcome powerful passive adversaries, the well
known zero-knowledge proof-based approaches are natural
candidates. However, zero-knowledge techniques are based
on mathematically hard problems [1]. Since humans’ “com-
putational power” is much less than that of machines, these
approaches are simply too difficult for a user to handle. The
fact that zero knowledge techniques are hard to be applied
here is critical. It implies that information leakage in each
authentication session can be feasibly taken advantage of in
our problem setting. Let the entropy of the pre-shared se-
cret space be denoted by H, and the entropy of information
leakage resulting in secret space shrinking in each session
be denoted by ΔH; inevitably ΔH > 0. After being used
for �H/ΔH� times, the pre-shared secret will be revealed.
This upper bound of the number of authentication sessions
reveals two facts. First, the pre-shared secret cannot be used
forever since ΔH > 0. That is, the secret has to be re-
newed after being used for a certain number of authentica-
tion sessions. Second, if we want to increase the number of
authentication sessions of a pre-shared secret, we must ei-
ther decrease the information leakage or increase the secret
space, or both.

The first approach, decreasing the information leakage,
is difficult. On the one hand, operations needed to finish
an authentication session are limited when users’ computa-
tional power is constrained. Mathematical operations, e.g.,
modular arithmetic, are difficult for many people, especially
when very large numbers are involved. On the other hand,
powerful satisfiability solvers (SAT solvers) can easily ex-
ploit information leakage. Formally, SAT solvers are logical
cryptanalysis tools [13]. The attacker first encodes the au-
thentication scheme as an SAT problem and then uses state-
of-the-art SAT solvers to obtain all the possible secrets that
satisfy the responses observed. Note that it is even feasi-
ble to encode the U.S. Data Encryption Standard (DES) as
a SAT problem [12], and state-of-the-art SAT solvers are
powerful enough to handle problems with hundreds of thou-
sands of variables efficiently [21]. Following this approach,
to date there is no secure authentication scheme that the gen-
eral public can easily use.

The second approach, increasing the secret space, is also
difficult. We must then address the challenge of limited hu-
man memory capacity and the desired huge secret space. It
is challenging for humans to memorize a secret with high
entropy, and consequently, very little work follows this di-
rection. To overcome this challenge, existing work requires
extensive training that lasts at least a few days, or even
months. It is nontrivial to design an authentication scheme
that does not require extensive training time.

1.3 State Of The Art
Although the problem has been studied for over ten

years, to date existing solutions are far from usable. There
is some pioneering and inspiring work that aims to decrease
information leakage. Matsumoto and Imai in [10], Wang
et. al. in [25] , and Matsumoto in [11] proposed solutions
based on vector computation. Hopper et. al. in [4] proposed
a scheme based on a conjectured hard problem—learning
parity in the presence of noise. One major downside of this
work is that the required user computation is too difficult to
perform without an auxiliary device. For instance, it is re-
ported only 10% of users can handle the approach in [4]. In
an attempt to increase the secret space, in [23], Weinshall
et. al. propose a scheme in which a user selects between
100 and 200 pictures from a set of 20,000 pictures as the
one-time secret that is recognized for subsequent authenti-
cation sessions. However, this approach requires approxi-
mately three months of training time to remember such a
large amount of information. In 2006, Weinshall proposed
an interesting scheme in [24]. In this solution, a user mem-
orizes 30 pictures out of 80 pictures as the secret. During
one round for an authentication session, the server randomly
displays some pictures on the screen in a tabular form. Ac-
cording to the positions of the pictures on the table, the user
follows a rigorous protocol to discover a number, which is
the password. The process continues over multiple rounds
before the user is successfully authenticated. Two days of
training is required to memorize the secret pictures and get
familiar with the authentication procedure. In a subsequent
work [2], it was shown that under SAT attack, the secret
memorized in [24] has to be renewed after around six au-
thentication sessions.

It is worthwhile to note that the schemes proposed in [8],
[17], [26] and [27] against shoulder surfing attack can also
be used against our attack model. However, these schemes
overlooked SAT attacks in their designs.

1.4 Our Contributions
We design a new authentication scheme called Predicate-

based Authentication Services (PAS) following the second
aforementioned approach—increasing the secret space—to
delay disclosure of the secret.

PAS balances security and user-friendliness by introduc-
ing a new element into the authentication scheme design,
namely, predicates. A predicate typically is a verb phrase

434434

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



template that can be defined: (a) as a property of certain
objects, or (b) as a relationship among objects, or (c) as a
value quantifying certain properties of the object as repre-
sented by the variables in the predicate. In PAS, the objects
are characters, and the predicates encompass all three defi-
nitions.

In the paper, we show our PAS scheme can achieve a
desired level of security against powerful passive adver-
saries. We also validate the user-friendliness and system-
friendliness of our PAS scheme by building a prototype sys-
tem and carrying out real user experiments. The experimen-
tal results show that PAS can be handled by all recruited
users. And it requires no specific training time and takes
a user less than 10 minutes on average to learn and pre-
pare. This demonstrates PAS has much greater usability
compared with existing solutions under the same problem
setting. The desired features of PAS make it a candidate for
a human authentication scheme that can be rapidly adopted
against powerful passive adversaries for use in untrustwor-
thy environments.

The rest of our paper is organized as follows. Section
2 presents PAS working procedure and its design details.
Section 3 presents an extended PAS scheme. Sections 4
presents theoretical analysis and numeric results. Section
5 presents our prototype implementation and usability vali-
dation, followed by conclusions in Section 6.

2 Predicate-based Authentication Service
In this section, we first discuss the key concepts in the

PAS scheme: secrets and predicates. We then illustrate the
whole authentication process via an example, followed by a
detailed design of the PAS scheme.

2.1 Secrets and Predicates

In the PAS scheme, the secrets are what a prover P (i.e.,
a user) shares with a verifier V (i.e., the PAS server) dur-
ing the registration stage. In particular, P shares two se-
crets with V . Each secret consists of two parts: an integer
that will act as the cell index and a string called the secret

word. For example, two secrets could be “23 sente” and “41
logig”.

In the PAS scheme, predicates are generated from the
secrets. Before P attempts to login, V will prompt for an
integer I asking P to use the Ith character in the two secret
words to generate two predicates. Suppose I = 15 and the
secrets are the same as those above. P can construct two
predicates, that are, “23e” and “41g”, in which “e” is the
15th character in the first secret word “sente” (characters in
words are counted in a “looped” way) and “g” is the 15th

character in the second secret word “logig”. The interpre-
tations of these two predicates are “there is a character ‘e’
in cell (2, 3)” and “there is a character ‘e’ in cell (4, 1)”,
respectively. To sum up, the secrets are what P memorizes
initially. For each login session, P generates two predicates

Figure 1. Two challenge tables in a round (shrunk screenshot).

based on the value of I and the secrets, and then use them to
login. The login process is detailed in the following section.

The key difference between the PAS scheme and tradi-
tional password-based schemes lies in the separation be-
tween secrets and predicates. In traditional password-based
schemes, there is no concept of predicates, and the secrets

themselves are used directly in the login process. Clearly,
such schemes are vulnerable under powerful passive adver-
saries. In PAS, the predicates derived from the secrets are
further hidden (detailed mechanisms will be presented later)
and can vary from session to session.

2.2 A Login Example

In this section, we will give an example to illustrate the
whole login process. We use the same example above, in
which two secrets are “23 sente” and “41 logig”. After be-
ing given I = 15 by V at the start of the login session, P
constructs two predicates “23e” and “41g”. Authentication
in PAS takes several rounds. In the following, we discuss
the process in one particular authentication round.

For each round, V presents two challenge tables, as
shown in Fig. 1, and one response table, as shown in Fig. 2.
P first checks if the first predicate “23e” holds or not in two
challenge tables. Noticing there is a character “e” in cell
(2,3) of both challenge tables (case insensitive), P memo-
rizes “Yes Yes” for the first predicate. Then, P conducts the
same lookup process for the second predicate “41g”. Since
there is a character “g” in cell (4,1) of the first challenge ta-
ble, but there is no character “g” in cell (4,1) of the second
challenge table, P gets “Yes No” for the second predicate.
Based on what P memorizes above (“Yes Yes” and “Yes
No”), the response can be obtained in the response table
with “Yes Yes” as the row index and “Yes No” as the col-
umn index, which is “RM” in this example. After typing the
response, the user is led to the next round.

Such process is repeated for each round. In the differ-
ent rounds of a session, the two predicates used by P are
not changed while both challenge tables and response table
provided by V will change. P can successfully login only
if P has provided the correct responses for all the rounds in

435435

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



Figure 2. A response table (shrunk screenshot).

the session.

2.3 PAS Design Details

2.3.1 Challenge Table Design
In each round of an authentication session, � challenge ta-
bles are generated by V and sent to P . We first show how
these challenge tables are constructed, and then show how
the challenge table number � is decided.

All � challenge tables are of the same size with m rows
and n columns. Thus, there are total M = m × n cells in
each challenge table. Each cell in the tables is filled with
a certain number of characters. Let H denote the set of all
possible characters that can be put into the cell. Let H ′ de-
note the set of characters contained in one cell (H ′ ⊆ H).
All characters in H ′ are unique and randomly chosen from
H . We denote the maximum value of |H ′| (|A| denotes the
cardinality of a set A) by τ . The value of τ , i.e., the max-
imum number of characters shown in each cell, is decided
by

(τ − 1)/|H| < 0.5 ≤ τ/|H|. (1)

In the above equation, the left-hand side is the probability
that one predicate evaluates to TRUE when there are τ − 1
distinct characters in each cell. Similarly, the right-hand
side is the probability that such a predicate evaluates to
TRUE when there are τ distinct characters in each cell. For
each cell, V will fill τ distinct characters in it with certain
probability β, or fill τ − 1 distinct characters in it with cer-
tain probability 1 − β. Using τ and |H|, the value of β can
be obtained from the following equation

βτ/|H| + (1 − β)(τ − 1)/|H| = 0.5. (2)

Such a value of β can guarantee that a predicate evaluates
to TRUE with probability 0.5. By manipulating the above
equation, we have

β = |H|/2 − τ + 1. (3)

The value of β will not change after having been computed
as long as the values of τ and |H| are not changed. When
generating the challenge tables, V first generates a random
number r for each cell, which is uniformly distributed over
the range [0, 1]. If r < β, V randomly selects τ different
characters from H and puts them into the cell. Otherwise,
V selects τ −1 characters. Each cell is filled independently.
After filling all cells in all � tables, V sends these tables to

P . In the example shown in Fig. 1, the set of all possible
symbols is H = {A, · · · , Z} with |H| = 26. We then have
τ = 13 and then from (3) we have β = 1. That is, there
are always 13 different characters filled in each cell. We
comment that challenge tables can be generated by incorpo-
rating the CAPTCHA technology to defeat attackers’ bots
and force attackers to extensively involve human beings for
visually interpreting them.

Note that the construction approach described above
does not take any content information of predicates as input.
This allows the challenge table construction to be indepen-
dent of the user identity and his secret shared with V . Thus,
the attacker cannot differentiate the secrets of two users by
observing their challenge tables. Furthermore, the challenge
tables constructed by this way have a property stated as fol-
lows. Let the predicate used for each session define a ran-
dom variable S, and let the result from table lookup define
a random variable A. Then we have the following Theorem
2.1, which states that, even the adversary knows the answer
of a table lookup, he is not able to tell whether this answer
is obtained by a random guess or by applying any predicate.
We omit its proof due to space limitations.

Theorem 2.1 In the PAS scheme, for any predicate s,

Pr{A = Yes|S = s} = Pr{A = Yes} = 1/2. (4)

We now introduce references that can help decide the
value of �, the number of challenge tables shown per round.
The value of � is decided by the capacity of human visual
short term memory. When there are p predicates, then each
table will generate p answers, each of which is a “Yes” or
“No”. Consider each such answer as a symbol. There are
totally p� symbols that should be memorized by P in one
round before looking up the response table. In psychology,
Miller [9] shows that people’s average short-term memory
capacity is 5–9 symbols. By observing neural activity, Vo-
gel and Machizawa in [22] show in 2004 that the effective
short term memory can be around 4 symbols for a average
people. These studies are valuable when we design our PAS
system to achieve a good usability. In our prototype system,
we use p = � = 2.

2.3.2 Response Table Design
In each round, one response table is generated by V and
sent to P. Each cell in the table, containing a typeable re-
sponse, is indexed by sequences of b1b2 . . . b�, where each
bi is a “Yes” or “No” and � is the number of challenge ta-
bles in each round. The assignment of “Yes” or “No” for bi

indicates whether or not one predicate is satisfied in chal-
lenge table i (1 ≤ i ≤ �). If there are p pre-shared secrets,
i.e., p predicates will be generated, then this table will be
of p dimensions. That is, each cell, and thus the response,
will be indexed by p sequences. Fig. 2 shows an exam-
ple where p = 2. We comment that showing a table with
more than two dimensions is achievable, e.g., a Flash file

436436

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



can show a three-dimensional table by automatically show-
ing two-dimensional subtables in it.

The response table is carefully designed to prevent possi-
ble information leakage. First, it prevents adversaries from
obtaining the exact value of b1b2 . . . b� after having observed
the input responses. In PAS, there are 2p� cells in one re-
sponse table. The table is filled by using only 2� responses.
It implies that there are 2(p−1)� possible ways to index one
single response in PAS. Thus, the reverse mapping, i.e.,
from a response to sequences of b1b2 . . . b�, will have multi-
ple choices. Second, it prevents frequency skew of appear-
ance of each response. In the PAS scheme’s current design,
each response appears once and only once in each dimen-
sion. For example, when p = 2 as shown in Fig. 2, the ver-
ifier V fills 2� different strings into this table in such a way
that the same string does not appear in any single row or col-
umn twice. We state our uniformness property in the follow-
ing theorem. Suppose there is a probability distribution on
the response space R. Thus the response defines a random
variable R. We denote the probability that the response is r
by Pr{R = r}. Similarly, we assume the predicates used
for one authentication session, may follow certain probabil-
ity distribution, which is decided by the pre-shared secret
between P and V . Let the predicate also define a random
variable S. We denote the probability that predicate s is cho-
sen by Pr{S = s}.
Theorem 2.2 In the PAS scheme, for any response r ∈ R
and any predicate s,

Pr{R = r|S = s} = Pr{R = r} = 1/|R|. (5)

We omit its proof due to space limitations. In Theorem
2.2, the first part of the equation states that the probabil-
ity that r is the response, given any s as the predicate, is
equal to the probability that r is the response. That is, the
probability distribution of the response is independent of the
chosen secrets/predicates. Thus, the attacker cannot infer
any information about the secret of prover P by only ob-
serving the probability distribution of P ’s responses. The
second equation in Theorem 2.2 states that every possible
response occurs with the same probability in PAS. There-
fore, there is no skew in the response distribution that ad-
versaries can exploit. Third, the response table prevents
them from taking advantage of correlation of response lo-
cations in the response table. Correlation of response lo-
cations can result in attacks with low computational com-
plexity. In the PAS scheme, the locations of responses in
the response table are randomly generated for each round
such that no fixed correlation can be obtained over rounds
by adversaries. Technically, it can be done by two steps. In
the first step, let each cell with the same sum of p indexes
have the same response. In the second step, randomly shuf-
fle this p dimension-wise. For example, when p = 2, we
have a two dimensional response table. This table can be
generated by first filling the same response into cells with

the same value of (i + j) mod 2� where i and j are row and
column indices respectively, and then shuffling the columns
and rows randomly. Finally, the response table prevents the
random guessing attack in the response field for each ses-
sion. The probability for successful random guess is 1/2�nr

that should be small enough where nr is the number of
rounds in one session.

Response tables are generated by incorporating the
CAPTCHA technology. Any type of CAPTCHA, e.g., char-
acter recognition based or image recognition based, can
be adopted as long as the corresponding responses are ty-
peable.

2.3.3 Secret and Predicate Design
The predicate in the PAS scheme takes form of (u, v, h),
where u and v decide the cell position and h denotes a char-
acter. The values of u and v are decided by the size of the
challenge tables. To decide the value of character h, in each
authentication session, one index I will be generated by V
and sent to P , indicating which character in the secret words
will be used to construct the predicates. Each predicate in-
dex I can only be used for a limited number of sessions that
end up with “login successful,” due to inevitable entropy
decrement. The value of this number, denoted by tmax, is
decided by a variety of system parameters. We defer the
expression of tmax to Section 4.

In the PAS scheme, the predicate is interpreted as “there
is one character h in a cell indexed by row u and column v.”
This interpretation is based on the property of a cell with
fixed location. Compared to other options that may involve
relative positions like “there are two neighboring cells con-
taining character A and B respectively,” the current design
is preferred. It provides the convenience for users to check
the satisfaction of predicates efficiently. Instead of looking
though all the cells in the challenge table, users now can
quickly tell the results after they get familiar with the loca-
tions of cells they remember.

System friendliness is also considered in our current PAS
predicate design, where the objects chosen are based on
characters. Although general multimedia objects are possi-
ble, the characters are generally more light-weight in terms
of manipulation, storage and delivery.

In our previous example, the secret word memorized is
“sente” and “logig”. In fact, a secret word can be con-
structed in any way as long as the user is comfortable memo-
rizing it without compromising its security. There are plenty
of materials online teaching people how to choose a good
password that satisfies the long term memory and security.
One possible way is to create new words that can be eas-
ily memorized. For example, the secret word “sentenceyz”,
which has 10 characters, is constructed by concatenating an
English word “sentence” with a short character sequence
“yz”. Another possible way to construct a secret word is by
interleaving two easily memorized character sequences. For
example, the secret word “laobgcidce”, which also has 10

437437

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



characters, is constructed by interleaving an English word
“logic” and a short character sequence “abcde”.

3 The Extended PAS
In the above section, we illustrated the whole login pro-

cess in our PAS system via an example, and then presented
the design details for each component in PAS. We comment
that, the various facets of the PAS scheme could be modi-
fied to meet the different demands on security and/ or user-
friendliness. In this section, we briefly introduce the ex-
tended PAS scheme.

The most important extension is on predicate construc-
tion. In our previous example, each predicate has an atomic
term like “there is a particular character in a certain cell”. In
an extended PAS scheme, a predicate can contain multiple
atomic terms connected with ORs (“∨”s). Let the number
of terms be denoted by k. A generalized predicate can take
the form “(u1, v1, h1) ∨ (u2, v2, h2) ∨ · · · ∨ (uk, vk, hk)”,
where ui and vi (1 ≤ i ≤ k) are cell indices and hi

(1 ≤ i ≤ k) is a character. A generalized secret then takes
the form as “u1, v1, u2, v2 . . . , uk, vk, S[1]S[2] . . . S[len]”,
where S[i] (1 ≤ i ≤ len) denotes the ith character in
the secret word. At the start of every session, k predi-
cate indices, Ii (1 ≤ i ≤ k), will be generated by V and
sent to P . For example, P memorizes “2345 sente”, where
u1 = 2, v1 = 3, u2 = 4, v2 = 5 and len = 5. At the start
of one session, two predicate indices I1 = 1 and I2 = 2 are
generated. P then constructs a predicate as “(23s) ∨ (45e)”,
and then uses this predicate to check the challenge tables.
Note the number of terms in each predicate k can be ad-
justed by different users with different memory capabilities.

In the extended PAS scheme, although we can replace
any of the ORs in the above predicate by ANDs (“∧”s)
and add any number of parentheses necessary to generate
other valid predicates, we recommend using ORs as above.
The reason is that using ORs can minimize the number
of characters shown in each cell. This makes our scheme
more user-friendly, since the number of characters shown
on-screen will decrease, as will be the time spent on authen-
tication. This is summarized in the following theorem. Its
proof is omitted due to space limitations.

Theorem 3.1 In the extended PAS scheme, τ is minimal

when all the logical connectives in the predicate are ORs.

In the extended PAS scheme, k predicate indices will be
generated by V and sent to P in each authentication ses-
sion. They indicate the characters in the secret words that
will be used to construct the predicates. These k indices are
denoted by Ii (1 ≤ i ≤ k). To generate Ii, two requirements
must be satisfied. First, all k indices must be distinct for one
round. This requirement is to avoid unnecessarily shrinking
the predicate size for each session. Second, each predicate
index, i.e., Ii, can only be used for a limited number of ses-
sions that end up with “login successful”, due to inevitable

entropy decrease. The expression of this number, denoted
by tmax, will be provided in Section 4. When designing the
challenge tables for the extended PAS scheme, we decide
the value of τ following

1 −
(

1 − τ − 1
|H|

)k

< 0.5 ≤ 1 −
(

1 − τ

|H|
)k

. (6)

Using τ , k and |H|, the threshold value β can be obtained
in the V side from the following equation:

1 −
(

1 −
(

β
τ

|H| + (1 − β)
τ − 1
|H|

))k

= 0.5. (7)

Such a value of β can guarantee that a predicate evaluates
to TRUE with probability 0.5. By reforming the above equa-
tion, we have,

β = |H|
(

1 −
(

1
2

) 1
k

)
− τ + 1. (8)

When k = 1, equations (6), (7) and (8) are the same as
equations (1), (2) and (3), respectively. Finally, we note that
Theorems 2.1 and Theorem 2.2 still hold for the extended
PAS scheme.

4 Security Analysis
4.1 Preliminaries

We consider three types of attacks: brute force attack,
random guessing attack and SAT attack. These attacks may
have different attack targets. There are three types of attack
targets in PAS: secret, predicates and responses. The defini-
tions of attacks and their relationship with the attack targets
are detailed below.

− Brute force attack: The attacker first obtains a set of
all possible secrets, and then tries them one by one. Such an
attack does not take predicates or responses as attack target,
since they vary in different rounds.

− Random guessing attack: This attack randomly tries
one possible secret, predicate or response in an authentica-
tion session. All three types of attack targets apply here.

− SAT attack: As mentioned in Section 1, SAT attack
is the main threat that efficiently takes advantage of infor-
mation leakage to reveal the secret. Hence, in our analysis,
we assume that the SAT attacker can perfectly use knowl-
edge from previously-observed authentication sessions. In
PAS, only two types of attack targets, namely secrets and
predicates, apply to this attack.

In order to evaluate the security and user-friendliness of
our PAS scheme, we introduce two metrics here.

− Cardinality of attack set: This metric is denoted by
|S|. S consists of all possible values of a target. It can be a
set of secrets, predicates or responses. There are no leads to
further narrow down S except for trying possible responses.

438438

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



High |S| is desired. |S| = 1 implies the target has finally
been revealed.

− Average number of successful authentication session

per character in the secret words: This metric is denoted
by T . It is defined as the average number of successful au-
thentication sessions that can be used per character in the
secret words, given that the security requirement is satisfied.
T reflects the user-friendliness in terms of renewal period.
The longer the average usage time per character, the less
frequently the user has to renew his secrets, and hence the
higher the user-friendliness.

4.2 Attack Set Cardinality

In this section, we provide the final expressions in Ta-
ble 1. Derivations are omitted due to space limitations. We
comment that the only attack taking response as the target
in PAS is random guessing as the response tables vary in
each round. We also comment that the expressions of |S|
for SAT attack are obtained right before secret renewal. This
indicates the PAS scheme masks the real predicates used in
each round very well. Even a SAT attack that makes per-
fect use of information obtained from previous observation
can only reveal a large set of possible predicates, and hence
the secret, right before renewal. By right before renewal,
we mean the SAT attack has observed all successful authen-
tication sessions the user can have, i.e., the knowledge it
has achieves maximum. The cardinality of S of secrets and
predicates under SAT attack is the smallest in Table 1.

4.3 Average Usage Time per Character

In this section, we will derive the average usage time per
character, T . Denote tmax as the maximum number of au-
thentication sessions the same predicate indices can be used
under security requirement, the expression of T can be given
by T = tmax/pk. This is because the predicate indices used
for one authentication session contains p · k terms, each of
which consists of one character. In the following, we show
how to obtain tmax.

As the SAT attack is the most effective one targeting
secrets and predicates, tmax is determined by tmax =
min{tsec

max, tpre
max}, where tsec

max is the maximum value of t
satisfying security requirement when secrets are attack tar-
get, and tpre

max is the maximum value of t satisfying security
requirement when predicates are the attack target.

Let Sr
min denote the desired secure requirement (in terms

of attack set cardinality) against temporary impersonation
by guessing responses. Let Sp

min denote the desired secure
requirement (in terms of attack set cardinality) against per-
manent impersonation by revealing preset secret. Let St

min

denote the desired secure requirement (in terms of attack
set cardinality) against temporary impersonation by reveal-
ing predicates. Sp

min and St
min indicate the desired space of

possible secrets and predicates under the perfect SAT attack
right before the renewal.

Since tsec
max is the maximum value of t such that security

requirement Sp
min is satisfied under SAT attack on secret,

its expression can be given by reforming the corresponding
formulas in Table 1 as below,

Sp
min ≤ [M

(
1 − (1 − 1

M
)Nsec

min
) len

k ]pk|H|p·len,

where Nsec
min = kp(M |H|)kp

(k!)p · 2−�nrtsec
max .

Similarly, expression of tpre
max can be given by reforming

corresponding formulas in Table 1 as below,

St
min ≤

{
[M

(
1 − (1 − 1

M
)Npre

min

) len
k ]|H|

}kp

/(k!)p,

where Npre
min = kp(M |H|)kp

(k!)p · 2−�nrtpre
max .

4.4 Numerical Results

In this section, we first give the cardinality of the attack
set S in Table 1 under default parameters. We then evaluate
the sensitivity of average usage time per character T under
various parameters, and point out the working space of the
parameters that can achieve required security. Finally we
compare our PAS scheme with the scheme in [24].

We first consider the brute force attack. When the at-
tack target is the secret, the cardinality of S is 2103 un-
der default parameters where M = 5 × 5 = 25, H =
{A,B, · · · , Z} (|H| = 26), p = 2, len = 10 and k = 1. It
is larger than that of the cryptographically strong 260 ∼ 2100

[14]. Note that the size against such attacks can be relaxed
to be 230 when CAPTCHA is incorporated [8], and PAS
actually gives results only after multiple rounds. Our PAS
scheme built under the above setting is clearly secure.

We now consider the random guessing attack. Since
the expressions for |S| when secret or predicates become
the attack target under such attack are the same as those
under brute force attack. We only discuss the case when
responses are the attack target. Under default parameters
where nr = 5 and � = 2, the cardinality of S is 210. Con-
sidering in many applications the server can block the user
after certain number of continuous failed attempts (for in-
stance, in Chase Bank’s login system, the account will be
locked after authentication fails three consecutive times),
this set size is considered enough in many civilian appli-
cations. Higher security can be achieved via more rounds at
the cost of longer authentication time.

We then consider SAT attacks. The default value for t,
the number of sessions a predicate index can be used, is
two. Under default parameters, the cardinality of S is still
about 250 when secret are the attack target and still about
210 when predicates are the attack target, under a perfect
SAT attack right before renewal.

In the following, we will evaluate the sensitivity of av-
erage usage time per character T under various parameters,
and point out the working space of the parameters. In Fig.

439439

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



Table 1. Expressions of Attack Set Cardinality |S|
Secrets Predicates Responses

Brute Force Mpk|H|p·len N/A N/A

Random Guessing Mpk|H|p·len

(
M|H|

)kp

(k!)p 2�nr

SAT [M
(
1 − (1 − 1

M
)N

) len
k ]pk|H|p·len,

[(
M(1 − (1 − 1

M
)N )

len
k

)
|H|

]kp

/(k!)p, N/A

where N = kp(M|H|)kp

(k!)p · 2−�nrt where N = kp(M|H|)kp

(k!)p · 2−�nrt

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

nrl

T

Figure 3. The shaded area shows the working space of the PAS

scheme, where the parameter settings of the points on the dot-

ted line are M = 25, H = {A, · · · , Z}, p = 2, k =

1, len = 10. The minimum secure requirements are Sr
min =

210, St
min = 210 and Sp

min = 230.

3, although the value of nr� should take integers in imple-
mentation, here we include fractional values for illustration
purpose. The dashed line illustrates the tradeoff between
average usage time per character (T ) and the number of
challenge tables in each authentication session (nr�), given
that the required security level against SAT attack is satis-
fied. Given pre-shared secret space, the tradeoff stems from
the fact that more tables contributing to the response will
lead to more information leaking that can be taken advan-
tage of by SAT attacks. Thus, smaller value of nr� im-
plies each character can be used for more sessions. How-
ever, preventing information leakage is insufficient to build
a strong system. Less information entropy obtained by V
for an authentication session (e.g., smaller value of nr�) in-
creases the risk under random guessing attack. Hence, the
working space, which is shaded in Fig. 3, is decided by
considering both. The points in the shaded area satisfy the
security requirement, but may represent different parameter
settings. Specifically, any point in the area above the dashed
curve represents a parameter setting that is secure against
SAT attack, while any point to the right of the line decided
by nr� = 10 represents a setting that is safe against ran-
dom guess attack. Note that under default parameters where
nr� = 10, the number of successful sessions per character
is above 0.5. Thus, with p = 2 and len = 10, the user
can securely use PAS to login for at least p · len · 0.5 = 10
successful sessions before renewal under the same powerful
passive adversary. That is, the user can securely use PAS to

login for at least 10 times in exactly the same computer that
has been compromised.

5 Prototype System and Usability Validation
5.1 Prototype System

We implemented a prototype system of PAS and carried
out real user experiments to check usability and to explore
the ways to improve it. 1

We set up a web server with Apache Tomcat 6.0 on a
PC with a 2.66 GHz Intel Pentium Core Duo CPU and 2
GB RAM. The web pages and authentication scheme were
developed with JSP (JavaServer Pages) 2.1 and JDK (Java
SE Development Kit) 6.0. In our prototype, the number of
secrets p = 2, the number of terms in a predicate k = 1, the
number of rounds in one session is adjustable from nr = 2
to nr = 5, the number of challenge tables in each round
� = 2, the number of rows in each challenge table m =
5, the number of columns in each challenge table n = 5,
character set H = {A, . . . , Z} and the number of characters
in each cell τ = 13. Figs. 1 and 2 show screenshots of our
prototype. Note that the characters shown in each cell are
sorted, and we color each cell at different location with a
unique background color. This color will not change with
tables, rounds and sessions. Thus, PAS users then are able
to quickly pinpoint the cell where they look up the challenge
tables.

5.2 Usability Validation

We recruited 92 participants with 8 between ages 15–
18, 62 between ages 18–39, 16 between ages 40–65 and 6
between ages 65–69. Each participant was asked to read the
How to Login page provided in our prototype before being
required to finish login attempts successfully at least once
for each round choice, i.e., at least one successful login for
nr = 2, 3, 4 and 5, respectively. The results of our real user
experiment validate that our PAS system has much better
overall usability than existing solutions in [4,10,11,23–25].

The experimental results show that PAS can be handled
by all recruited users. We report the average data over all
participants, since there is no salient difference in perfor-
mance among age groups. For a session with two rounds,
the average time for a successful login is 55.53 seconds;
with three rounds, 66.03 seconds; with four rounds, 75.86
seconds; with five rounds, 84.23 seconds. More details of

1Link: http://drtcl4.cse.ohio-state.edu/B/ .

440440

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



0 20 40 60 80 100
0

5

10

15
Histogram of Access Time of Two Rounds

N
um

be
r o

f P
ar

tic
ip

an
t

Used Time for Each Successful Login (in seconds)

Figure 4. Successful login time for two

rounds. Standard deviation: 20.34 .

0 20 40 60 80 100 120 140
0

5

10

15

20
Histogram of Access Time of Three Rounds

N
um

be
r o

f P
ar

tic
ip

an
t

Used Time for Each Successful Login (in seconds)

Figure 5. Successful login time for three

rounds. Standard deviation: 21.76 .

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20
Histogram of Access Time of Four Rounds

N
um

be
r o

f P
ar

tic
ip

an
t

Used Time for Each Successful Login (in seconds)

Figure 6. Successful login time for four

rounds. Standard deviation: 28.3 .

40 60 80 100 120 140 160 180 200 220 240
0

5

10

15
Histogram of Access Time of Five Rounds

N
um

be
r o

f P
ar

tic
ip

an
t

Used Time for Each Successful Login (in seconds)

Figure 7. Successful login time for five

rounds. Standard deviation: 27.0 .

< 1m 1m 2m 3m 4m 5m > 5m
0

5

10

15

20

25

30

35

40
Histogram of Preferred Login Time Limit

N
um

be
r o

f P
ar

tic
ip

an
t

Figure 8. Preferred upper bound of login

time in untrustworthy environments.

2 3 4 5
70

75

80

85

90

95

100
Success Ratio in Percentage

P
er

ce
nt

ag
e 

%

rounds

Figure 9. Login successful ratios for ses-

sions with different rounds.

login time distribution are presented in Figs. 4–7. It is un-
surprising that the time needed increases as the round num-
ber increases. One observation is that, in spite of 55.53 sec-
onds needed to finish first two rounds, only a small amount
of time around 10 seconds is needed to finish an extra round.
When the number of round increases from two to three, we
need extra 10.5 seconds on average; when the number of
round increases from three to four, we need extra 9.83 sec-
onds on average; when the number of round increases from
four to five, we need 8.37 seconds more on average. It
seems the first two rounds require more time to finish. In
fact, 55.53 seconds contains the time used for a user to fig-
ure out which character should be used at the beginning of
each session. Suppose each round costs around 10 seconds,
this “initialization” time of the user for each session then
can be expected to be around 35 seconds on average. Once
the characters are figured out, they will not change in all the
following rounds in a session. Since the cell locations are
also fixed (with a fixed and unique color in our prototype
system) in all the following rounds, the user will get used to
the procedure, i.e., locating the cell and telling if the char-
acter is shown, very quickly, and accomplish it faster with
more practice.

We surveyed the participants about the upper bound of
the login time they prefer in untrustworthy environments.
The results presented in Fig. 8 show that, although tradi-

tional password based authentication needs only several sec-
onds, it is acceptable for most people to extend login time
to several minutes in untrustworthy environments. We also
notice that very few people are willing to take more than 5
minutes to login. The results reflect the fact that most peo-
ple are willing to trade small amount of time for security,
and also validate the login time in PAS is acceptable.

The login successful ratios (number of sessions the par-
ticipants successfully logged in / total number of sessions
the participants tried) for authentication sessions with dif-
ferent rounds are shown in Fig. 9, respectively. We no-
tice there is a slightly decrement as the number of rounds in
a session increases. Overall, they are satisfactory with the
least successful ratio above 90%.

PAS does not need specific training time before login
process and easy to learn and use. 87 out of 92 (94.57%)
participants consider PAS easy to use.

6 Conclusions
In this paper, we introduce a new concept, the predicate,

based on which we provide the design of new authentica-
tion scheme called Predicate-based Authentication Service
(PAS) against powerful passive adversaries. Using analysis
and experiments on our prototype, we demonstrate that PAS
can balance security and usability. As such, PAS is a candi-
date for a human authentication scheme that can be rapidly

441441

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



adopted against powerful passive adversaries for use in un-
trustworthy environments.

In our research, however, we also found some limitations
on PAS. First, checking a predicate once generates only 1
bit information, yes or no. This potentially increases the
log in time to defend random guess attacks. One focus of
our ongoing research is to obtain multiple bits output for a
single and easy human operation by extending the concept
of predicate or integrating it into others. Second, we found
that from experiments that people are still prone to write the
secret words down to find the ith character. This brings the
concern on security. Furthermore, some participants con-
sider checking tables repeatedly is boring. In our ongoing
research, we are introducing images into predicate construc-
tion to further improve security and usability.

Acknowledgments
We thank anonymous reviewers for their constructive and

helpful comments.
This work is supported in part by the US National Sci-

ence Foundation (NSF) CAREER Award CCF-0546668, the
Army Research Office (ARO) under grant AMSRD-ACC-R
50521-CI. This research does not reflect the views of the
funding agencies.

References
[1] O. Goldreich, Foundations of Cryptography: Volume 1,

Cambridge University Press, 2001.
[2] P. Golle and D. Wagner, Cryptanalysis of a Cognitive

Authentication Scheme, in Proc. of IEEE Symposium on
Security and Privacy (S&P), 2007.

[3] N. Haller, Internet RFC 1760, in Proc. of Symposium
on Network and Distributed Systems Security (NDSS),
1994.

[4] N. J Hopper and M. Blum, Secure Human Identifica-

tion Protocols, in Proc. of The International Conference
on the Theory and Application of Cryptology and Infor-
mation Security (ASIACRYPT), 2001.

[5] http://world.std.com/ reinhold/diceware.html.

[6] http://pintday.org/advisories/misc/bwc-990420.html.

[7] http://www.news8.net/news/stories/1107/476003.html.

[8] S. Li and H. Y Shum, Secure Human Computer Identi-

fication against Peeping Attacks (SecHCI), Cryptology
ePrint Archive, Report 2005/268, 2005.

[9] G. Miller, The Magical Number Seven, Plus or Minus

Two: Some Limits on Our Capacity for Processing Infor-

mation, Psychological Review, vol 63, 1965.
[10] T. Matsumoto, Cryptographic Human Identification,

in Proc. of the 6th International Conference on Human
Computer Interaction (HCI International), 1995.

[11] T. Matsumoto, Human-Computer Cryptography: An

Attempt, in Proc. of ACM Conference on Computer and
Communications Security (CCS), 1996.

[12] F. Massacci and L. Marraro, Towards the Formal Ver-

ification of Ciphers: Logical Cryptanalyis of DES, in
Proc. of Federated Logic Conferences (FLOC), 1999.

[13] F. Massacci and L. Marraro, Logical Cryptanalysis as

a SAT Problem, Journal of Automated Reasoning, vol
24, 2000.

[14] A. J Menezes, etc., Handbook of Applied Cryptogra-

phy, CRC Press Series on Discrete Mathematics and Its
Applications, CRC Press, Inc., 1996.

[15] M. Mannan and P. Oorschot, Using a Personal De-

vice to Strengthen Password Authentication from an Un-

trusted Computer, Financial Cryptography and Data Se-
curity (FC’07), 2007.

[16] J. M McCune, A. Perrig, and M. K Reiter, Bump in

the Ether: A framework for securing sensitive user input,

USENIX Annual Technical Conference, 2006.
[17] S. Man , D. Hong, and M. Mathews, A Shouldersurf-

ing Resistant Graphical Password Scheme, in Proc. of
International Conference on Security and Management
(ICSM), 2003.

[18] McCune et al. Seeing-is-believing: Using camera

phones for human-verifiable authentication, IEEE Sym-
posium on Security and Privacy (S&P), 2005.

[19] B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing

prevention, In Financial Cryptography and Data Security
(FC), 2006.

[20] A. D Rubin, Independent One-time Passwords, Com-
puting Systems, 9(1), 1996.

[21] SAT solver competition 2007, http://www.cril.univ-

artois.fr/SAT07/results/globalbybench.php?idev=11

&idcat=61.

[22] E. Vogel and M. Machizawa, Neural Acitivity Pre-

dicts Individual Differences in Visual Working Memory

Capacity, Nature, 428, April, 2004.
[23] D. Weinshall and S. Kirkpatrick, Passwords Youll

Never Forget, but Cant Recall, in Proc. of ACM Con-
ference on Human Factors in Computing Systems (CHI),
2004.

[24] D. Weinshall, Cognitive Authentication Schemes Safe

Against Spyware, in Proc. of IEEE Symposium on Secu-
rity and Privacy (S&P), 2006.

[25] C. H Wang, T. Hwang, and J. J Tsai, On the Mat-

sumoto and Imai’s Human Identification Scheme, in Ad-
vances in Cryptology - Eurocrypt, vol 921, 1995.

[26] S. Wiedenbeck, J. Waters, L. Sobrado, and J. Birget,
Design and evaluation of a shoulder surfing resistant

graphical password scheme, in Proc. of the Working
Conference on Advanced Visual Interfaces, Italy, 2006.

[27] H. Zhao and X. Li, S3PAS: A Scalable Shoulder-

Surfing Resistant Textual-Graphical Password Authenti-

cation Scheme, in Proc. of 21st international Conference
on Advanced Information Networking and Applications
Wprkshops, 2007.

442442

Authorized licensed use limited to: University of Missouri System. Downloaded on April 6, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.


	PAS: Predicate-Based Authentication Services Against Powerful Passive Adversaries
	Recommended Citation

	PAS: predicate-based authentication services against powerful passive adversaries Computer Security Applications Conference

