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Model Reduction of Linear PDE Systems:
A Continuous Time Eigensystem Realization Algorithm

John R. Singler
Department of Mathematics and Statistics

Missouri University of Science and Technology
Rolla, MO 65409

Email: singlerj@mst.edu

Abstract— The Eigensystem Realization Algorithm (ERA)
is a well known system identification and model reduction
algorithm for discrete time systems. Recently, Ma, Ahuja, and
Rowley (Theoret. Comput. Fluid Dyn. 25(1) : 233-247, 2011)
showed that ERA is theoretically equivalent to the balanced
POD algorithm for model reduction of discrete time systems.
We propose an ERA for model reduction of continuous time
linear partial differential equation systems. The algorithm
differs from other existing approaches as it is based on a
direct approximation of the Hankel integral operator of the
system. We show that the algorithm produces accurate balanced
reduced order models for an example PDE system.

I. INTRODUCTION

Model reduction is important for many applications, in-
cluding design and real time implementation of feedback
control laws for complex systems. Balanced truncation is
a standard model reduction procedure for linear systems
of ordinary differential equations [1], [2]. For large-scale
systems, such as those arising from a spatial discretization of
a partial differential equation (PDE) system, standard model
reduction algorithms are no longer applicable.

Recent research has focused on the development and
analysis of balanced truncation model reduction algorithms
for large-scale systems. Many researchers are developing
new computational linear algebra techniques based on al-
gorithms for approximate solutions of large-scale matrix
Lyapunov equations and other approaches; see [3]–[5] and
the references therein. Another recent trend has been to
use snapshots of simulation data to construct approximate
balanced truncated reduced order models. Rowley proposed
the balanced POD algorithm for large-scale matrix systems in
[6]. The algorithm is related to earlier balanced truncation
algorithms proposed by Willcox and Peraire [7] and Lall,
Marsden, and Glavaški [8]. The balanced POD algorithm is
related to the method of snapshots for standard POD com-
putations [9], however there are now two separate datasets.

Recently, Ma, Ahuja, and Rowley showed [10] that the
balanced POD algorithm for finite dimensional discrete time
linear systems is theoretically identical to the Eigensystem
Realization Algorithm (ERA), a system identification method
(and also a model reduction algorithm) proposed by Juang
and Pappa in [11] (see also [12]). In [10], ERA is compared
to discrete time balanced POD for balanced model reduction
of a discrete time, spatially discretized, linearized fluid flow
PDE system. The authors note that ERA and balanced POD

produce very similar reduced order models, and that ERA
requires much less computational cost. On the other hand,
the authors discuss that balanced POD produces balancing
modes which can be used for model reduction of nonlinear
systems, and also balanced POD can be extended to treat
unstable systems; ERA is unable to produce the balancing
modes without computational cost similar to that of balanced
POD, and it is unknown if ERA can directly reduce unstable
systems (see [13] for indirect approaches). See [10] for more
details and references.

We note that the ERA has been primarily used for
identifying matrices in a discrete time model given certain
experimental data generated by the actual physical system.
In contrast, Ma, Ahuja, and Rowley in [10] used a large scale
model to generate specific simulation data and employ the
ERA to obtain a low order model.

In this work, we propose an Eigensystem Realization
Algorithm for approximate balanced truncation model re-
duction of continuous time linear systems. We consider a
general class of PDE systems. Our approach is based on
approximating the Hankel operator and exact expressions for
the balanced truncation of the continuous time linear system.
We do not use a transformation from the discrete time to the
continuous time systems.

The ERA has been considered for system identification of
continuous time systems [14], [15], e.g., by using a system
transformation from discrete time to continuous time. We do
not consider the system identification problem in which we
have (possibly noisy) experimental data and need to produce
a model of the physical system. Instead, we assume we have
a linear continuous time (PDE or large-scale) system and can
generate specific simulation data.

II. A MODEL PROBLEM

Before we develop the algorithm for a general PDE
system, we consider a simple example: a one dimensional
convection diffusion equation

wt(t, x) = µwxx(t, x)− κwx(t, x) + b(x)u(t),

with Dirichlet boundary conditions

w(t, 0) = 0, w(t, 1) = 0,

and initial condition

w(0, x) = w0(x).



System measurements are taken of the form

y(t) =

∫ 1

0

c(x)w(t, x) dx.

We assume the functions b(x) and c(x) are piecewise con-
stant; specifically, b(x) = b when b1 < x < b2 and c(x) = c
when c1 < x < c2, and both functions are zero otherwise.

This problem can be formulated as a continuous time
(infinite dimensional) linear system as follows. Let X be
the Hilbert space L2(0, 1) of square integrable functions
defined on the interval (0, 1) with standard inner product
(f, g) =

∫ 1

0
f(x)g(x) dx and norm ‖f‖ = (f, f)1/2. Define

the convection diffusion operator A : D(A) ⊂ X → X by

[Aw](x) = µwxx(x)− κwx(x),

Functions in D(A) are twice differentiable and satisfy the
above boundary conditions. Define B : R → X and C :
X → R by [Bu](x) = b(x)u and Cw = (w, c). In this way,
the PDE system can be written as the infinite dimensional
system

ẇ(t) = Aw(t) +Bu(t), w(0) = w0, y(t) = Cw(t),

where the dot denotes a time derivative. We note that many
other linear PDE systems can be written in a similar form.

We chose this simple example problem so that we can
easily check for convergence of the balanced truncated
reduced order model. As we discuss below, the error between
the original system and the reduced model is measured using
the transfer functions. For this convection diffusion system,
the transfer function can be found exactly and is given by
the infinite series (compare Proposition 4.1 in [16])

G(s) = C(sI −A)−1B

=

∞∑
n=1

b c

s− λn

∫ c2

c1

fn(x) dx

∫ b2

b1

gn(x) dx,

where

λn = −µn2π2 − κ2/4µ,
fn(x) =

√
2 eκx/2µ sin(nπx),

gn(x) =
√

2 e−κx/2µ sin(nπx).

III. REPRESENTATIONS OF THE HANKEL OPERATOR AND
THE BALANCED REALIZATION

A. Assumptions and Notation

To begin, we consider the general framework of well
posed linear systems [17]. Later, we restrict our attention to
more specific classes of infinite dimensional systems in order
to guarantee that the balanced truncation model reduction
problem has a solution.

Let X be a real separable Hilbert space with inner product
(·, ·) and corresponding norm ‖·‖ = (·, ·)1/2. We assume the
operator A : D(A) ⊂ X → X generates an exponentially
stable C0-semigroup eAt over X . Let X−1 be the completion
of X with respect to the norm ‖x‖−1 = ‖A−1x‖, and
let X1 = D(A) with the graph norm ‖x‖1 = ‖Ax‖. We
have the continuous dense inclusions X1 ⊂ X ⊂ X−1

and the semigroup restricts to a semigroup on X1 and has
an extension on X−1. We still denote the restriction and
extension by eAt.

Assume the operators B : Rm → X−1 and C : X1 → Rp

are both bounded. If B ∈ L(Rm, X) and C ∈ L(X,Rp),
then B and C are called bounded; otherwise, they are called
unbounded.

Furthermore, assume B and C are admissible control and
observation operators for eAt (see [17]), so that eAtB ∈
L(Rm, X) and CeAt ∈ L(X,Rp). The system is well posed
if ‖CeAt‖ and ‖eAtB‖ are both locally square integrable
functions over 0 < t <∞ [18, Theorem 1].

Define the impulse response h ∈ L1
loc(0,∞;Rp×m) of a

well posed system by h(t) = CeAtB.
We also require the standard Banach spaces Lp(0,∞;Rd),

1 ≤ p <∞, of all functions x with finite norm

‖x‖Lp(0,∞;Rd) =

(∫ ∞
0

‖x(t)‖p dt
)1/p

.

For p = 2, this is a Hilbert space with inner product

(x, y)L2(0,∞;Rd) =

∫ ∞
0

(
x(t), y(t)

)
dt,

where (·, ·) and ‖ · ‖ denote the standard Euclidean vector
inner product and norm on Rd. We do not use subscripts on
inner products and norms whenever the space is understood
by the context.

B. Balanced Truncation

We provide a brief overview of balanced truncation for
infinite dimensional systems. Details of the theory can be
found in [19], [20]; see also the review in [21].

Balanced model reduction finds a low order system

ȧ(t) = Ara(t) +Bru(t), yr(t) = Cra(t),

that is an approximation to the stable system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

in the sense that the input-to-output error is small. The
error between the systems is measured by comparing the
transfer functions G(s) = C̃(sI − A)−1B and Gr(s) =
Cr(sIr−Ar)−1Br of the original and reduced systems.1 The
balanced truncated system is usually found by first balancing
the system and then truncating. Specifically, there is another
system (Ab, Bb, Cb), called a balanced realization, which has
the same transfer function G as the original system, and the
controllability and observability Gramians ZbB and ZbC of the
balanced system are equal and diagonal. The Gramians are
the solutions of the Lyapunov equations

AbZbB + ZbB(Ab)∗ +Bb(Bb)∗ = 0,

(Ab)∗ZbC + ZbCA
b + (Cb)∗Cb = 0,

and the diagonal entries of the Gramians, σ1 ≥ σ2 ≥ · · · ≥ 0,
are the Hankel singular values of the system. The r state

1The operator C̃ is an appropriate extension of C [17, Theorem 5.6.5].
In certain situations, we can take C instead of C̃.



low order system (Ar, Br, Cr) is found by truncating the
balanced realization (Ab, Bb, Cb).

The transfer function error between the original system
and the balanced truncation is bounded by twice the ne-
glected Hankel singular values:

‖G−Gr‖∞ ≤ 2
∑
k>r

σk, (1)

where the H∞ norm is the largest singular value of the
function evaluated along the imaginary axis. Therefore, if the
Hankel singular values decay rapidly, then the approximation
error can be made small for a small value of r.

For the error bound to be meaningful, the sum of the
Hankel singular values must be finite. When A generates
an exponentially stable C0-semigroup, there are three main
classes of PDE systems (A,B,C) that are known to yield a
finite sum:

1) The operators B and C are bounded [22]
2) The C0-semigroup eAt is analytic, B ∈ L(Rm, Xβ),

C ∈ L(Xα,R
p), and α− β < 1 [22], [23]

3) The C0-semigroup eAt is of class Dp for some p ≥ 1,
B ∈ L(Rm, Xβ), C ∈ L(Xα,R

p), and p (α− β) < 1
[18]

The analytic case covers many parabolic PDE systems, and
the Dp case covers certain second order PDE systems with
weak damping. In both of these cases, the spaces Xα are
the interpolation spaces associated with A and therefore the
operators B and C are allowed to have some degree of un-
boundedness. See the above references for more information
and examples.

C. The Hankel Operator and the Balanced Realization

For any h in L1(0,∞;Rp×m), define the Hankel operator
H ∈ L(L2(0,∞;Rm), L2(0,∞;Rp)) by

[Hu](t) =

∫ ∞
0

h(t+ s)u(s) ds. (2)

The Hankel operator is known to be compact [24, Lemma
8.2.4] and therefore there exist singular values σ1 ≥ σ2 ≥
· · · ≥ 0 (with repetitions according to multiplicity) and
corresponding singular vectors {fk} ⊂ L2(0,∞;Rm) and
{gk} ⊂ L2(0,∞;Rp) satisfying

Hfk = σkgk, H∗gk = σkfk.

The singular vectors are also orthonormal with respect to the
L2 inner product, i.e.,

(fj , fk)L2(0,∞;Rm) =

∫ ∞
0

fTj (t) fk(t) dt = δjk,

(gj , gk)L2(0,∞;Rp) =

∫ ∞
0

gTj (t) gk(t) dt = δjk.

When h is the impulse response of the system (A,B,C),
i.e., h(t) = CeAtB, the Hankel singular values and singular
vectors can be used to form the balanced realization of the
system. If h ∈ L2∩L1, then the Hankel singular vectors are
known to be continuous for 0 ≤ t ≤ ∞ and differentiable

with derivatives in L1 [19], [20]. The balanced realization is
given as follows:

Theorem 1 ( [19], [20]): If h ∈ L2 ∩ L1(0,∞;Rp×m)
and the Hankel singular values are distinct, then a balanced
realization (Ab, Bb, Cb) is given by

Abij =
(σj
σi

)1/2 ∫ ∞
0

gTi (t) ġj(t) dt,

=
(σi
σj

)1/2 ∫ ∞
0

ḟTi (t) fj(t) dt, (3)

Bb = [σ
1/2
1 f1(0), σ

1/2
2 f2(0), . . .]T , (4)

Cb = [σ
1/2
1 g1(0), σ

1/2
2 g2(0), . . .], (5)

and Ab can also be expressed as

Abij =
(σiσj)

1
2

σ2
i − σ2

j

(
σjf

T
i (0)fj(0)− σigTi (0)gj(0)

)
, i 6= j,

(6)

Abii = −1

2
fTi (0)fi(0) = −1

2
gTi (0)gi(0). (7)

The representation (3)-(5) was proved by Curtain and
Glover in [19]. A similar formula to the alternate represen-
tation of Ab given in (6)-(7) was proved by Glover, Curtain,
and Partington in [20, proof of Lemma 4.3] for the output
normal realization; their argument is easily modified for the
standard balanced realization to give the above result.

This result has recently been extended by Guiver and
Opmeer [25] to the case where h is only in L1. (They also
prove that if the Hankel operator is nuclear, then it must take
the form of the integral operator (2) with h ∈ L1.)

IV. CONTINUOUS TIME EIGENSYSTEM REALIZATION
ALGORITHM

We present a continuous time Eigensystem Realization
Algorithm (ERA) that approximates the singular values and
singular vectors of the Hankel operator and uses these
quantities to approximate the balanced truncated realization
of Theorem 1. As far as the author is aware, the results in
Theorem 1 have not been previously used to approximate
reduced order models of PDE systems.

Since the continuous time algorithm is similar in nature to
the discrete time version, we first provide a brief overview of
this algorithm. For a stable discrete time system x(k+ 1) =
Ax(k)+Bu(k), y(k) = Cx(k), the ERA for model reduction
roughly proceeds as follows [11], [12]:

1) Approximate the impulse response (i.e., the Markov
parameters Yk = CAk−1B) of the system.

2) Form the generalized Hankel matrix H consisting of
the Markov parameters.

3) Compute the singular value decomposition of H , and
use the singular values to determine the order of the
reduced model.

4) Form the reduced order model using the singular
values, singular vectors, and Markov parameters.

For the precise formulas, see the above references.
Next, we give a natural version of ERA for model reduc-

tion of continuous time systems and provide implementation
details.



A. Model Reduction ERA: Continuous Time Systems

For a stable continuous time system ẋ(t) = Ax(t)+Bu(t),
y(t) = Cx(t), we propose the following model reduction
Eigensystem Realization Algorithm (ERA):

1) Approximate the impulse response h(t) = CeAtB of
the system.

2) Approximate the Hankel singular values {σk} and
singular vectors {fk, gk} of the Hankel operator.

3) Use the singular values to determine the order r of the
reduced model.

4) Form the reduced order model (Ar, Br, Cr) using
the approximate Hankel singular values and singular
vectors using the formulas from Theorem 1.

Theorem 1 gives two different representations of the matrix
Ar. Either representation may be used in the final step of
the algorithm.

The algorithm hinges on approximating the impulse re-
sponse and approximating the Hankel singular values and
singular vectors. We discuss these two tasks in more detail
below.

B. Approximating the Impulse Response

To begin, assume B and C are bounded operators. Then
B must take the form

Bu =

m∑
j=1

uj bj ,

where each bj is in X . Then eAtB is given by

eAtBu =

m∑
j=1

uj wj(t), wj(t) = eAtbj .

Therefore, each wj is the solution of the differential equation

ẇj(t) = Awj(t), wj(0) = bj . (8)

Finally, compute Cwj(t) to approximate the components of
the impulse response. Note that the time history of wj(t)
does not need to be stored when using a time stepping
method to approximate the solution of the differential equa-
tions.

If the operators B and C are unbounded, then one must
likely utilize the nature of the specific type of problem being
considered to make such a procedure rigorous. However, this
procedure does extend directly to the analytic semigroup case
discussed in Section III-B due to the smoothing property of
the semigroup.

C. Approximating the Hankel Singular Values and Singular
Vectors

Recall that the Hankel operator can be expressed as

[Hf ](t) =

∫ ∞
0

h(t+ s) f(s) ds.

The Hilbert adjoint operator is given by

[H∗g](t) =

∫ ∞
0

hT (t+ s) g(s) ds.

We note here that if the Hankel operator is nuclear (i.e., the
sum of the Hankel singular values is finite), then h(t) is
continuous for all t > 0 [20, Corollary 2.1].2 However, if B
and/or C are unbounded, then h(t) can have a singularity at
t = 0.

We use existing techniques from the field of integral equa-
tions (see, e.g., [26]–[28]) to approximate the singular values
and singular vectors of the Hankel operator. Specifically, in
this work we approximate the integral with quadrature to
obtain a matrix singular value decomposition problem. Many
other existing numerical methods for integral equations can
certainly be used.

For now we also assume h is continuous at t = 0. If h has
a singularity at t = 0, then it may be beneficial to use existing
special numerical methods for singular integral equations to
obtain the approximations. We leave this for future work.

Let {αk, τk}Nk=1 be the nodes and weights of a single
quadrature rule. The weights must all be positive. We take
τ1 = 0 in order to directly approximate the Hankel singular
vectors at t = 0 (which is needed to approximate the
balanced truncated model). We take τN large enough so
that h(τN ) is nearly zero so that we essentially truncate the
integral over (0,∞) to a finite interval.

Apply the quadrature rule to Hf = σg and H∗g = σf and
evaluate at the quadrature nodes to obtain the approximate
equations

N∑
`=1

α` h(τk + τ`) f(τ`) ≈ σg(τk),

N∑
`=1

α` h
T (τk + τ`) g(τ`) ≈ σf(τk).

Replace the above approximate equations by equalities and
multiply the resulting equations by α1/2

k . Let U` ∈ Rm and
V` ∈ Rp be the vectors

U` = α
1/2
` f(τ`), V` = α

1/2
` g(τ`). (9)

For each k and `, let Γk` be the p×m matrix

Γk` = α
1/2
k α

1/2
` h(τk + τ`). (10)

We have
N∑
`=1

Γk`U` = σVk,

N∑
`=1

ΓTk`V` = σUk.

Let Γ be the pN ×mN block matrix with k` block Γk`,
i.e.,

Γ =


Γ11 Γ12 . . . Γ1N

Γ21 Γ22 . . . Γ2N

...
...

. . .
...

ΓN1 ΓN2 . . . ΓNN

 . (11)

Define the stacked vectors u ∈ RmN and v ∈ RpN by

u = [UT1 , U
T
2 , . . . , U

T
N ]T , v := [V T1 , V

T
2 , . . . , V

T
N ]T .

2Technically, h(t) is equal almost everywhere to a function continuous
for t > 0.



The above equations give Γu = σv and ΓT v = σu.
Let {σk, uk, vk} be the singular values and orthonormal

singular vectors of Γ. Then {σk} approximate the Hankel
singular values. The values of the kth (approximate) Hankel
singular vectors fk and gk at the quadrature nodes can be
recovered from (9) above:

fk(τ`) = α
−1/2
` Uk` , gk(τ`) = α

−1/2
` V k` ,

where Uk` ∈ Rm is the `th vector block of Uk, V k` ∈ Rp is
the `th vector block of V k, and the kth singular vectors are
partitioned as above:

uk = [(Uk1 )T , (Uk2 )T , . . . , (UkN )T ]T ,

vk = [(V k1 )T , (V k2 )T , . . . , (V kN )T ]T .

V. NUMERICAL RESULTS

For our numerical experiments with the convection diffu-
sion model problem outlined above, we chose µ = 0.1 and
κ = 1. The constants for the piecewise constant functions
b(x) and c(x) were chosen to be b = 4, b1 = 0, b2 = 0.5,
c = 2, c1 = 0.5, and c2 = 1.

To approximate the solutions of the partial differential
equation (8), we used standard piecewise linear finite el-
ements for the spatial discretization with constant mesh
spacing h and the trapezoid rule for the time discretization
with constant time step ∆t = h. The trapezoid quadrature
rule was used to approximate the Hankel integral operator,
and second order finite differences was used to approximate
the derivatives of the Hankel singular vectors.

The approximate Hankel singular values are shown in
Figure 1 for various numbers of equally spaced finite element
nodes. Here, the PDE (8) was integrated in time until the
magnitude of the approximate impulse response was less
than 10−4. The largest approximate Hankel singular values
are converging as the mesh is refined, but the smaller
singular values are leveling off and not converging to zero.
(Recall that the exact Hankel singular values must decay to
zero.) Of course, the approximate balanced reduced model
is constructed using the largest approximate singular values,
therefore the behavior of the smaller approximate singular
values may not cause problems with the construction of the
reduced model.

To look at this phenomenon more closely, the approximate
Hankel singular values are shown again in Figure 2; here, we
fixed the number of finite element nodes (143) and integrated
the PDE (8) until the magnitude of the approximate impulse
response was less than various tolerances (10−3, . . . , 10−6).
Now it can be seen that the approximate Hankel singular
values are converging to zero as the tolerance is decreased.

As discussed earlier, we have essentially truncated the
infinite time interval to approximate the integral operator.
This strategy is not generally advisable. However, since the
kernel of the integral operator is not known analytically and
is approximated by integrating in time, truncating the infinite
interval appears to be a natural strategy. However, other
strategies are possible and they may give better results.

0 5 10 15 20 25 30
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10
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10
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10
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k

σ k

 

 

17 nodes
35 nodes
71 nodes
143 nodes

Fig. 1. Approximate Hankel singular values σk computed using various
numbers of equally spaced finite element nodes.
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Fig. 2. Approximate Hankel singular values σk computed using 143
equally spaced finite element nodes and various tolerances.

We note that the approximate Hankel singular values com-
puted using balanced POD appear to converge more quickly
for this example (not shown). Furthermore, the balanced
POD approximate Hankel singular values do converge to
zero (or at least to machine precision), and also they are not
sensitive to the truncation of the infinite integration interval.

Next, we examine theH∞ norm between the exact transfer
function (computed using 160 terms in the series) and the
transfer function of the reduced model. Table I gives the
approximate value of the transfer function error ‖G−GNr ‖∞
with r = 4 and GNr computed by three different methods:
the continuous time ERA using (6)-(7) for Ar, balanced
POD using a similar quadrature approach as ERA, and a
standard balanced truncation algorithm applied to matrix
approximations of (A,B,C). The standard matrix approxi-
mation algorithm is not applicable for large scale discretized
systems, but we include it here for comparison purposes.
The ERA gives accurate approximations to the exact trans-
fer function and gives similar approximation errors as the
balanced POD approximate transfer function. For larger N ,
ERA gives slightly better results. The approximation errors
are also close to the matrix approximation approach.

We note that the ERA using the integral formula (3) for



TABLE I
APPROXIMATE TRANSFER FUNCTION ERRORS ‖G−GN

r ‖∞ WITH r = 4

AND VARIOUS VALUES OF N , THE NUMBER OF FINITE ELEMENT NODES.
METHODS: “CERA” IS THE ALGORITHM PROPOSED HERE; “BPOD” IS

BALANCED POD; “M” IS A MATRIX APPROXIMATION APPROACH.

method N = 17 N = 35 N = 71 N = 143

cERA 1.5× 10−2 4.2× 10−3 9.1× 10−4 3.1× 10−4

BPOD 4.6× 10−3 2.7× 10−3 2.0× 10−3 9.3× 10−4

M 4.1× 10−3 8.9× 10−4 3.3× 10−4 2.1× 10−4

Ar was less accurate than using (6)-(7) for Ar. This is not
surprising since accuracy can be lost as the derivatives of
the Hankel singular vectors are approximated by finite dif-
ferences and the integral is also approximating by quadrature.

Increasing the value of r gives a change in the behavior
of the errors of the methods; see Table II. ERA again
give accurate approximations to the exact transfer function.
However, the approximations are not quite as accurate as
those produced by balanced POD algorithm or matrix ap-
proximations of the operators.

TABLE II
APPROXIMATE TRANSFER FUNCTION ERRORS ‖G−GN

r ‖∞ WITH r = 5

AND VARIOUS VALUES OF N , THE NUMBER OF FINITE ELEMENT NODES.

method N = 17 N = 35 N = 71 N = 143

cERA 1.5× 10−2 5.8× 10−3 2.3× 10−3 8.9× 10−4

BPOD 4.1× 10−3 1.0× 10−3 5.2× 10−4 3.2× 10−4

M 4.2× 10−3 9.1× 10−4 2.0× 10−4 7.8× 10−5

VI. DISCUSSION AND FUTURE WORK

We proposed an Eigensystem Realization Algorithm
(ERA) for model reduction of continuous time linear partial
differential equation systems. Instead of using discrete time
ERA on the time discretized system, we used a quadrature
approach to directly approximate the Hankel integral oper-
ator of the continuous time system. We showed that this
method gives accurate balanced reduced order models for a
simple example problem, however balanced POD was more
accurate as the order of the reduced model was increased.

It is possible that using alternate methods from the field
of integral equations to approximate the Hankel integral
operator will yield better accuracy. Also, special methods
may be required when the impulse response of the system has
a singularity at t = 0 (which can occur for unbounded input
and/or output operators). Furthermore, additional comparison
remains to be performed between the continuous time ERA
proposed here, discrete time ERA using a transformation to
continuous time, and balanced POD. Convergence theory
is also of interest. Moreover, the algorithm needs to be
thoroughly tested on more complex multidimensional PDE
systems. We leave these topics for future work.
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