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Structural Measurements for Enhanced MAV Flight

Ben Dickinson∗

Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542

John R. Singler,†

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409

Gregg Abate,‡

Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542

Our sense of touch allows us to feel the forces in our limbs when we walk, swim, or hold
our arms out the window of a moving car. We anticipate this sense is key in the locomotion
of natural flyers. Inspired by the sense of touch, the overall goal of this research is to de-
velop techniques for the estimation of aerodynamic loads from structural measurements for
flight control applications. We submit a general algorithm for the direct estimation of dis-
tributed steady loads over bodies from embedded noisy deformation-based measurements.
The estimation algorithm is applied to a linearly elastic membrane test problem where
three applied distributed loads are estimated using three measurement configurations with
various amounts of noise. We demonstrate accurate load estimates with simple sensor con-
figurations, despite noisy measurements. Online real-time aerodynamic load estimates may
lead to flight control designs that improve the stability and agility of micro air vehicles.

I. Introduction

The Air Force Research Laboratory has a keen interest in the development of micro air vehicles (MAVs)
for use in military applications such as reconnaissance, situational awareness, precision payload delivery, and
aid in rescue. Although the smaller sizea of MAVs makes them ideal for easy transportation and flight in
urban environments, their scale also leads to new challenges in flight mechanics and control. MAVs can be
considered a sub-class of larger scale unmanned air vehicles (UAVs). UAVs have been developed in recent
years by leveraging traditional aerospace science technologies. However, the engineering maturity required
for MAV development has not kept pace. For instance, due to low Reynolds number regimes of flight (Re
∼ 105 or less), their flow fields often experience separated flow regimes on the order of the vehicle size. The
small size of MAVs also gives rise to small inertias which make the MAV more susceptible to wind gusts
(Figures 1 and 2).1

The MAV flight mechanics challenge consists of generating sufficient power to maneuver; negotiating
gusts while keeping sensors on target; remaining controllable despite ground effects or the presence of other
obstacles; precisely maintaining path and orientation in confined spaces; perching and performing related
maneuvers of precision landing; and achieving all of these with minimal onboard energy, low resolution noisy
measurements, and with limited onboard computational resources.3 In combination with aircraft design,
these challenges will be met with various guidance and control strategies.

The various sensing modalities observed in biological systems lead us to consider the integration of
bioinspired sensors for control. One example is structural feedback. In the same way that we can feel the
forces in our limbs when we walk, swim, or hold our arms out the window of a moving car, we anticipate that
natural flyers feel the aerodynamic loads on their wings and that this sense plays a significant role in their
stable yet agile flight. To exploit this sense in MAV’s, our goal is to develop methods for processing distributed

∗Mechanical Engineer, AFRL/RWGN, 101 W Eglin Blvd; Eglin AFB, Fl 32542; AIAA Member.
†Assistant Professor, Missouri University of Science and Technology; Rolla, MO 65409.
‡Aerospace Engineer, AFRL/RWGN, 101 West Eglin Blvd; Eglin AFB, Fl 32542; AIAA Associate Fellow.
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Figure 1. Mass versus Reynolds number for MAVs2 Figure 2. Examples of MAVs

structural measurements for engineering applications. Although the concept of structural measurement
may be bioinspired, the existing framework of model-based control design is not. Instead of emulating
the biological control system, we aim to translate the role of structural feedback in bioligical systems to
engineered control system designs (see also reference 4).

Following the role we infer for the sense of touch in natural flyers, the goal of this effort is to determine
how structural information can provide a sense of the aerodynamic forces on a body. Since model-based
control designs operate on physical quantities (forces, moments, rotation rates, velocity, etc.) we will develop
a general algorithm to quantify distributed loads from a limited set of structural measurements.

The problem of determining a distributed load over a structure from limited measurements (e.g., dis-
placements or strains) is an inverse problem and has been previously studied by many researchers for various
purposes. In the analysis of real structures, applied loads are often difficult to characterize which limits the
accuracy of finite element analysis (FEA). For improved FEA of structures, Chock5 approximated distributed
loads on a 1D beam using a finite element discretization and the steepest descent method. Li6 also provided
a comprehensive study of load estimation over a one dimensional beam and a three dimensional truss using
FEA and iterative methods. Maniatty7 has approximated solutions of inverse elasticity problems to better
estimate stress, strain or displacement fields from limited noisy experimental data.

The identification of real-time flight loads is also important in the field of structural health monitoring.
For this purpose, Coates8 created a database composed of the Fourier coefficients of a set of 5 candidate or
“historical” loads, then used least squares methods based on strain measurements to select the coefficients
from the database that best matched an unknown applied steady load. Shkarayev9 also used least squares
methods to estimate the coefficients of polynomial loads over a cantilevered plate and aircraft wing box with
strain data. White10 explored load estimation over cantilever beams for wind turbine applications. In an
effort closely related to this study, Stanford11 has estimated aerodynamic pressure fields over a membrane
MAV wing using experimentally determined displacement fields.

We note that two procedural steps are common to the above studies: 1) the discretization of the structural
system (except White10 which was analytical) and an a-priori parameterization of the load, and 2) the
identification of the load parameters with least squares methods or iterative procedures. With this approach
the accuracy of the estimated load is discretization dependent, as clearly demonstrated by Li.6 Additionally,
the parameterization of the load is ad-hoc. There is no way in advance to tell if a particular parameterization
of the load will lead to a successful estimate.

To avoid such numerical uncertainty, we take a different approach. Here, we develop an algorithm to
approximate solutions to the inverse load estimation problem at the infinite dimensional level (the PDE
level), and only discretize to recover the load estimate. With this approach, the estimated load is essentially
discretization independent and we can obtain an exact form of the estimated load. In this paper we will
1) present a general load estimation problem statement, 2) develop a general method for distributed load
estimation for structures in equilibrium from deformation-based measurements, and 3) demonstrate accurate
load estimation for a linear membrane test problem from limited noisy structural measurements.
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II. Problem Definition

Consider a solid body immersed in an arbitrary flow environment, where a finite set of integrated exter-
nal or internal structural measurementsb are made (Figure 3). At any instant, from the set of structural

Figure 3. Illustration of the general problem, to find the best estimate of surface forces given a limited set of structural
measurements

measurements we wish to find the best estimate of surface forces on the body, that is, the pressure p, and
shear stress τ .

As discussed in the introduction, we are interested in load estimation for MAV control designs; therefore,
wings are our structures of interest. In this work we present an algorithm for a specialization of the above
problem: linearly elastic structures in equilibrium. Specifically, the load estimation algorithm developed
herein is valid for structural systems described by elliptic partial differential equations. We test the load
estimation algorithm on an linear elastic membrane problem. Details of the membrane problem are presented
in the following section.

III. Membrane Problem

The specific problem we consider is the estimation of a distributed load applied over a linearly elastic
structure in equilibrium. Our test problem is a circular membrane with radius R, where a set of structural
measurements are locally taken over regions Si ⊂ Ω for i = 1, . . . ,m. Following Stanford,11,12 we use the

Ω

S1

∂Ω

..
.

Figure 4. Diagram of circular membrane with embedded structural measurements taken over circular subsets of Ω

following equation describing the transverse displacement of a prestrained membrane with zero Dirichlet

bWe define structural measurements as information derived from the deformation of the body.
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boundaries,

Nxx
∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Nyy

∂2w

∂y2
= −f, (x, y) ∈ Ω

w(∂Ω) = 0,

(1)

where w represents transverse membrane displacement, f is an applied distributed load (e.g. a pressure
field), and the tensor

N =

[
Nxx Nxy

Nxy Nyy

]
represents in-plane prestresses, determined from the following constitutive equation for the plane stress stateNxxNyy

Nxy

 =
E t

1− ν2

1 ν 0

ν 1 0

0 0 (1− ν)


ε0xxε0yy
ε0xy

 . (2)

In equation (2), E is Young’s modulus, ν is Poisson’s ratio, t is the membrane thickness, and [ε0xx, ε
0
yy, ε

0
xy]

in the right hand side of the constitutive equation (2) represent prestrain fields. In the prestrain condition,
if the membrane experiences zero net pressure and volume forces are assumed negligible, it follows from
Cauchy’s theorem for an elastic body that the divergence of N is zero. For this computational investigation,
Nxx = 2, Nxy = −1, Nyy = 2 (to ensure the problem is coercive, see Section IV.A, and N is divergence free).

The following measurements are made over the membrane,

yi =

∫
Ω

gi wx dx + ηi, for i = 1, . . . ,m, (3)

yi =

∫
Ω

gi wy dx + ηi, for i = m+ 1, . . . , 2m (4)

where

gi =

{
1 if (x, y) ∈ Si
0 otherwise

for i = 1, . . . ,m and each ηi is zero-mean, Gaussian, white noise. Each measurement location Si supplies
two signals which may be physically interpreted as accumulated displacements in the x and y directions over
each region, respectively. Each region Si is circular with a diameter of 0.04R.

In physical applications, strain appears the most likely measurement quantity. However, the above
membrane model (1) is not ideal for such measurements. Our previous load estimation studies for an Euler-
Bernoulli beam show that with suitably derived algorithms, both strain and displacement-type measurements
are effective for load estimation. We anticipate that strain measurements for the membrane problem (pro-
vided strain measurements are computable from the model) or any other suitable structure, will provide
estimates of similar accuracy to those computed from the displacement-type measurements herein. We plan
to explore this issue further in future work.

Finally, we note that a physical presence of the measurements described here is not included in the
structural description. The integration of actual sensors into a structure, with material properties different
than the structure itself, can significantly affect structural behavior.13 Beyond proof-of-principle tests, the
material discontinuities of embedded sensors should be accounted for in the constitutive equation (2).

III.A. Weak form of the membrane equation

The development of the load estimation algorithm is based on a variational or weak form of the governing
equation (1). Since N is divergence free, it can be checked that the PDE (1) is equivalent to

−∇ · (N ∇w) = f. (5)

The weak form of (5) is obtained by multiplying through by a test function, v, and integrating by parts.
This leads to the following problem: to find the displacement field w(x, y) ∈ V = {v ∈ H1(Ω)| v(∂Ω) = 0}
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such that

a(w, v) ≡
∫

Ω

Nxx
∂w

∂x

∂v

∂x
+Nxy

∂w

∂x

∂v

∂y
+Nxy

∂w

∂y

∂v

∂x
+Nyy

∂w

∂y

∂v

∂y
dx =

∫
Ω

f v dx, (6)

for all v ∈ V , where the space H1 contains all square integrable functions whose x and y partial derivatives
are square integrable. Also, note that the zero boundary conditions are included in the space V . Equation
(6) may also be written as a(w, v) = (f, v)L2 , where a : V × V → R and (f, v)L2 =

∫
Ω
f v dx is the standard

L2 inner product.
Furthermore, the measurement model can be represented yi = Ci w, where Ci w is given in (4).

IV. Load Estimation Algorithm

In this section, we describe the load estimation algorithm for a general class of elliptic partial differential
equations. The membrane load ID problem described above is an example of a problem in this class. We
describe the algorithm in general since many other load estimation problems can be placed in this form. We
give the general framework in Section IV.A, describe the load estimation inverse problem in Section IV.B,
and present the algorithm in Section IV.C.

We develop the problem and algorithm at the PDE level and then discretize to obtain the load estimate.
This contrasts with the alternative approach of first discretizing the problem and then developing the al-
gorithm at the discrete level. We believe the approach we take in this work has potential to offer many
advantages over the alternative approach. We discuss this in detail in Section IV.C.

After Section IV.A, readers primarily interested in the algorithm and implementation details may directly
refer to the load estimation problem statement (10) and its solution algorithm in Section IV.C without lack
of continuity.

IV.A. General Problem Framework

Let H and V be two real Hilbert spaces with inner products (·, ·)H and (·, ·)V and corresponding norms

‖f‖H = (f, f)
1/2
H and ‖g‖V = (g, g)

1/2
V . Assume V is continuously embedded in H, i.e., V is a dense

subspace of H and there is a positive constant CV such that ‖v‖H ≤ CV ‖v‖V for all v in V .
We consider the variational form of the PDE model as follows. Let a : V × V → R be a real-valued

bilinear form that is bounded and V -elliptic, i.e., there are positive constants c0 and C0 such that

a(u, v) ≤ C0 ‖u‖V ‖v‖V , a(v, v) ≥ c0 ‖v‖2V , (7)

for all u and v in V . We also assume the bilinear form is symmetric, i.e.,

a(u, v) = a(v, u) (8)

for all u and v in V . Then for any given load f in H, there is a unique solution w in V of the variational
equation a(w, v) = (f, v)H for all v in V .

The bilinear form a can be used to define an alternate “energy” inner product and norm on V by setting

(u, v)E = a(u, v) and ‖v‖E = (v, v)
1/2
E . Equation (7) gives c0‖v‖2V ≤ ‖v‖2E ≤ C0‖v‖2V for all v ∈ V , i.e., the

energy norm ‖ · ‖E is equivalent to ‖ · ‖V .
We assume the measurement model is of the form y = Cw + η, where y is the given measurement in

Rp, η is the unknown measurement noise in Rp, and C is a bounded linear mapping from V to Rp. The
measurement operator C can be written as

Cw = [C1w, C2w, . . . , Cpw ]T ,

where each Ci is a bounded linear mapping from V to R for i = 1, . . . , p. This framework also includes the
situation where some or all of the Ci map H into Rp. In this case, there is a ci in H such that Ciw = (ci, w)H .

IV.B. Load Estimation Inverse Problem

With the above general framework in place, we consider the following inverse problem: given a measurement
y, find the load f that produces that measurement.
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Load Estimation Inverse Problem: For a given measurement y in Rp and unknown measurement noise
η in Rp, find the load f in H such that y = Cw + η, and a(w, v) = (f, v)H for all v ∈ V .

The above inverse problem is ill-posed, i.e., there is not a unique load f that produces the given mea-
surement y. In fact, there are infinitely many pairs {f, η} that can produce y. This can be seen as follows.
Pick any f ∈ H and let w ∈ V be the unique solution of a(w, v) = (f, v)H for all v ∈ V . Setting η = y−Cw
gives a pair {f, η} that produces the given measurement y. The ill-posedness of the problem is a consequence
of having only finitely many equations (y = Cw + η) and an infinite dimensional space (H × Rp) for the
unknowns ({f, η}), i.e, the problem is underdetermined.

Due to the ill-posed nature of the inverse problem, we want a procedure to produce a unique load f that
is, in some sense, a natural estimate. To do this, we use tools from the field of inverse problems involving
compact linear operators over Hilbert spaces; see, e.g., references 14–16. We briefly outline the main ideas
and leave the precise details for another work. First, let S be the solution operator for the variational
equation a(w, v) = (f, v)H for all v ∈ V , i.e., for f given, Sf = w if w in V solves the variational equation.
Then we may write the measurement equation y = Cw + η as

y = Kf + η, K = CS. (9)

There are many different methods of producing natural estimates for f in (9) given y with η unknown
(see the above references). In this work, we use Tikhonov regularization to estimate the load f . For a given
constant β > 0 and norm ‖ · ‖X , the Tikhonov regularized estimate f is the unique minimizer of

ETR(f) = β ‖f‖2X + ‖y −Kf‖2Rp .

In finite dimensions (i.e., f , y, and η are vectors and K is a matrix), under certain statistical assumptions the
Tikhonov regularized estimate coincides with both the maximum a posteriori estimator and the minimum
variance estimator (see, e.g., references [16, Chapter 4] and [15, page 78]); therefore, this is a natural estimate.
We do not attempt to extend such equivalences to this infinite dimensional problem.

Even in the Hilbert space setting, the Tikhonov regularized estimate has a natural interpretation as the
estimate of minimum norm. Furthermore, a noise estimate is included. Therefore, we consider the following
equivalent problem, which follows from the above Tikhonov regularized problem by multiplying by β−1 and
setting η = y − Kf and α = β−1. We chose the the norm on the load f to be the energy norm ‖ · ‖E
described in Section IV.A.

Minimum Norm Load Estimation Problem: For a given constant α > 0 and a given measurement
y ∈ Rp, find the load f in V and the measurement noise η in Rp minimizing

E(f, η) = ‖f‖2E + α ‖η‖2Rp (10)

subject to y = Cw + η, and a(w, v) = (f, v)H for all v ∈ V .

For PDE problems, the E norm on the load f involves spatial derivatives. Therefore, the E norm
penalizes loads with large gradients, and we can expect the minimizing load to be smoothly varying in space.

The positive constant α in the above problem is a user-controlled measure of the relative sizes of the load
f and the noise η. For example, if α is large, then the estimated noise η will be small in order to minimize
the energy E(f, η). Furthermore, taking α to infinity will drive the magnitude of the estimated noise η to
zero. Also, if we have a rough idea of the magnitude of the measurement noise, we can choose α in order to
obtain a noise estimate near that specific magnitude. We comment further on the choice of α below.

The load estimation algorithm given below follows naturally from the solution of the above minimum
norm problem.

Proposition 1. Under the assumptions in Section IV.A, the unique solution f ∈ V and η ∈ Rp of the above
minimum norm problem (10) is given as follows:

1. For i = 1, . . . , p, let wi ∈ V be the unique solution to the variational equation a(wi, v) = Civ for all
v ∈ V .
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2. For i = 1, . . . , p, let zi ∈ V be the unique solution of the variational equation a(zi, v) = (wi, v)H for all
v ∈ V .

3. Let Q ∈ Rp×p be the matrix with ij entries Qij = (zj , zi)E = a(zj , zi).

4. Let ξ ∈ Rp be the unique solution of (Q+ α−1I) ξ = y, where I ∈ Rp×p is the identity matrix.

5. Then the unique solution is

f =

p∑
i=1

ξi zi, η = α−1 ξ, (11)

where ξi is the ith component of ξ.

The result can be proved by considering the solution of the Tikhonov regularized problem and applying
the results in [17, page 580]. We provide the details elsewhere.

We now give the load estimation algorithm and discuss implementation details.

IV.C. Load Estimation Algorithm

The above proposition leads naturally to the following load and measurement noise estimation algorithm.

Load Estimation Algorithm: Let y ∈ Rp be a given measurement, and let δ > 0 be a given estimate of
the measurement noise magnitude.

1. Choose α > 0.

2. For i = 1, . . . , p, approximate (e.g., using finite elements) the unique solution wi ∈ V of the variational
equation a(wi, v) = Civ for all v ∈ V .

3. For i = 1, . . . , p, approximate the unique solution zi ∈ V of the variational equation a(zi, v) = (wi, v)H
for all v ∈ V .

4. Form the p× p matrix Q by computing the bilinear form in the ij entries Qij = (zj , zi)E = a(zj , zi).

5. Compute ξ ∈ Rp, the unique solution of (Q+ α−1I) ξ = y.

6. Form the load estimate f and measurement noise estimate η in (11).

7. If ‖η‖Rp is close enough to δ, stop. Otherwise, select a different α and repeat.

We now discuss a few points.
First, in steps 2 and 3 of the algorithm, one must solve 2p variational problems, where p is the number

of distinct measurements (recall, the measurement vector y is in Rp). This is the most computationally
intensive portion in the algorithm, especially if the number of measurements is large.

It is important to note that this algorithm likely will provide better estimates for smoothly varying loads.
As discussed above, the E norm penalizes large gradients in the load; thus, the algorithm will likely produce
a smoothly varying load. Therefore, if the actual load is not smooth (i.e., it is in H but not in V ), then we
expect the load estimate to be less accurate since we are approximating a nonsmooth function by a smooth
function.

Lastly, in the algorithm one must choose a parameter α, compute the load and noise estimate, and check
if the noise estimate is of the expected magnitude. If the magnitude of the noise is not close to the expected
size, then one must adjust α and repeat the computations. A good strategy for updating α will of course be
crucial for the efficiency of the algorithm. We do not address this here. However, as mentioned previously, the
above minimum norm problem is equivalent to the Tikhonov regularization of the inverse problem; therefore,
existing regularization parameter selection methods for inverse problems (see, e.g., references 14,16) can be
employed here.

As discussed above, we first developed the problem and algorithm at the PDE level and then discretized
as opposed to discretizing first and then developing the algorithm at the finite dimensional level. There
are advantages and disadvantages to developing the algorithm at the PDE level and then discretizing. The
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most obvious disadvantage to this approach is the up front mathematical work required to correctly pose
the problem and obtain the algorithm. However we believe there are many potential advantages that are
worth the up front cost:

• Any numerical method for solving the PDEs in steps 2 and 3 can be used in the above algorithm;
specifically, we can use specialized discretizations, any computational grid, any existing linear solvers,
adaptive error estimators and mesh refinement, multigrid methods, powerful existing codes, etc. Fur-
thermore, when using existing codes, the algorithm only requires the approximate solutions of PDEs
and does not explicitly require access to any matrices. If we discretize the problem first, then we may
lose the ability to use many of the above techniques.

• Developing the problem and the algorithm at the PDE level allowed us to obtain the exact form of
the load estimate (11). Therefore, there was no need to discretize the unknown load in advance as was
done, e.g., in references 5–9, 11. Li6 showed that this approach led to widely differing load estimates
depending on the basis used for the load discretization. There was no way to tell in advance whether a
particular choice of basis would lead to a successful load estimate. This was not an issue in this work.

• We can obtain guarantees of accuracy and convergence to the true load estimate in (11) given by
the algorithm at the PDE level. Therefore, if the computations in the algorithm are performed with
sufficient accuracy, then the output of the algorithm will be sufficiently close to the true estimate.
This is true regardless of discretization scheme, etc. Thus, different computational approaches for the
computations in steps 2 and 3 should yield roughly the same output.

• Developing the solution to the minimum norm problem at the PDE level allowed us to avoid the singular
value decomposition usually required for the solution of the Tikhonov regularized inverse problem; this
led to a more efficient algorithm.

• As mentioned previously, the algorithm is applicable to a wide class of elliptic PDE systems. One
need only change the Hilbert spaces and bilinear form to utilize the algorithm for a different problem.
Furthermore, we anticipate a similar solution strategy will yield load estimation algorithms for similar
problems that do not fall into the general framework considered here.

V. Finite Element Implementation and Details

Here we provide numerical details on the application of the load estimation algorithm (presented in
Section IV.C) to the linear membrane problem described above. Throughout, all PDE’s are solved with the
finite element method.

Step 1 - Compute or Acquire Measurements

In experimental settings, measurements y ∈ Rp are acquired from sensors. For computational tests, we must
compute the measurements y ∈ Rp, where p = 2m before hand. To this end, we approximate w with the
finite element method.

Let w be approximated as

w(x, y) ≈ ŵ(x, y) =

N∑
i=1

ai φi(x, y). (12)

where each φi ∈ V . The substitution of (12) into (6) leads to the following matrix equation

Ka = F, (13)

where
K = (N11 φi,x φj,x) + (N12 φi,x, φj,y) + (N12 φi,y, φj,x) + (N2 φi,y, φj,y), and

F = (f, φi)
(14)

for i, j = 1, . . . , N , where (·, ·) represents the L2 inner product. Solving the linear algebraic equation (13)
for a, the measurements (4) are computed as

y = Da + η, (15)
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where Dkj = (gk, φj,x) for k = 1, . . . ,m and j = 1, . . . , N , and Dkj = (gk, φj,y) for k = m + 1, . . . , 2m = p
and j = 1, . . . , N .

Step 2 - Solve Awi = Ci and Azi = wi

Next, we approximate the solution of the variational equations in steps 2 and 3 of the algorithm. The
approximation of solutions to a(wk, v) = Ckv for k = 1, . . . , p is similar to the membrane problem described

in the previous step. Let wk and zk be approximated as,
∑N
i=1 bkiφi and

∑N
i=1 dkiφi, respectively. Then for

k = 1, . . . , p we may compute the vectors bk and dk by solving

K bk = Dk,

where Dk is the kth column of the matrix D defined above, and

K dk = bk.

Step 3 - For k, ` = 1, . . . , p, compute Qkl = (zk, z`)E

We compute the p × p matrix Q in step 4 of the algorithm as follows. Recall from step 2 of the algorithm
that (zj , v)E = a(zj , v) = (wj , v)H . Therefore, (zk, z`)E = (wk, z`). The substitution of (12) into Q leads to

Qk` =

N∑
i,j=1

dki (φi, φj) b`j . (16)

In matrix form (16) becomes
Q = dT Mb (17)

where d is an N × p matrix with columns dk for k = 1, . . . , p, b is an N ×m matrix with columns bp for
k = 1, . . . , p, and M is the N ×N mass matrix with ij entries (φi, φj).

VI. Numerical Results

We consider the following three arrays of measurements (Figures 5, 6, and 7). The measurement region

Figure 5. Sensor array A Figure 6. Sensor array B Figure 7. Sensor array C

shape and configuration was chosen to provide an increasing amount of measurements going from array A
to B and B to C. Since the location (and region shape) of any measurement will contribute differently to a
load estimation, we make array A a subset of B and B a subset of C. As a result, we ensure that the overall
amount of information increases with sensor number.

The measurement regions are superimposed on the single finite element mesh used throughout this
analysis. The FE mesh is composed of 3031 triangular elements having nodes specially aligned with the
sensor boundaries, to avoid slow FE convergence.18 We test each measurement array with the following set
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of distributed loads (Figure 8)

Load I: f = (x2 + y2 −R2)× 10−5

Load II: f = (x2 + y2 −R2) sin(π x/40) cos(π y/45)× 10−5

Load III: f = (x2 + y2 −R2) [(x+ 5)2 + (y + 14)2]× 10−8,

(18)

where R is the outer membrane radius (taken here as R = 46.25mm) and the exponents were chosen in the
spirit of ensuring the physical validity of the linear membrane model. We also specify Young’s modulus as
E = 2.2 × 103 Pa, Poisson’s ratio as v = .45, and the membrane thickness as t = 0.1 mm. Note that each

Figure 8. From left to right, distributed loads I, II, and III chosen for this analysis

load has zero value on the domain boundary. This ensures that f satisfies the zero boundary conditions in
(1) (i.e., f conforms in V as posed in the minimum norm problem (10)).

VI.A. Load estimates without measurement noise

Figure 9 contains E-norm estimates for loads I, II and III for each measurement array A, B and C, without
noise (η = 0, α = 1× 1020), where the particular load-array combination is indicated at the top of each plot.

As expected, estimation accuracy improves as more information or measurements are added, with the
greatest improvements observed going from array A to B for loads II and III. The addition of the center
measurements in array C appears to have little influence on the estimation accuracy. We quantify the
accuracy of each estimate above with the following relative error measure

error =
‖f − fest‖L2

‖f‖L2

. (19)

Table 1 lists the relative error values (19) for each load and measurement pair.

Table 1. Accuracy for each load estimate and measurement array with 0% noise

Load I Load II Load III

Array A 0.0241 0.5144 0.3958

Array B 0.0136 0.0720 0.0946

Array C 0.0134 0.0492 0.0949

Note the disparate and redundant information contained in the measurements for each load. With array
A, the load estimate I is essentially converged, while loads II and III are not. Adding 19 measurements
(going from array A to B) reduces error by 1.0% for load I, 44% for load II, and 30% for load III. Thus,
for load estimate I, the information contained in array II was either redundant had little value, or both.
Conversely, array B contained a significant amount of new information for loads II and III. For all loads,
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Figure 9. Estimates for loads I,II, and III for measurement arrays A, B, and C

little improvement in accuracy was realized going from array B to C. In fact, the estimate accuracy of load
III decreased by 0.03%. A likely source for this slight decrease in accuracy is numerical error in the finite
element approximation. Additionally, while adding information seems to improve estimation accuracy in
general, we have no guarantees that estimates will converge monotonically.

VI.B. Load estimation with measurement noise

We now consider the case where noise is added to the measurement signal. We further denote measurement
noise as X%, where each measurement signal, yi for i = 1, . . . , 2m, receives an added noise signal ηi randomly
chosen over the interval [−X y/100, X y/100].

Recall that in the load estimation algorithm (Section IV.C), we obtain estimates of the noise, η, by
choosing the parameter α such that ‖η‖Rp ≈ δ, where δ is a known estimate of the measurement noise
magnitude. As expected and illustrated in Figures 10 and 11, we find that load estimate accuracy improves
with accurate noise estimation (‖η‖Rp approaches δ).

In Figures 10 and 11, the maximum load estimate accuracies (roughly 3.5% and 5.0%, respectively) occur
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Figure 11. Load I estimate accuracy vs 10% noise
estimate accuracy

near δ − ‖η‖Rp = 0. Underestimated noise (δ − ‖η‖Rp > 0, α is larger than its optimal value) leads to load
estimates with unaccounted for measurement noise. Note that load estimate error increases at a significantly
larger rate for underestimated noise, than overestimated noise (δ − ‖η‖Rp < 0, α is smaller than optimal).
As α → 0, the minimization of ‖f‖E in E(f, η) becomes overemphasized to the point where f is driven to
zero everywhere.

The effect of α on estimate accuracy may be best illustrated through visualization of the actual load
estimates. Figures 12-15 are estimates of Load I with Array A and 10% measurement noise. Moving from

Figure 12. α = 1 × 100, (δ − ‖η‖Rp )/δ =
0.98, Array A, 10% noise

Figure 13. α = 1× 10−1, (δ−‖η‖Rp )/δ =
0.60, Array A, 10% noise

Figure 14. α = 1 × 10−2, (δ − ‖η‖Rp )/δ =
2.0e− 4, Array A, 10% noise

Figure 15. α = 1 × 10−3, (δ − ‖η‖Rp )/δ =
−5.9, Array A, 10% noise
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top to bottom and left to right, α decreases from 1 × 100 to 1 × 10−4. Figure 12 shows a corrupted load
estimate due to underestimated measurement noise. Noise is better estimated, although still underestimated,
in Figure 15, which results in an estimate more closely resembling load I. The best estimate, among the four
figures, occurs when α = 1×10−2 with a noise estimate error of 0.02%. The effect of a largely overestimated
measurement is shown in Figure (15). Clearly, obtaining the most accurate load estimates from noisy
measurements will require some tuning of the regularization parameter, α. Selection methods α are briefly
mentioned in Section IV.C with references.

VII. Summary

In the same way that we can feel the forces on our limbs when we walk, swim, or hold our arms out the
window of a moving car, we anticipate that natural flyers feel the aerodynamic loads on their wings and
that this sense plays a significant role in their agile yet stable flight. To bring this capability of agile flight
to micro air vehicles, we looked at developing techniques to determine aerodynamic loading with ultimate
goal of online, real-time estimation for flight control system designs.

In this study, we developed a general algorithm for the estimation of steady distributed loads on linear
structures from noisy deformation-based measurements. Compared to existing load estimation routines,
the algorithm developed here is discretization independent; leads to the exact from of the load estimate;
enables guarantees of accuracy and convergence to the true load estimate at the continuous level; and is
valid for a wide class of PDE systems. Drawbacks of this method from existing techniques include up front
mathematical work to correctly pose the problem and computational cost.

Because of the proliferation of membrane wings on todays state-of-the-art MAVs, the steady load esti-
mation algorithm developed herein was applied to a linear membrane test problem. Our numerical results
showed that simple measurement configurations lead to highly accurate load estimates. Additionally, with
the proper choice of the regularization parameter (α), we demonstrated accurate load estimates despite noisy
measurements.

VIII. Future Work

Measurement optimization and strategy

Minimizing the computational cost of load estimates while maintaining sufficient accuracy leads us to consider
the value of measurements. As discussed in Section VI, measurements may be redundant or be placed
in a location of little value. To avoid unnecessary computational effort associated with processing such
measurements, one may consider an optimization of measurement placement, shape, etc. Additionally,
although not essential, optimizations tailored toward an a-priori load characterization may lead to the most
effective configurations.

Even with an optimized configuration, load scenarios will likely occur where measurements are redundant
or have little value. As an alternative to (or in combination with) optimized measurements, cost may be fur-
ther reduced by filtering unimportant information prior to the estimation routine. Conceivably, such filtering
could be used with dense sensor arrays. Further, a surplus of sensors may lead to a more robust system to
sensor failure. We anticipate that both measurement optimization and information filtering strategies are
existing topics of research. We will pursure such topics in the future.

Computational cost and applications

For the load estimation routine developed herein, the cost associated with solving 4m PDEs (2 PDEs per
measurement × 2 measurements per region × m regions) poses questions of computational tractability,
especially for control applications. As discussed above, measurement optimization and filtering are potential
options for less costly implementations. Additional cost savings may be realized through model reduction,
such as low-order Galerkin truncations with proper orthogonal decomposition. Given the limited power
supplies and computational resources currently available to MAV platforms, developing efficient PDE-based
algorithms for MAVs appears to be a challenge.

Future studies include developing methods for unsteady load estimation. Preliminary investigations
into unsteady estimation methods indicate that the extension from the steady estimation problem is not
straightforward. We note that, all studies referenced herein were for steady problems and, to our knowledge;
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this capability has not been developed. Furthermore, the unsteady structural dynamics of compliant aircraft
may require unsteady methods for nonlinear structures.

Sensor/Actuator development

Moving toward the physical application of load estimation methods, the actual sensors must be considered.
The development, design, and characterization of high sensitivity sensors, suitable for the purposes de-
scribed herein, is a topic of a concurrent research effort within the Air Force Research Laboratory Materials
Directorate. Advanced materials such as carbon nano tubes and graphene are currently being explored and
characterized as potential sensors19 along with conventional strain sensor technology. Beyond measurement
algorithms and sensor development, sensor integration in MAV platforms is an engineering challenge.

Advanced actuators or flow effectors will need to be addressed as well. Conventional movement of
aerodynamic surfaces such as elevators and ailerons may be insufficient for agile flight control. Bio-inspired
concepts for flight control include the ability to change shape and change structural stiffness.

The culmination of advanced sensors, actuators, and control designs is believed necessary to truly achieve
the proficiency of flight exhibited by natural flyers.
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