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Abstract— A mathematical model of a physical system is
never perfect; therefore, robust control laws are necessary
for guaranteed stabilization of the nominal model and also
“nearby” systems, including hopefully the actual physical sys-
tem. We consider the computation of a robust control law for
large-scale finite dimensional linear systems and a class of linear
distributed parameter systems. The controller is robust with
respect to left coprime factor perturbations of the nominal
system. We present an algorithm based on balanced proper
orthogonal decomposition to compute the nonstandard features
of this robust control law. Numerical results are presented for
a convection diffusion partial differential equation.

I. INTRODUCTION

Since a mathematical model of a system is not a perfect
description of the system, it is desirable for a control law to
not only stabilize the mathematical model but also “nearby”
systems. In this paper, we consider computing a control
law for a distributed parameter system that stabilizes the
nominal system and also left coprime factor perturbations
of the system. The robustly stabilizing control, the central
controller, is a solution to this problem and was given for
finite dimensional systems by Glover and McFarlane in [1];
for infinite dimensional systems with bounded finite rank
inputs and outputs, the solution can be found in [2].

Computing control laws for infinite dimensional systems
often starts with discretizing the system with a convergent
approximation scheme. Matrix approximations of the original
system operators arise, and these matrices can be very large
scale for many important applications, such as those in fluids.
Much recent research has focused on developing algorithms
to solve large-scale matrix Lyapunov and Riccati equations
associated with control design for linear systems (among
other applications); see Section IV-A below for details and
references. However, the robust control law from the central
controller has features that cannot directly be computed
using existing algorithms for large-scale matrix equations. To
address these problems, we use balanced proper orthogonal
decomposition (POD) methods.

Balanced POD is an algorithm introduced by Rowley
[3] for approximate balanced model reduction of linear
systems. The algorithm is also related to balanced model
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reduction algorithms proposed by Willcox and Peraire [4]
and Lall, Marsden, and Glavaški [5]. Rowley’s balanced POD
algorithm is similar to the method of snapshots for standard
POD computations [6], however it uses two datasets. For
further details on the algorithm, see the above references
and also [7], [8], where we extended Rowley’s algorithm
to an infinite dimensional setting and proved convergence.
As a side note, balanced POD can also be used to provide
an optimal reconstruction of two general datasets [9] in an
analogous way that standard POD can reconstruct a single
dataset, e.g., [10].

In Section IV-B, we develop a balanced POD algorithm
to compute the central controller for a class of linear partial
differential equation (PDE) systems. The main computational
cost of the algorithm is computing solution snapshots of
linear PDEs. These computations can be performed with
existing software and one can also take advantage of ex-
isting techniques such as special discretization schemes,
domain decomposition methods, adaptive mesh refinement,
and parallel algorithms. Also, since the algorithm is based on
simulation data rather than matrix approximations, we bypass
the potential difficulty of extracting matrices from existing
simulation code. The algorithm described in this paper is
new and is applicable to both large-scale finite dimensional
systems and a class of infinite dimensional systems. To begin,
we pose a model problem.

II. THE MODEL PROBLEM

To test the convergence of the algorithm, we consider a
one dimensional convection diffusion equation

wt(t, x) = µwxx(t, x)− κwx(t, x) + b(x)u(t), (1)
w(t, 0) = 0, w(t, 1) = 0, (2)

w(0, x) = w0(x). (3)

System measurements are taken of the form

y(t) =

∫ 1

0

c(x)w(t, x) dx.

We assume the functions b(x) and c(x) are square integrable.
For the balanced POD algorithm below, we require an

abstract formulation of the problem. Briefly, this can be
done as follows. Let X be the Hilbert space L2(0, 1) of



square integrable functions defined on the interval (0, 1) with
standard inner product (f, g) =

∫ 1

0
f(x)g(x) dx and norm

‖f‖ = (f, f)1/2. Define the convection diffusion operator
A : D(A) ⊂ X → X by

[Aw](x) = µwxx(x)− κwx(x),

Functions in D(A) are twice differentiable and satisfy the
above boundary conditions. Define B : R → X and C :
X → R by [Bu](x) = b(x)u and Cw = (w, c). In this way,
the PDE system can be written as the infinite dimensional
system

ẇ(t) = Aw(t) +Bu(t), w(0) = w0, y(t) = Cw(t),

where the dot denotes a time derivative.
We chose this example problem so that we could easily

check for convergence of the algorithm and also compare
results with computations using matrix approximations of
the operators A, B, and C.

III. ROBUST CENTRAL CONTROLLER FOR LEFT
COPRIME FACTOR PERTURBATIONS

We now consider robust feedback control design for a
general infinite dimensional system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

holding over a Hilbert space X . We assume the operator
A : D(A) ⊂ X → X generates a C0-semigroup, and the
control input operator B : Rm → X and the observation
operator C : X → Rp are both bounded and finite rank.

We assume (A,B,C) is exponentially stabilizable and de-
tectable so that the transfer function G(s) = C(sI−A)−1B
has a normalized left coprime factorization G = M̃−1Ñ ; see
[2, Lemma 9.4.10]. We consider the following robust control
problem: Given a robustness margin ε > 0, find a controller
Kc(s) stabilizing G(s) and all “nearby” plants G∆(s) of the
form

G∆ = (M̃ + ∆M )−1(Ñ + ∆N ),

where the perturbation ∆ = [∆M ∆N ] satisfies ‖∆‖∞ < ε.
Here, the applied norm is the H∞ norm, which is the largest
singular value of the function evaluated along the imaginary
axis.

The solution to this problem can be found in Section 9.4 of
Curtain and Zwart’s book [2]. Let the operators Π : X → X
and P : X → X be the unique self-adjoint, nonnegative
solutions to the control and filter algebraic Riccati equations
(AREs)

A∗Π + ΠA−ΠBB∗Π + C∗C = 0, (4)
AP + PA∗ − PC∗CP +BB∗ = 0, (5)

where the asterisk (∗) denotes the Hilbert adjoint operator.
There is a parameterized family of controllers solving the
above problem; the central controller is given in state space
form by [2, Theorem 9.4.16]

u(t) = −Kxc(t), ẋc(t) = Acxc(t) + σ−2W ∗Fy(t),

where

K = B∗Π, Ac = A−BK − σ−2W ∗FC,

F = PC∗, W ∗ =
[
I + (1− σ−2)ΠP

]−1
,

σ =
(
1− ε2

)1/2
, 0 < ε < εmax.

Here, the maximum robustness margin εmax can be found
exactly and is given by [2, Corollary 9.4.12]:

εmax =
[
1 + λmax(PΠ)

]−1/2
, (6)

where λmax(T ) denotes the largest eigenvalue of the operator
T . This extends the finite dimensional results of Glover and
McFarlane [1] to an infinite dimensional case.

IV. BALANCED POD ALGORITHM

For finite dimensional systems, the central controller de-
scribed above can be computed by using existing solvers
for the algebraic Riccati equations (4) and (5). For infinite
dimensional systems, a standard approach to control design
is to approximate the infinite dimensional operators by
matrices and design an approximate control law; see, e.g.,
[11], [12], [13]. However, for many infinite dimensional
equations the approximating matrices are of high dimension
and conventional computational approaches are difficult, if
not impossible, to apply. For the central controller design
above, we have the following computational challenges for
large-scale systems:

1) Compute the solutions Π and P of the algebraic Riccati
equations (4) and (5)

2) Compute the maximum robustness margin εmax in (6).
3) Compute W ∗F =

[
I + (1− σ−2)ΠP

]−1
F

In this paper, we focus on using a balanced POD algorithm
to treat the second and third challenges. Of course, we must
first address the Riccati equations.

A. Riccati Equation Solver
Before we describe the algorithm we use to solve the

Riccati equations, we briefly discuss the three main existing
classes of algorithms for large-scale or infinite dimensional
Riccati equations:
Three Algorithm Classes for Riccati Equations

1) Apply Newton’s method to the (quadratic) Riccati
equation and solve the resulting (linear) Lyapunov
equations using special techniques; see, e.g., [14], [15],
[16].

2) Solve the related Chandrasekhar equations, a nonlinear
system of differential equations that must be integrated
to steady state; see, e.g., [14], [17], [18].

3) Reduce the infinite dimensional model and solve the
resulting low order matrix Riccati equation; see, e.g.,
[19], [20], [21].

Although all three approaches can be successful, the first
approach is convergent and is generally accepted to be the
most accurate; the Chandrasekhar equations can lose accu-
racy when integrated to steady state [14], and the “reduce-
then-design” approach can fail as it has no guarantees of
accuracy or convergence.



In this work, we use the first approach coupled with a
trapezoid snapshot Lyapunov equation algorithm developed
in [22] (see also [23], [24], [25]). We use the standard
Kleinman-Newton iteration [26], [27] as opposed to the
modified Kleinman-Newton iteration proposed by Banks and
Ito in [14]; Feitzinger, Hylla, and Sachs have recently shown
in [16] that errors can accumulate in the modified iteration
if the Lyapunov equations are solved inexactly (which is
unavoidable except for simple problems).

B. Balanced POD Algorithm for the Central Controller

Next, we present the balanced POD algorithm to treat the
final two challenges in the central controller computations.
Let X be a Hilbert space with real-valued inner product (·, ·)
and corresponding norm ‖x‖ = (x, x)1/2. We assume the
operators (A,B,C) fall in the general framework of Section
III. Since B and C are finite rank, the operators must take
the form

Bu =

m∑
j=1

ujbj , Cx = [ (x, c1), . . . , (x, cp) ]T ,

for some vectors b1, . . . , bm and c1, . . . , cp in X (see [28,
Theorem 6.1]). As with most large-scale algorithms for feed-
back control gain computations, the algorithm is tractable
when m and p are relatively small.

For finite dimensional systems, the Hilbert space X is
taken to be Rn, and the inner product can be taken as
the standard dot product, (a, b) = aT b, or a weighted dot
product, (a, b) = aTMb, where M ∈ Rn×n is symmetric
positive definite. Also, the above expressions for B and C
hold where bj is the jth column of B and ci is the ith column
of CT .

Recall that the goals are to (a) compute the maximum
robustness margin εmax, and (b) compute W ∗F . Note that
(a) requires the computation of the maximum eigenvalue of
the product of the Riccati solutions, while (b) requires the
inversion of an operator involving the product of the Riccati
solutions. We proceed as follows.

Step 1: The first step in the algorithm is to compute the
gain operators K = B∗Π and F = PC∗, where Π and P
solve the Riccati equations (4) and (5). More specifically, we
require the functional gains for the operators K and F . These
are defined using the above representations of B and C as
follows. Since B takes the form Bu =

∑m
j=1 ujbj , it can be

checked that B∗x = [ (x, b1), . . . , (x, bm) ]T . Therefore, for
any x ∈ X ,

Kx = B∗Πx

= [ (Πx, b1), . . . , (Πx, bm) ]T

= [ (x,Πb1), . . . , (x,Πbm) ]T ,

since Π is self-adjoint. Thus, Kx = [ (x, k1), . . . , (x, km) ]T ,
where ki = Πbi ∈ X are the functional gains for K.
Similarly, Fy =

∑p
j=1 yjfj , where fi = Pci are the

functional gains for F .
Step 2: The next step is to rewrite the solutions of the

Riccati equations (4) and (5) in terms of solutions of linear

infinite dimensional differential equations. This is done as
follows. First, as is well known, the Riccati equations can
be rewritten as the Lyapunov equations

(A−BK)∗Π + Π(A−BK) +K∗K + C∗C = 0,

(A− FC)P + P (A− FC)∗ + FF ∗ +BB∗ = 0.

Using the above representations of the operators B, C, K,
and F , it can be shown [23], [22] that the solutions of these
Lyapunov equations (i.e., the Riccati operators Π and P ) take
the form

Πx =

∫ ∞
0

m+p∑
i=1

(
x, zi(t)

)
zi(t) dt,

Px =

∫ ∞
0

m+p∑
j=1

(
x,wj(t)

)
wj(t) dt,

where each zi(t) and wj(t) are the unique solutions of the
linear evolution equations

żi(t) = (A−BK)∗zi(t), zi(0) = z0
i , (7)

ẇj(t) = (A− FC)wj(t), wj(0) = w0
j , (8)

with the initial conditions given by

z0
i = ki, i = 1, . . . ,m, z0

i = ci, i = m+ 1, . . . ,m+ p,

w0
j = fj , j = 1, . . . , p, w0

j = bj , i = p+ 1, . . . ,m+ p.

Step 3: Next, use balanced POD to approximate the
eigenvalues and eigenvectors of the operator products ΠP
and PΠ. This is done in exactly the same manner as the
snapshot LQG balancing algorithm proposed by the authors
in Section IV B of [25]; specifically, we require the LQG
balanced POD singular values {µk} (the diagonal entries
of the matrix M in step 4 of the algorithm) and the LQG
balanced POD modes {ϕk, ψk}. In [9], it is shown that the
nonzero eigenvalues {λk} of ΠP and PΠ are the same, they
can be expressed in terms of the singular values by λk = µ2

k,
and therefore they can be ordered λ1 ≥ λ2 ≥ · · · > 0.

Step 4: Finally, we approximate the maximum robustness
margin εmax of the central controller, and the operator prod-
uct W ∗F . Recall the robustness margin is given by εmax =[
1+λmax(PΠ)

]−1/2
. The balanced POD computations give

λmax(PΠ) ≈ λ1; furthermore, as the approximate solutions
of the differential equations (7) and (8) converge, we have
proved that λ1 converges to λmax(PΠ) [8].

To compute the operator product W ∗F , recall that Fy =∑p
j=1 yjfj , where each fj ∈ X is a functional gain for

F . Thus, W ∗Fy =
∑p

j=1 yj(W
∗fj), and we need only

compute the products W ∗fj for j = 1, . . . , p to form W ∗F .
We compute the products W ∗fj using the following result.

Theorem 1: Let α = −(1− σ−2), where σ = (1− ε2)1/2

and 0 < ε < εmax. Also, let λ1 ≥ λ2 ≥ · · · ≥ 0 be the exact
eigenvalues of PΠ and ΠP with corresponding eigenvectors
{ϕk} and {ψk}, respectively. Then for any x ∈ X , ξ =
W ∗x = (I − αΠP )−1x is given by

ξ = x+ α
∑
k≥1

λk
1− αλk

(x, ϕk)ψk.



Furthermore, let ξr be the rth order approximation defined
by

ξr = x+ α

r∑
k=1

λk
1− αλk

(x, ϕk)ψk. (9)

Then the approximation error is bounded by

‖ξ − ξr‖ ≤ α ‖x‖
∑
k>r

λk
1− αλk

‖ϕk‖ ‖ψk‖ <∞. (10)

The proof will appear in a future work.
Notes:
• By the definition of α, we have α > 0 and therefore

the coefficient of α in the error bound is positive. Also,
it can be shown that 0 < 1 − αλk < 1, and therefore
λk/(1−αλk) is never infinite. However, as ε→ εmax,
1−αλ1 approaches zero and therefore the first term in
the expression for ξr becomes infinitely large.

• All of the terms in the error bound are computable.
Also, if the eigenvalues {λk} decay quickly enough, a
small value of r will give a good approximation.

• We proved convergence of approximations in [8]: as
the approximate solutions of the differential equations
(7) and (8) converge, each computed λk converges and,
if λk is distinct, then the computed ϕk and ψk also
converge.

The balanced POD algorithm for the central control com-
putations may be summarized as follows:

Balanced POD Algorithm Summary:
1) Approximate the feedback gains K = B∗Π and F =

PC∗, where Π and P solve the AREs (4) and (5).
In this work, we use the trapezoid snapshot Lyapunov
algorithm from [22].

2) Compute approximate solutions of the differential
equations (7) and (8).

3) Use balanced POD to approximate the eigenvalues
{λk} of PΠ and ΠP with corresponding eigenvectors
{ϕk} and {ψk}, respectively.

4) The quantity λmax(PΠ) is approximated by λ1, and
the operator product W ∗F is approximated using The-
orem 1.

V. NUMERICAL RESULTS

We test the convergence of the algorithm with the model
problem outlined above with µ = 0.05, κ = 1, control input
function b(x) = 5 sin(πx), and observation function c(x) =
−6x(x− 1) sin(πx/2).

For the snapshot algorithms, we used standard piecewise
linear finite elements for the spatial discretization. For the
functional gain computations, we used zero as the initial
guess in the Kleinman-Newton iterations. We used a constant
time step of ∆t = 0.01 in the trapezoid Lyapunov solver. To
approximate the solutions of the differential equations (7)
and (8) in Step 2 of the algorithm, we used Matlab’s ode23s
adaptive solver. We comment further on this below.

Figures 1 and 2 show approximations to the functional
gains k(x) and f(x) computed using 64 equally spaced finite
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Fig. 1. Approximate control functional gain k(x) computed using the
snapshot algorithm with ∆t = 0.01 and 64 equally spaced finite element
nodes.
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Fig. 2. Approximate observation functional gain f(x) computed using the
snapshot algorithm with ∆t = 0.01 and 64 equally spaced finite element
nodes.

element nodes. Further refinement produced little change in
the approximations.

The balanced POD eigenvalues are shown in Figure 3 for
various numbers of equally spaced finite element nodes. The
balanced POD eigenvalues decay very rapidly to zero, and
they converge as the mesh is refined. The larger eigenvalues
converge much more rapidly than the smaller eigenvalues.
Since the eigenvalues decay to zero rapidly, the error bound
(10) of Theorem 1 leads us to expect that a small value
of r for ξr will provide a good approximation to ξ in the
computations of W ∗F .

One of our main goals in the central controller computa-
tion is the approximation of the maximum robustness margin
εmax =

[
1+λmax(PΠ)

]−1/2
. As discussed above, we know

λ1 converges to λmax(PΠ) as the approximate solutions of
the differential equations (7) and (8) converge. Therefore,
we approximate εmax by (1 + λ1)−1/2. As shown above,
λ1 converged very quickly as the mesh is refined. Table I
shows the fast convergence of the approximated maximum
robustness margin to 0.9188 as the finite element mesh is
refined.
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Fig. 3. Approximate balanced POD eigenvalues λk computed using various
numbers of equally spaced finite element nodes.

TABLE I
THE MAXIMUM ROBUSTNESS MARGIN εmax APPROXIMATED BY

(1 + λ1)−1/2 USING VARIOUS NUMBERS OF EQUALLY SPACED FINITE

ELEMENT NODES.

nodes 16 32 64 128 256

εmax 0.9180 0.9186 0.9188 0.9188 0.9188

Next, we consider our second goal in the central controller
computations: the approximation of W ∗F = (I−αΠP )−1F ,
where α = −(1−σ−2), σ = (1−ε2)1/2, and 0 < ε < εmax.
For our model problem, Fy = fy, where f ∈ X is the
functional gain approximated above. As discussed above, to
compute W ∗F , we need only compute W ∗f since W ∗Fy =
(W ∗f)y. We use Theorem 1 to approximate ξ = W ∗f . The
first step in the computation is to choose a value for r so
that the rth order approximation ξr defined in (9) is close
to ξ = W ∗f . We chose the value of r so that the value of
the error bound for ‖ξ− ξr‖ given in (10) is less than 10−4.
For all computations, we used 20 terms in the series in the
error bound (10). This gave r = 2 for finite element meshes
with 16, 32, 64, 128, and 256 equally spaced nodes and all
values of ε considered.

Figure 4 shows the function ξr(x) with r = 2 and ε =
(0.5)εmax computed using 64 equally spaced finite element
nodes. For this value of ε, the function ξr(x) is very close to
the observer functional gain, f(x) – see Figure 2. This is not
surprising; for ε small enough, W ∗ is close to the identity
operator and therefore ξ = W ∗f ≈ f .

As the value of ε is taken closer to εmax, the shape of
ξr(x) undergoes a large change. Figure 5 shows ξr(x) again
with r = 2 as computed using 64 equally spaced nodes,
but now with ε = (0.9)εmax. The shape of ξr(x) now
resembles a combination of the shapes of the control and
observer functional gains, k(x) and f(x) – see Figures 1
and 2. Further increasing ε to (0.99)εmax causes the shape of
ξr(x) to resemble the control functional gain, k(x); compare
Figures 1 and 6. Also, as ε increases toward εmax, the size of
ξr(x) increases. This is expected due to the term 1/(1−αλ1)
in the expression for ξr; as noted above, this becomes infinite
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Fig. 4. The function ξr(x) for r = 2 and ε = (0.5)εmax as computed
using 64 finite element nodes.

as ε approaches εmax. For all computations, refining the finite
element mesh or increasing r gave very little change in ξr(x).
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Fig. 5. The function ξr(x) for r = 2 and ε = (0.9)εmax as computed
using 64 finite element nodes.

For all computations, the algorithm gave nearly identical
results to computations using finite element matrix approxi-
mations of the operators A, B, and C. In particular, we found
nearly identical maximum robustness margins and also ξr
was very close to the function ξ computed using the matrix
approximations.

In our computations, we found that using an adaptive
solver for the differential equations (7) and (8) in Step 2
of the algorithm gave superior results compared to inte-
grating these differential equations using the trapezoid rule
with a constant time step. For example, the balanced POD
eigenvalues computed using the adaptive solver matched
the computed eigenvalues using matrix approximations very
closely, while the computation with the trapezoid rule only
produced accurate results for the largest few eigenvalues. De-
creasing the constant time step ∆t in the trapezoid rule gave
slow improvement. Also, the function ξr computed using the
trapezoid rule with ∆t = 0.01 and 64 equally spaced finite
element nodes gave a norm error of 0.1 compared with ξ
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Fig. 6. The function ξr(x) for r = 2 and ε = (0.99)εmax as computed
using 64 finite element nodes.

computed using matrix approximations; in contrast, the norm
error using the adaptive solver is 2.1 × 10−3. While these
errors may not be significant for this problem, preliminary
results for more complicated problems indicate that very
accurate time stepping may be crucial to ensure accuracy
in the balanced POD computations. We also note that the
time stepping method was not an issue with the functional
gain computations – the trapezoid rule Lyapunov solver with
a constant time step gave excellent accuracy.

VI. CONCLUSIONS AND FUTURE WORK

We presented an algorithm based on balanced POD for the
computation of a robustly stabilizing control law for large-
scale finite dimensional linear systems and a class of linear
distributed parameter systems. Specifically, we considered
the central controller, which is robust with respect to left
coprime factor perturbations. We believe the algorithm can
also be modified to compute the challenging features of other
robust control laws, such as the standard H∞ controller.
Furthermore, although we used balanced POD in this work,
it is likely that other balanced model reduction algorithms
could be modified in a similar way for the robust control
computations.

The computed central controller must be reduced in order
to be implemented in real time. Also, in the reduction
process, it would be desirable to keep as much robustness
as possible. These topics will be considered in future work
along with testing the algorithm on more challenging prob-
lems.
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