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QUASI-MONTE CARLO METHODS IN CASH FLOW TESTING SIMULATIONS 

Michael G .  Hilgers 

Computer Science Department 
325 Computer Science 

1870 Miner Circle 
Rolla, MO 65409-0350, U.S.A. 

ABSTRACT 

What actuaries call cash flow testing is a large-scale 
simulation pitting a company’s current policy obligation 
against future earnings based on interest rates. While life 
contingency issues associated with contract payoff are a 
mainstay of the actuarial sciences, modeling the random 
fluctuations of US Treasury rates is less studied. 
Furthermore, applying standard simulation techniques, 
such as the Monte Carlo method, to actual multi-billion 
dollar companies produce a simulation that can be 
computationally prohibitive. In practice, only hundreds of 
sample paths can be considered, not the usual hundreds of 
thousands one might expect for a simulation of this 
complexity. Hence, insurance companies have a desire to 
accelerate the convergence of the estimation procedure. 
This paper reports the results of cash flow testing 
simulations performed for Conseco L.L.C. using so-called 
quasi-Monte Carlo techniques. In these, pseudo-random 
number generation is replaced with deterministic low 
discrepancy sequences. It was found that by judicious 
choice of subsequences, the quasi-Monte Carlo method 
provided a consistently tighter estimate, than the traditional 
methods, for a fixed, small number of sample paths. The 
techniques used to select these subsequences are discussed. 

1 INTRODUCTION 

The insurance industry faces a number of challenging 
simulation problems. Of course, the actuarial sciences are 
largely devoted to modeling human life expectancy and the 
occurrence of disease. But the financial health of the 
insurance providers themselves heavily depends on making 
the proper response to the changing economic landscape. 
Their ability to payoff insurance contracts 30 years from 
now is strongly tied to investment decisions made today. 

Being aware of this, federal regulation requires 
insurance providers to prove they will be solvent 30 years 
from now. This area of actuarial science is called cash 
flow testing. Each year, insurance companies must run 

simulations of their investment earnings pitted against the 
multiplicity of obligations they incur. In principle, their 
investment strategies should be market independent in the 
sense that money will remain to pay off all contracts 
regardless of the behavior of the marketplace. 

Of course, investment strategies of an insurance 
company are also regulated and are mostly limited to 
investing in bonds with various levels of limited risk. The 
value of these bonds is derived from the prevailing interest 
rates. Since insurance companies are allowed to move 
their investments from short-term to long-term bonds as 
the market changes, simulating long-term solvency 
ultimately focuses on modeling the 90-day and 10-year 
treasury rates. (Intermediate rates are interpolated from 
these base rates.) 

Federal regulation of cash flow testing requires 
insurance providers to consider a set of possible interest 
rate scenarios called the New York Seven. These represent 
seven simple market behaviors from boom to bust. It is 
important to note the actuarial software required to 
demonstrate solvency in these situations does not depend 
directly on the nature of the New York Seven, allowing a 
more ambitious simulation. By modeling the short-term 
and long-term interest rates as stochastic processes, it is 
possible to use this existing software to perform a Monte 
Carlo estimation of the company’s future profit, allowing 
management to fine-tune investment procedures. 

There are two major challenges to this simulation 
process. First, a good model of the interest rates is needed. 
In this paper, we used an interest rate model commonly 
accepted in the industry, and our examination of the 
stochastic scenarios produced using this model found they 
reasonably replicated the distribution of the historical rates. 
But even with this foundation, the run-time of the resulting 
Monte Carlo simulation is stifling. Sometimes days are 
required to get even a crude estimate. 

A possible means of overcoming these challenges 
involves the use of deterministic low discrepancy 
sequences instead of pseudo-random number in the 
simulation. Using number theoretic methods, a low 
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discrepancy sequence attempts to fill space uniformly, not 
mimic randomness. Monte Carlo simulations using these 
sequences, dubbed quasi-Monte Carlo, have outperformed 
traditional methods in a number of complex financial 
simulations. While this technique was not expected to 
shorten the run-time length, it was hoped the quasi-Monte 
Carlo approach would tighten the estimate, given the 
available computation time for the simulation. 

The main difficulty encountered in apply quasi-Monte 
Carlo methods to cash flow testing simulations is the 
limited number of sample paths. The performance gains 
obtained from the use of low discrepancy sequences are 
observed for a large number of sample paths, maybe even 
hundreds of thousands. Limited attention has been given 
to the small sample path case. Motivated by a few existing 
observations, we used various techniques to encourage 
rapid convergence in this small sample path setting. We 
were able to consistently improve the quality of the 
estimates, as compared to traditional Monte Carlo methods, 
for a variety of actual insurance products and companies. 
While some of the techniques we utilized have been 
suggested in the literature, others are original and based on 
our empirical investigations. We believe this work 
strongly justifies further analytical investigation into our 
construction techniques and are currently pursuing it. 

Section 2 examines interest rate models and discusses 
the one we used. Section 3 introduces low discrepancy 
sequences and examines how we accelerated convergence 
of the simulation by using subsequences of the originally 
posed constructions. In Section 4, we present the results of 
several simulations using actual corporate models. 

2 INTEREST RATE MODELS 

The 90-day and 10-year interest rates are modeled using a 
coupled, two-factor, mean reverting random walk. Of 
course, hYo-factor refers to the number of rates being 
modeled. The rates are coupled in the sense a change in 
one affects the other. As an example of this coupling, we 
would anticipate the 10-year rate to be higher than the 90- 
day rate, since a longer commitment warrants a larger 
return. When this is not the case, it is called an inversion. 
There have been several instances of inversions since the 
1970's. (See Figure 1.) The rates are mean reverting in that 
they do not grow without bound, unlike traditional stock 
market models. Instead, they tend to oscillate around an 
average level for prolong periods of time. Of course, this 
is due to strong governmental and market forces designed 
to keep interest rates in check. 

2.1 Review of Interest Rate Models . 

Unlike the lognormal random walk used in Black & 
Scholes models of the stock market, interest rate models 
rarely offer an explicit solution of the underlying stochastic 
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Figure 1: Historical 90-Day (Darker Line) and 10-Year 
Treasury Rates (Lighter Line). 

differential equation. Variou:; approximate solutions and 
special cases have been explored in the literature. Vasicek 
(1 977) proposed a basic mean-reverting model 

dr, = ( a  - br,)dt + odW,' 

where r, is the short term rate, w,' is a one dimensional 
Brownian motion,-and a ,  b , and e are positive constants. 
This model is considered mean-reverting because it admits 
a stationary Gaussian distribution with mean a l b  and 
variance c2 /(2b),  which is viewed as the mean interest 
rate distribution. Various other single-factor, mean 
reverting models have been proposed, such as those of 
Cox, Ingersoll, and Ross (1985) and Longstaff (1989). 
Most of the variations have features improving 
implementation in a particular form of financial derivative. 

In simultaniously modeling short-term and long-term 
interest rates, one must account for their natural coupling. 
This gives rise to so-called two-factor models. The one 
described by Ho (1995) closely resembles our 
implementation. (Note that he gives credit to Brennan and 
Schwartz (1979) and Longstaff and Schwartz (1992).) 
Considerrates Y, and s, satitling 

where (W,*, 5') is a two-dimensional Brownian motion 
with dependent components satisfying dW,*dV,' = pdt . 
cl and c2 are the standard deviations of the short-term 
and long-term rates and 13 is a measure of their 

correlation. Notice the shod-term rate, r,, is much like 

the Vasicek model. The long,-term rate, S, , is basically 
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derived from the short-term rate via the correlation of the 
two Brownian motions. Ang and Sherris (1997) have 
examined specific application of two-factor models to the 
cash flow testing problem. 

2.2 Discussion of TAS Model 

For purposes of the experiments performed at Conseco, we 
used the interest rate model employed by the Tillinghast 
Actuarial Systems (TAS), which is the s o h a r e  system used 
by Conseco to perform cash flow testing, among many other 
tasks. The TAS algorithm for generating an interest rate 
scenario isbased upon the lognormal distribution. For each 
quarter over the duration of the simulation (up to 31 years), 
two uniformly distributed pseudo-random numbers are 
generated. These are transformed into lognormal deviates, 
using volatility parameters specified by the actuaries. The 
90-day rate is transformed first, and then this value is 
coupled to the 10-year rate using the correlation factor. 
These two random walks, as they evolve in time, are subject 
to a series of somewhat empirical transformations to force a 
desired qualitative behavior. For example, one 
transformation involves forcing the return of the interest 
rates to a specified mean, at a specified rate, in a user- 
controlled time period. Another empirical transformation 
controls the duration of an inversion. Finally, artificial 
boundary conditions are imposed on the interest rates. The 
rates are given an elastic response, as specified by the 
actuaries, to upper and lower boundaries. This causes the 
rates to literally “bounce back” into the desired range. For 
more detailed information on this interest model, see the 
formulae section of the TAS documentation 

This model includes a number of financial and non- 
financial parameters. Before proceeding with the 
simulations, the actuaries study the distribution of the 
generated scenarios in comparison with historical rates. 
Non-financial parameters are then adjusted improve the 
replication of historical behavior. 

3 QUASI-MONTE CARLO SIMULATIONS 

A traditional Monte Carlo simulation using the TAS 
generated interest rates calculates the desired quantity, 
such as profit, for each interest rate scenario. A number of 
these scenarios are generated, and the desired estimation is 
the arithmetic average of the profits corresponding to each 
individual scenario. This amounts to an estimation of the 
profit’s expected value, which is an integration over the 
sample space. In this case, the sample space has dimension 
248 (8 random numbers per year times 31 years). 
Traditionally, the Monte Carlo method has been the 
preferred technique for such high dimensional numerical 
integration. It can be shown that the errors in the estimates 
converge to zero like 0(1/ f i) where N is the number of 
sample paths, Niederreiter (1 992). 

Recently, attention has been given to a sister 
technique, known aptly as the quasi-Monte Carlo method. 
Instead of using pseudo-random numbers, a low 
discrepancy sequence is generated in the unit hypercube. 
Low discrepancy sequences do not attempt to mimic 
randomness, but instead attempt to fill the hypercube as 
uniformly as possible. Numerical integration using low 
discrepancy sequences in a Monte Carlo-like fashion often 
has an observed order of convergence of o(1I N )  . (See 
Ninomiya and Tezuka (1995) for solid examples of this 
behavior. Note the actual proven bound is less generous, 
Niederreiter (1 992).) 

The claims of the convergence rates are particularly 
attractive to the actuaries performing cash flow testing 
simulations since the number of sample paths is limited to 
hundreds by practical considerations, instead of tens of 
thousands to millions as in most academic investigations. 
As an example of the practical limitations, a single scenario 
for the American Life Company, a multi-billion dollar 
insurance provider owned by Conseco, takes about 20 
minutes on a Pentium I1 450MZ. To do a Monte Carlo 
simulation involving hundreds of scenarios takes days and 
generates many gigabytes of data and challenges system 
resouces. Therefore, the simulations are limited to 100 to 
200 scenarios in practice, which creates their desire to have a 
consistently tight estimate for this number of sample paths. 

3.1 Low Discrepancy Sequences 

Discrepancy is a set theoretic measure of the distribution of 
a point set in the unit hypercube of some space. Intui- 
tively, a sequence is declared as having low discrepancy if 
it uniformly fills space as the number of points in the 
sequence goes to infinity. The original constructions of 
low discrepancy sequences belong to Faure (1 982), Halton 
(1962), and Sobol’ (1967), to name a few. Niederreiter 
(1 992) has developed a unifying construction technique 
that encompasses much of the earlier work. Tezuka (1993) 
has produced a generalization of Niederreiter’s construc- 
tion, uniting it with Halton sequences. 

The basic elements in constructing a low discrepancy 
sequence have been the same for most of the past decade 
and are succinctly described in Niederreiter (1992). The 
construction process involves sub-dividing the unit 
hypercube into boxes of fixed volume that have faces 
parallel to the cube’s faces. The goal is to put a point in 
each of these boxes before proceeding to a finer scale. 

To generate the nrh element of a low discrepancy 
sequence in s dimensional space, a prime integer b is 
chosen and n is expanded in base b .  That is, 

n = T  a,(n)b‘ 
r=O 
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where a, (n) E {0,1,2,. . .) b - 1) . The i th component of the 
nrh element of the sequence is 

with 

All of the arithmetic is done modulo b to ensure that 
$1 E {0,1,2,. . . , b - 1) . The collection of coefficients c:; is 

known as the i“ generator matrix. How these matrices are 
constructed distinguishes the various methods. 

3.2 Choice of Generator Matrices 

While most of these sequences have been explored in the 
setting of computational- finance, the work of Ninomiya 
and Tezuka (1 995) suggested two types seem to have the 
best performance for a variety of high-dimensional finance 
problems. Following their lead, we implemented the 
Nedereitter construction for a base 2 sequence, .(Bratley, 
Fox, and Niederreiter (1992)), and Tezuka’s (1994) so- 
called Generalized Faure sequence based upon polynomial 
Halton sequences. 

3.2.1 The Niederreiter Generator Matrices 

Let p ,  ( x )  be an irreducible polynomial over the finite field 

F 2 .  It is used to generate the coefficients of the it* 
generator matrix by choosing certain coeficients in the 
Laurent series expansion 

The coefficients a(’) ( j ,  k ,  r )  are determined by multiplying 
both sides of the equality by p ,  (XI’, expanding the right- 
hand-side, grouping together powers of X, and equating 
coefficients of the x terms. The c:: are chosen from 

among these in a manner detailed by Niederreiter (1992). 
Working in base 2 is particularly attractive since the finite 
field operations reduce to the standard binary XOR and 

AND. (See Niederreiter (1992) and Bratley et a1 (1992) for 
details). 

The uniformity of the sequence being generated can be 
shown to depend on the quantity 

This dependence is such that small T,(s) implies low 
discrepancy. Therefore, the irreducible polynomials of a 
specific degree should be exhausted before moving to a 
higher degree in order to achieve the lowest discrepancy. 

3.2.2 The Generalized Faure Generator Matrices 

Unlike the recursion formula described above, Tezuka and 
Tokuyama (1 994) produced a closed-form expression for 
the generator matrix. Their algorithm requires a prime 
number b 2 s .  Then the ( i , j )  component of the hth 
generator matrix is 

i min(i-I, j - I )  ;!)(J; y+-2q:2 . 

The numbers b, , b, , . . . , b, are distinct elements of the finite 
field of order b .  Since the elements of Pascal’s triangle 
can be computed with a simple recursion relation, these 
generator matrices are a fairly simple computation. 

Sequences produced using this type of generator matrix 
are called “Generalized Faure” because of the similarity with 

- the sequences constructed by Fature. The generator matrices 
in Faure’s construction are powers of the triangular matrix 
associated with Pascal’s triangle. Both Niedetreiter and 
Tezuka have produced general construction algorithms that 
ultimately include some form of binomial coefficients, 
suggesting an interesting tie between low discrepancy 
sequences and combinatorial theory. 

3.3 Selected Subsequences 

Since low discrepancy sequences are not attempting to 
mimic randomness, the first elements of the sequence often 
appear in a very predictable fashion. In fact, a large 
number of elements may be required before the unit 
hypercube has been covered. For example, in Figure 2, the 
first 500 points of the Generalized Faure sequence in 250- 
dimensional space have been calculated, and the first and 
second coordinates have been plotted. 
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Figure 2: Components 1 and 2 of the First 500 Elements of 
the Generalized Faure Sequence in 250-dimensional Space. 

Obviously, the components were nearly identical. 
Increasing to 3000 points, Figure 3 demonstrates the 
banded nature of the filling process. Apparently, a large 
number of points would be required before the hypercube 
is covered. With a moments reflection, it is seen an 
individual coordinate of the initial elements of the 
sequence is of the from 

a(251)-’ +b(251)-2, 

since 25 1 is the first prime larger than 250. For this choice 
of generator matrix, it is also observed that for all 
coordinates, we have 

x::\ =a,(n)(251)-’ +.... 

1 

0.9 

0.8 

0 7  

06 

0 5  

0 4  

03 

0.2 
0.1 

0 
0 0.2 0.4 0.6 0.8 1 

Figure 3:  Components 1 and 2 of the First 3000 
Elements of the Generalized Faure Sequence in 250- 
dimensional Space. 

Hence the work of covering the cube is being done by 
higher order terms, suggesting that over 2502 elements are 
needed to “cover” the cube. From this, one might deduce 
Generalized Faure sequences are not appropriate for cash 
flow testing, since this number is many orders of 
magnitude too high for their simulations. However, using 
the subsequence constructions to be discussed, some 
success was achieved. 

On surface appearance, the Niederreiter sequences 
have more promise because the generator matrices are not 
identical for the first term in the expansion. Furthermore, 
the method does not require working in a base higher than 
the dimension of the space. In fact, base 2 is standard due 
to the simplicity of the finite field operations. 

Figure 4 seems to support our hopes. The distribution 
of the first 500 points has few gaps and offers a uniform 
covering. However Figure 5 is less encouraging. As can 
be seen, coordinates 47 and 48 of the sequence were quite 
similar. After careful examination, it is revealed the 
generator matrices for these coordinates are nearly identi- 
cal, and this is traceable to the irreducible polynomials 
used to produce the matrices. The polynomials differ only 
slightly in the highest powers. In fact, many of the 
irreducible polynomials of the finite field of order 2 differ 
only in two coefficients and that is for a term of degree 8 or 
higher. Said in another way, the generator matrices for 
these coordinates will create elements that differ only for 
larger values of n. Once again, this seems to preclude 
cash flow testing simulations. 
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Figure 4: Coordinates 1 and 2 of the First 500 Points in a 
Niederreiter Sequence Base 2. 

3.3.1 Subsequence Selection 

Our motivation for using subsequences to accelerate the 
simulation process originated with a paper by Kocis and 
Whiten (1 997). To provide a historical perspective of their 
work, it had been suggested earlier that s = 40 was the 
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practical limit for quasi-Monte Carlo simulations (Bratley 
et a1 (1992)). In the time since that paper, a number of 
applied simulations in high dimension have observed 
excellent performance. For instance, Paskov and Traub 
(1995) saw excellent convergence results for a 
collateralized mortgage obligation with s = 360. As an 
attempt to formally challenge this limitation, Kocis and 
Whiten (1 997) performed a thorough investigation of 
numerical integration over domains of dimension up to 
400. They concluded low discrepancy sequences 
performed well, thereby further dispelling the concerns of 
Bratley et a1 (1992). Kocis and Whiten also recognized the 
problem with the initial elements systematically filling 
space and introduced leaping over some elements of the 
sequence to accelerate the filling of space. By leaping they 
mean, selecting a periodic subsequence, say every P'" 
term. Their analysis was focused primarily on Halton 
sequences, though they did offer some comment on Sobol' 
sequences. They did not examine either of the sequences 
in this paper. Yet their empirical success encouraged our 
similar investigation using the Niederreiter and 
Generalized Faure sequences. 

The process we used to select the subsequence 
involved two parameters: the starting integer N o  and the 
leaping factor p . The subsequence used in the simulation 
can be expressed as 

The governing premise in the selection of N o  and p is 
the quasi-Monte Carlo simulation will be improved, when 
only a limited number of sample paths is available, if the 
subsequence xn covers the 250-dimensional hypercube as 
uniformly as possible. (It should be noted there is no 
additional computational cost in this implementing this 
premise since the intermediate p elements do not need to 
be calculated.) One approach to implementing this premise 
would be to generate N points for a given N o  and p then 
calculate the discrepancy of the resulting point set. This 
could be repeated for a large set of choices of these 
parameters. The values selected for implementation would 
be the ones corresponding to the lowest discrepancy. 
Unfortynately, the mathematical definition of discrepancy 
of a point set in the unit hypercube involves a supermum 
over all Lebesgue-measurable subsets. This, of course, 
would require an uncountable number of operations. 

An alternative approach would be to use the L2- 
discrepancy examined by Hickemell (1 996). Calculating 
the L2 -discrepancy involves a double summation over the 
point set of size N .  Using the process described above, it 
should be possible to estimate optimal choices of N o  and 
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p for fixed N .  This approach is currently under 
investigation. 

What is offered in this paper is a softer, more 
empirical version of the above stated procedure, which can 
be (and was) accomplished in a corporate setting. While 
this method will probably not find the optimal parameters 
in a strict mathematical sense., it was easy to do and has 
performed well in a variety of applications. 

Basically, a qualitative study was done. Some thought 
was given to properties p should process, and then cross 
sectional pictures, such as those in Figures 2-5, were 
examined. The goal was to firid values of N o  and p that 
would make the cross section in Figure 5 look more like 
that in Figure 4, for example, uniformly across all 250 
coordinates for the chosen number of points N 

09 - I  

0 0.2 0.4 0.6 0.8 1 

Figure 5: Same as Figure 4 Except Coordinates 47 & 48. 

3.3.1.1 Niederreiter Sequences 

Beginning with the Niederreiter sequence, the choice of p 
focused on the irreducible polynomials for base 2. The 
algorithm used to produce the generator matrices, as 
described above, utilizes a recursive relationship involving 
the coefficients of the polynomials. To produce a low 
discrepancy sequence in a 250-dimensional hypercube, the 
first 250 irreducible polynomials are required. Grouping 
the polynomials by degree and exhausting the list of 
polynomials of one degree befxe going to the next higher, 
means that degree 11 is reached. Furthermore, it was 
observed that often only two coefficients of the 
polynomials differ. For example, 

11111011011, 

11 11 11010112. 
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(Note that the coefficients are just 0 or 1 in the finite field 
of order 2, so polynomials can be succinctly expressed as a 
string of bits.) Intuitively speaking, there will be a 
similarity between the generator matices of adjacent 
coordinates for similar polynomials. Furthermore, the base 
2 expansion of n will need some of the higher powers of 2 
in order to captialize on the difference between the 
generator matrices. As a starting point, we examined 
p = 2' where r is larger than the degree of the term for 
which the polynomials differ. It was soon observed that 
p = 2" = 1024 produced a nice dispersion for 500 points, 
see Figure 6.  
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Figure 6: Same as Figure 5 with a Leap of 1024. 

One other observation resulting fiom this qualitative 
study of the discrepancy of subsequences of the Niederreiter 
construction was that the coordinates produced by 
irreducible and non-primitive polynomials seemed 
problematic. Niederreiter required irreducible polynomials 
for his construction so he could perform a partial fiaction 
decomposition of a rational function. Further restricting to 
primitive polynomials would raise the value he labeled as 
T, (250), which describes the fineness of the distribution of 
the sequence thereby increasing the discrepancy of the 
sequence. Ultimately, for our cash flow testing simulation, 
all non-primitive polynomials were omitted. In fact, some 
primitive polynomials were omitted, because they did not 
cooperate with a choice of p that seemed to work well with 
most of the other 250 coordinates. 

This analysis was attempted for N = 500,250,100 . 
The smaller values of N increased the values of p . For 
N = 500, the value of No didn't seem to matter and was 
taken to be 1. The value p = 2" + 26 = 1088 seemed to 
perform best. Likewise, for N = 250, the values of 
N o  = 2' + 1 = 129 with p = 2" - 1 = 13 1071 were identi- 

fied as reasonable choices. Little success was achieved for 
N = 100. 

3.3.1.2 Generalized Faure Subsequences 

It proved to be more difficult to produce appropriate 
choices of No and p for Generalized Faure subsequences. 
The diagonal bands of Figures 2 & 3 seemed present in 
most subsequences. As with the Niederreiter subse- 
quences, powers of the base b seemed a reasonable place 
to begin. For 250-dimensional sequences, the next larger 
prime number is b = 25 1. Examining Figure 7, we see that 
for N = 500, N o  = 1, and p = b = 251 a series 
diagonal strips was produced. 

of 
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Figure 7: Same as Figure 2 with Leap of 25 1. 

Many other values of the leap parameter were tried. 
Most involved powers of the base shifted by a small amount. 
Inevitably, some coordinates produced cross-sectional 
graphs like Figure 7 or with even fewer diagonal strips. 
Examining the generator matrices offered some insight as to 
why these pattems are produced, but no choice of para- 
meters seemed to uniformly remove it. These matters are 
under further investigation. For purposes of this simulation, 
we used the values of the parameters already mentioned. 

4 CASH FLOW TESTING SIMULATIONS 

Three simulations were performed. The first was a 
simulation of a single premium deferred annuity. The 
others involved cash flow simulations of entire companies 
owned by Conseco. A mid-sized company, Massachusetts 
General Life, was chosen for the second simulation. The 
final simulation involved the largest insurance provider 
owned by Conseco, American Life Company. In all of the 
studies, the quantity estimated was the present value of the 
book profit after taxes. 
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4.1 A Single Premium Deferred Annuity 

The numerical experiments began with a quasi-Monte 
Carlo simulation of a single product an insurance company 
might carry. We chose a single premium deferred annuity 
product carried by one of Conseco's subsidiary companies. 
This product can be viewed as an interest bearing bank 
account into which a single deposit is made. The amount 
of interest paid depends on current market conditions. 
First, we attempted to measure the improvement the use of 
our subsequences might offer relative to the originally 
posed algorithms. 

Figure 8 shows the estimate produced by the standard 
algorithm is still increasing after 750 interest rate 
scenarios. The simulations utilizing the subsequences seem 
to have converged fairly quickly and are not far from the 
resulting estimate at the desired value of 250 scenarios. 

SPDA Model 
Generialbed Niederreiter 

I I  

i I 

Figure 8: Niederreiter with and without Leaping 

The situation is even more 'dramatic for the 
Generalized Faure sequences, as shown in Figure 9. As . 
observed earlier, the standard algorithm produces a 
sequence that fills the cube in a slow, systematic fashion. 
The estimate is again increasing and has not converged by 
750 scenarios. . However, the subsequence selection 
discussed above produced an estimate that seems to have 
approximately converged within the specified number of 
scenarios, even with the problems that where identified. 

Figure 10 shows the modified quasi-Monte Carlo 
simulations converge to the same estimate and also agree 
with a traditional Monte Carlo simulation using the 
pseudo-random number generator in TAS. Furthermore, 
the estimates produced by the use of low discrepancy 
subsequences are much tighter in the 100 to 200 ranges 
than was the traditional simulation approach. So our use of 
subsequences in the quasi-Monte Carlo method in this cash 
flow testing simulation achieved the desired goal. 

SPDA Model 
Generialized Faure 

_.J-u i 
-1 

Figure 9: Generalized Faure with and without Leaping. 
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Figure 10: Comparing against Random Number Generation. 

4.2 Massachusetts General Life 

Encouraged by the results of a cash flow simulation of a 
single product, the experiment continued with the 
simulation of an entire company. Now facing the real 
world constraints of time and space, this simulation was 
limited to 400 interest rate scenarios. It is difficult to 
conclude from any of the performances that the simulation 
had converged. Note that the dollar amounts involved 
were large. The book profit was on the order of 
$27,000,000. 

In Figure 11, the relative errors of several of the 
simulations are plotted. The Niederreiter subsequences 
and TAS generated random numbers were in some 
agreement at the end of the simulation, so their estimations 
were used to calculate the relative errors. Notice the 
Generalized Faure subsequences did not perform as well 
for this much larger simulation. Also, the estimate they 
produce depends, in this case, strongly on the seed used to 
initiate the pseudo-random number generation. This has 
been observed in other financial simulations and cannot be 

. 
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Figure 11: Convergence Study of MGL Including Two 
Different Random Number Sequences Differing by Choice 
of Initial Seed. 

remedied by increasing the number of sample paths. Since 
the seed is a non-financial parameter in the simulation, this 
dependence is particularly disturbing in the arena of cash 
flow testing. 

We observe the Niederreiter subsequences are within 
1% to 2% of the final value in the desired range of 100 to 
200 scenarios. However, the simulation using the pseudo- 
random numbers beginning with 26 as initial seed 
happened to provide a better estimate in this range, while 
the simulation with 29 as the initial seed did not. Perhaps, 
the most significant fact to conclude from the first two 
stages of this simulation process is that the Niederreiter 
subsequences have perform consistently and acceptably in 
two very different situations. The same cannot be said for 
the traditional methods. 

4.3 American Life Company 

American Life Company is a large company whose 
holdings are on the order of a billion dollars. It carries a 
wide variety of customers and products. As a result, the 
cash flow testing simulation is almost prohibitively large. 
The simulations being reported herein took days to run on 
a dedicated computer. In practice, the runs are often 
interrupted by server problems and so on. It is difficult for 
the team of actuaries with the responsibility of doing the 
testing to perform the estimations using more than 100 
scenarios. For these simulation experiments, 250 scenarios 
were used and the run time was 72 hours. Nearly a 
gigabyte of data was produced for each simulation. 

The Generalized Faure subsequences continued their 
poor performance for the larger simulations. In fact, the 
performance was so poor, it has been omitted from the 
graph to reduce the visual clutter. 

Again, it is difficult to argue that any of the methods 
had converged. To produce this relative error plot, the 
average of the final estimates of all three methods was 
used. Two traditional Monte Carlo simulations were 
included to demonstrate the variance in the estimate due to 
changes in the initial seed. One of the traditional 
simulations produced an estimate that was reasonable in 
the 100 to 200 scenario range, while the other was off 
several percent. Meanwhile, the Niederreiter subsequences 
were in the 1% to 2% error range over the critical number 
of interest rate scenarios. Hence, the method of 
subsequence construction examined in this paper produced 
a quasi-Monte Carlo simulation of cash flow testing that 
consistently out-performed the traditional approach in this 
limited number of sample paths environment. 
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Figure 12: 
Sequences and the Niederreiter Subsequence 

ALC with Two Different Random Number 

5 CONCLUDING REMARKS 

On the basis of these results, Conseco has chosen to use the 
quasi-Monte Carlo method utilizing the Niederreiter 
subsequences as examined in this paper. But this does not 
mean the problem being addressed has reached a 
conclusion. A less qualitative approach to subsequence 
selection is desirable. Perhaps the L2 -discrepancy method 
previously mentioned holds the answer. We are 
investigating. Furthermore, a thorough examination of the 
Generalized Faure method is in order. Since it offers the 
simplest generator matrix construction, it is desirable to use 
these sequences; yet, its performance in this small number 
of sample paths environment was less than satisfactory. 

It is believed that the empirical results of this study 
show that further study of the use of low discrepancy 
sequences in high dimensional, low number of sample 
paths problems is warranted. 
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