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Hyperspherical close-coupling calculations for charge-transfer cross sections
in He2¿¿H„1s… collisions at low energies

Chien-Nan Liu,1,2 Anh-Thu Le,1 Toru Morishita,3 B. D. Esry,1 and C. D. Lin1
1Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506

2Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan
3Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1 Chofu-ga-oka, Chofu-shi,

Tokyo 182-8585, Japan
~Received 11 December 2002; published 23 May 2003!

A theory for ion-atom collisions at low energies based on the hyperspherical close-coupling~HSCC! method
is presented. In hyperspherical coordinates the wave function is expanded in analogy to the Born-Oppenheimer
approximation where the adiabatic channel functions are calculated withB-spline basis functions while the
coupled hyperradial equations are solved by a combination ofR-matrix propagation and the slow/smooth
variable discretization method. The HSCC method is applied to calculate charge-transfer cross sections for
He211H(1s)→He1(n52)1H1 reactions at center-of-mass energies from 10 eV to 4 keV. The results are
shown to be in general good agreement with calculations based on the molecular orbital~MO! expansion
method where electron translation factors~ETF’s! or switching functions have been incorporated in each MO.
However, discrepancies were found at very low energies. It is shown that the HSCC method can be used to
study low-energy ion-atom collisions without the need to introduce thead hocETF’s, and the results are free
from ambiguities associated with the traditional MO expansion approach.

DOI: 10.1103/PhysRevA.67.052705 PACS number~s!: 34.70.1e, 31.15.Ja, 34.10.1x, 34.50.Pi

I. INTRODUCTION

Charge-transfer processes in slow ion-atom collisions are
examples of rearrangement collisions that are difficult to
treat theoretically. One of the main difficulties stems from
the fact that there is not a single coordinate system that is
suitable for describing all the different arrangements of the
constituent particles. At low collision velocities, the electron
is expected to be shared between the two slowly moving
nuclei such that the collision complex can be approximated
as a transient molecule. Therefore, molecular orbitals~MO’s!
are the natural representation for describing slow ion-atom
collisions. At low energies, a full quantum mechanical treat-
ment for both the electronic and the nuclear motion is also
required. The well-known perturbed stationary state~PSS!
approximation, introduced by Massey and Smith@1# more
than half a century ago, is based on the MO expansion, or the
adiabatic Born-Oppenheimer~BO! approximation. In the
PSS model, electronic transitions occur via nonadiabatic
couplings between different molecular orbitals. However, the
adiabatic BO approximation is known to have severe defi-
ciencies, originating from the fact that the molecular orbitals
do not satisfy the correct asymptotic boundary conditions.
The fundamental defects associated with the PSS model have
been well documented, including incorrect dissociation
thresholds, nonvanishing asymptotic couplings and non-
Galilean-invariant calculated cross sections@2–5#. Although
these problems have been well known for decades, the rem-
edies are less obvious@6,7#. Approaches based on the so-
called reaction coordinates~RC’s! have been proposed@8,9#,
but very few calculations have been carried out@10–13#.
Even within the RC method, there still exists some arbitrari-
ness in the choice of reaction coordinates.

Most of the low-energy ion-atom collision calculations

beyond the PSS model have been calculated by introducing
modifications through electron translation factors~ETF’s!
@14,15#. The ETF’s were first adopted in the semiclassical
treatment of ion-atom collisions at higher energies where the
internuclear motion is treated classically@16,3#. In the PSS
model, the asymptotic limit of each molecular orbital is re-
duced to an atomic orbital. For an atom-atom or ion-atom
collision, each atomic electron is supposedly moving with
one or the other atom with a well-defined velocity in the
asymptotic region. This translational motion is represented
by attaching a plane wave ETF to each atomic orbital. Such
a procedure does not specify how the translational motion
should be accounted for at finite internuclear separations;
thus different types of switching functions~or ETF’s! have
been proposed and used in actual calculations@17,18#. Such
approaches are widely used in the literature and we will de-
scribe them as MO-ETF models in this paper. The introduc-
tion of ETF’s in MO-ETF models means that the basis func-
tions do satisfy the correct asymptotic boundary conditions
and the calculated cross sections are Galilean invariant.
However, thesead hoc ETF’s are semiclassical in nature,
even though the same formulation has been applied to quan-
tum mechanical formulations as well@15,14#.

In spite of these limitations, a large number of calcula-
tions based on the MO-ETF models have been carried out for
low-energy ion-atom collisions, and the results often com-
pare reasonably well with experiments. On the other hand,
ion-atom collision experiments at low energies are very dif-
ficult and experiments often can determine total charge-
transfer cross sections only. Thus the validity of the MO-
ETF-type calculations has not been fully tested at the high-
precision level. In this paper we present a theoretical
approach for ion-atom collisions at low energies. Our goal is
to provide results for elementary ion-atom collision systems
so that they can be used to evaluate the validity of other
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methods such as the MO-ETF-type models. As a numerical
implementation of this theory, charge transfer cross sections
in He211H collisions are presented.

The simplest ion-atom collision system consists of two
heavy nuclei and one electron. They belong to a special class
of Coulomb three-body systems. In recent decades, the hy-
perspherical close-coupling~HSCC! approach has been
shown to provide a powerful framework for obtaining struc-
ture parameters and scattering cross sections involving three
particles @19#. The method has been used to study helium
atoms@20#, positron-atom collisions@21# ~two light particles
and one heavy!, atom-diatom collisions@22,23#, muonic
molecules@24#, and three-body recombinations@25# ~three
particles of identical or nearly identical masses!. It was em-
phasized earlier by Fano and co-workers@26# that the funda-
mental difficulties of the PSS model can be avoided if one
formulates ion-atom collisions within the hyperspherical
framework. However, few actual calculations have been
done. For ion-atom collisions, even at thermal energies, the
number of partial waves needed to reach a converged total
cross section calculation easily runs into hundreds or thou-
sands. In the standard HSCC method, unlike the PSS ap-
proach, each partial wave is an independent calculation; thus
the hyperspherical approach would require huge computa-
tional resources. However, it has been shown recently by
Igarashi and Lin@27# that simplifications similar to those of
the PSS model can be applied to ion-atom collisions within
the hyperspherical approach. Using a simple two-channel
model, charge transfer cross sections in D11H(1s) colli-
sions@27# and inm11H(1s) collisions @28# have been ob-
tained, but only for energies up to a few eV. To generalize
these earlier studies to many-channel problems and to take
advantage of simplifications similar to the PSS model, as
detailed below, the hyperspherical approach has to be formu-
lated in the body frame of the three-body system, and a num-
ber of numerical difficulties have to be overcome if it is to be
extended to the tens of keV region.

In this paper we present a full account of the hyperspheri-
cal close-coupling method for ion-atom collisions. The for-
mulation is similar to the PSS model except that the hyper-
radius is used as the adiabatic parameter. Computationally,
we adopted the following techniques. First, the total wave
function is expanded in the body-fixed frame, with the inter-
nuclear axis chosen to be the body-frame quantization axis.
The adiabatic hyperspherical channel functions are calcu-
lated using B-spline basis functions. Second, the slow/
smooth variable discretization~SVD! method@29#, combined
with theR-matrix propagation method of Kato and Watanabe
@30#, is used to solve the coupled hyperradial equations. The
latter method allows us to avoid calculating nonadiabatic
coupling matrix elements. Third, theR matrix from the inner
region and the asymptotic solutions are matched at a large
hyperradius to obtain theK matrix and then the scattering
cross sections. Simplifications and modifications of the pro-
cedures used by Kato and Watanabe@30# needed for ion-
atom collision systems are also explained.

For a pilot calculation, we studied the charge transfer pro-
cess in slow He211H(1s) collisions at center-of-mass ener-
gies from 10 eV to 4.0 keV. The results are compared with

other calculations. At higher energies the present results are
in general agreement with other calculations and experi-
ments. However, we found significant discrepancy with the
MO-ETF calculations@15# at low energies. In the low-energy
region, our results are in good agreement with those obtained
from the distorted atomic orbital method@31#, despite the
fact that the latter has never been fully developed into a
practical computational tool because of its mathematical
complexity. In Sec. II, we describe the hyperspherical close-
coupling method. The details of the computational proce-
dures and tests are described in Sec. III. In Sec. IV, we
present our calculated charge-transfer cross sections for
He211H(1s) collisions and compare them with other theo-
retical calculations. The last section gives a summary and
conclusions.

II. HYPERSPHERICAL METHOD
FOR ION-ATOM COLLISIONS

In this section we describe the theoretical methods and the
computational techniques used in the hyperspherical method
for treating ion-atom collisions. A detailed description of hy-
perspherical coordinates for arbitrary three-body systems is
given in the review by Lin@19#. Here we give only the basic
equations and the computational methods used in the present
work.

A. Elements of the hyperspherical close-coupling method

For collisions such as He211H, we describe the collision
process in the center-of-mass frame. Using atomic units, we
designate the mass of each of the three particles bym1 , m2,
andm3, respectively. Three sets of Jacobi coordinates can be
used to describe the relative motion of the particles~see Fig.
1!. In the ‘‘molecular’’ frame, or thea set of coordinates, the
first Jacobi vectorr1 is from He21 to H1, with reduced mass
m1; and the second Jacobi vectorr2 is from the center of

FIG. 1. Three sets of Jacobi coordinates.
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mass of He21 and H1 to the electron, with reduced massm2.
The hyperradiusR and hyperanglef are defined by

R5Am1

m
r1

21
m2

m
r2

2, ~1!

tanf5Am2

m1

r2

r1
. ~2!

Note thatm is arbitrary. Another angleu, defined to be the
angle between the two Jacobi vectors, will also be used later.
The range off is from 0 top/2 andu ranges from 0 top.
Clearly, one can also define the two other sets of coordinates
in Fig. 1. In theb-set coordinates, the first Jacobi vector is
from He21 to the electron, and the second Jacobi vector is
from the center of mass of (He21,e2) to H1. This set is
used to describe the scattering of the proton with the bound
He1 ion. Similar g-set Jacobi coordinates can be defined to
describe He21 and the (H1,e2) system. For each Jacobi
coordinate system, a set of new mass-weighted hyperspheri-
cal coordinates similar to Eqs.~1! and ~2! can be defined. A
special notable feature is that the hyperradius thus defined is
identical for the three sets of Jacobi coordinates. In the fol-
lowing we will express the equations using thea set of co-
ordinates. When quantities are expressed inb- or g-set co-
ordinates, superscripts ofb or g will be used. In thea-set
coordinates the formulation of the hyperspherical close-
coupling method is very similar to the PSS model. We will
choosem to be the reduced mass of the two heavy nuclei.
The hyperradiusR then becomes very close to the internu-
clear distance. From Eq.~1!, the difference is of the order of
Am2 /m1, which is roughly the square root of the mass of the
electron over the reduced mass of the two heavy particles.

We first introduce the rescaled wave function

C~R,V,v̂ !5cR3/2sinf cosf; ~3!

then the Scho¨dinger equation is of the form

S 2
1

2

]

]R
R2

]

]R
1

15

8
1Had~R;V!2mR2EDC~R,V,v̂ !50,

~4!

where V[$f,u%, and v̂ denotes the three Euler angles
$v1 ,v2 ,v3% of the body-frame axes with respect to the
space-fixed frame.Had is the adiabatic Hamiltonian,

Had~R;V,v̂ !5
L2

2
1mRC~V!, ~5!

whereL2 is the square of the grand angular momentum op-
erator andC/R is the total Coulomb interaction among the
three charges. Equation~4! can be solved in a manner similar
to the Born-Oppenheimer approximation withR being
treated as a slow variable.

We solved the wave function in the body frame, where the
z8 axis is chosen to be alongr1 and the three particles are on
the x8z8 plane. The rescaled wave function is expanded in

terms of the normalized and symmetrized rotation functions
D̃ @32# and the body-frame adiabatic basis functions
FmI(R;V):

C~R,V,v̂ !5(
m

(
I

FmI~R!FmI~R;V!D̃IM J

J ~v1 ,v2 ,v3!,

~6!

wherem is the channel index,J is the total angular momen-
tum, I is the absolute value of the projection ofJ along thez8
axis, andMJ is the projection ofJ along the space-fixedz
axis.

In the body frame, theL2 operator takes the form

L25T01T11T221/4, ~7!

where

T052
]2

]f2 2
1

sin2f cos2f sinu

]

]u S sinu
]

]u D , ~8!

~D̃IM J

J uT1uD̃I 8MJ

J
!5F I 2S 1

sin2f cos2f sin2u
2

2

cos2f D
1J~J11!S 1

cos2f D Gd II 8 , ~9!

~D̃IM J

J uT2uD̃I 8MJ

J
!5g II 11

J hII 11d I 8I 111g II 21
J hII 21d I 8I 21

5T̄2 , ~10!

with

hII 615
1

cos2f S 6
]

]u
1~ I 61!cotu D , ~11!

g II 11
J 52@11~A221!d I0#@~J1I 11!~J2I !#1/2, ~12!

g II 21
J 52@11~A221!d I0#@~J2I 11!~J1I !#1/2. ~13!

Note that the brackets (uu) denote an integration overv̂.
Only T2 couples the internal motion to the external rotation.
While both matrix elements ofT0 and T1 are diagonal in
I , T2 couples adjacentI ’s.

In order to efficiently treat a large number of partial
waves,L2 is separated into two parts, each of which depends
only on I andJ, respectively,

~D̃IM J

J uT1uD̃IM J

J !5I 2T1a1J~J11!T1b . ~14!

The adiabatic basis functionsFmI(R;V) are chosen to sat-
isfy

@T01I 2T1a12mCR#FmI~R;V!52mR2Um
I ~R!FmI~R;V!.

~15!

The FmI are obtained by solving the eigenvalue problem
with a large two-dimensional (u and f)B-spline basis set
@33#, thus determining adiabatic potential curvesUm

I (R) for
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each I and a set of orthonormal adiabatic basis functions
FmI(R;f,u) that depend parametrically onR. Specifically,
the channel functions are expanded onto a direct product of
fifth-order B splines inf andu; the details are described in
the next section. Note thatFmI is not an eigenfunction of the
adiabatic HamiltonianHad in Eq. ~5!. The eigenfunctions of
the adiabatic Hamiltonian can be obtained by diagonalizing
the tridiagonal block matrix constructed by

S AI 50 B1 . . .

B2 AI 51 . . .

A A �

D , ~16!

where

Amn
I ~R!52mR2Um

I dmn1J~J11!^FmI uT1buFnI&, ~17!

B6~R!5^FmI uT̄2uFnI 61&5g II 61
J ^FmI uhII 61uFnI 61&.

~18!

Note that the bracketŝuu& denote integration overV.
The advantage of this partition is that these basis func-

tionsF need to be calculated only once for all theJ’s. So do
the matrix elementŝFmI uT1buFnI& and^FmI uhII 61uFnI 61&,
which are required in constructing matricesA and B. As a
result, constructing the adiabatic Hamiltonian for a givenJ
involves only fast algebraic operations within a givenI sub-
space. Such an efficient approach is critical since hundreds or
thousands of partial waves need to be included in order to
obtain a converged cross section even for collisions at ther-
mal energies and above.

B. R-matrix propagation with SVD method

The standard method of solving the Schro¨dinger equation
@cf. Eq. ~4!# with the expansion of Eq.~6! is to project out
the adiabatic basis functions, resulting in a set of coupled
differential equations for the hyperradial functionsFmI . It is
well known that such coupled differential equations are dif-
ficult to solve accurately since the coupling matrix elements
change rapidly in the avoided crossing regions. Two well-
known procedures have been used to address such numerical
difficulties. The first is the ‘‘diabatization’’ of the subset of
adiabatic functions, commonly employed in ion-atom and
ion-molecule collision calculations within the PSS or
MO-ETF model@14,34–36#. Before the diabatization proce-
dure, one needs to obtain nonadiabatic coupling matrix ele-
ments accurately, and this has to be done very carefully in
the region of an avoided crossing. The second method, which
was designed to bypass the calculation of nonadiabatic cou-
pling matrix elements, is the so-called diabatic-by-sector
method @20,37#. This method was used in earlier hyper-
spherical close-coupling calculations and in atom-diatom re-
active scattering calculations@22,23,38#. In this approach,
the hyperradius is divided into many small sectors and within
each sector the channel functions are fixed and chosen to be
the adiabatic channel functions at the midpoint within the
sector. The diabatic-by-sector method simplifies the calcula-
tion but the method in principle is not mathematically com-

plete even if the sector size is reduced to zero@39#. In prac-
tice, this means slower convergence in the calculation.

Here we adopt yet another efficient method to solve the
hyperradial equations. It is a combination of theR-matrix
propagation method@40#, which propagates theR matrix
from one sector to the next, and the SVD method@29# within
each sector, where the Hamiltonian is a smoothly varying
function of R. This method was adopted by Kato and Wa-
tanabe@30# for solving the two-electron atomic Schro¨dinger
equation and by Tolstikhin and Nakamura@41# for atom-
diatom collisions. The key elements of the method and modi-
fications that are needed for the present ion-atom collision
problems are presented below.

TheR-matrix propagation method is a stable and efficient
way to solve a set of coupled differential equations@40#. In
this approach, the hyperradius is divided into many small
finite intervals. Solutions within each interval are calculated
and propagated with respect to the hyperradius.

We start with the Schro¨dinger equation, Eq.~4!. Solutions
within an interval@a,b# can be formally written in terms of
the Green’s function defined within the interval

C~R,V!5E
a

b

dR8E dV8G~R,V;R8,V8!L~R8!C~R8,V8!,

~19!

whereL is the Bloch operator defined as

L~R!5R2Fd~R2b!
]

]R
2d~R2a!

]

]RG . ~20!

A spectral resolution of the Green’s function can be written
as

G~R,V;R8,V8!5(
k

uk~R,V!uk~R8,V8!

m~Ek2E!
, ~21!

where $uk(R,V),Ek% are the solutions of the eigenvalue
problem

F2
1

2

]

]R
R2

]

]R
1

15

8
1Had~R;V!1L2R2mEkGuk~R,V!

50. ~22!

This equation is to be solved using the SVD method devel-
oped by Tolstikhin et al. @29#. The method treats the
Schrödinger equation in the discrete-variable representation
~DVR! @42# with respect toR. A set of DVR basis functions
are constructed using orthonormal basis functions based on
Jacobi polynomials of degrees up toM21 within the inter-
val @a,b#. The solutionuk then is expanded in terms of
pointwise DVR basis functions p j (R) within an
M-dimensional subspace,

uk~R,V!5(
j 51

M

p j~R!Q jk~V!. ~23!
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Note that DVR basis functions have the important property
that p j (Rj 8)5k j

21d j j 8 , where k is a weight constant de-
pending on the indices of the Jacobi polynomials. Then, Eq.
~22! is transformed into a set of coupled differential equa-
tions with respect to the coefficientsQ jk(V),

Had~Rj ,V!Q jk~V!1 (
j 851

M

@K j j 82r j j 8mEk#Q j 8k~V!50,

~24!

where

K j j 85E
a

b

p j~R!S 2
1

2

]

]R
R2

]

]R
1

15

8
1L~R! Dp j 8~R!dR,

~25!

r j j 85E
a

b

p j~R!R2p j 8~R!dR. ~26!

These coefficients can be expanded in terms of the adiabatic
channel functionsFn ,

Q jk~V!5(
n

Fn~Rj ,V!cn jk , ~27!

wheren5$mI % and theRj ’s are the quadrature abscissas of
the Jacobi polynomial of degreeM within the interval@a,b#.
The set of coupled differential equations~24! is then trans-
formed into an algebraic generalized eigenvalue problem,

(
n8

F Ūnn8~Rj !cn8 jk1 (
j 851

M

@K j j 82r j j 8mEk#On j ,n8 j 8cn8 j 8kG
50, ~28!

where

Ūnn8~Rj !5^Fn~Rj !uHaduFn8~Rj !&, ~29!

On j ,n8 j 85^Fn~Rj !uFn8~Rj 8!&. ~30!

The M-point Gauss quadrature is used to evaluate the inte-
gration overR in Eqs. ~28!, ~29!, and ~30!. Therefore, we
need to solve the eigenvalue problem Eq.~15! only at the
values ofR corresponding to the quadrature abscissas of the
Jacobi polynomials of degreeM within each interval.

Using the SVD method, there is no need to calculate
nonadiabatic coupling matrix elements; their effects are im-
plicitly incorporated by the overlap matrix elements of the
adiabatic channels at different hyperradiiR. Note that the
calculation of the overlap matrix elements at different values
of the hyperradius is time consuming. However, these over-
lapping matrix elements need to be calculated only once,
since the adiabatic channels@cf. Eq. ~15!# are independent of
the total angular momentumJ.

Once the basis functionsuk are obtained, the solution
C(R,V) can be readily constructed:

C~R,V!5(
k

uk~R,V!

m~Ek2E! Fb2K ukU]C

]R L
R5b

2a2K ukU]C

]R L
R5a

G . ~31!

The R matrix with respect to the adiabatic channels is de-
fined at the boundaries of the interval as

^FnuC&5(
m

Rnm~R!K FmU]C

]R L . ~32!

The propagation formula for theR matrix is in the form

Rnm~b!5Gnm
bb 2(

l
(
l 8

Gnl
ba@Gaa1R~a!# l l 8

21Gl 8m
ab ,

~33!

where

Gnm
R1R25R1R2(

k

^Fn~R1!uuk~R1!&^uk~R2!uFm~R2!&
m~Ek2E!

.

~34!

TheR matrix is set to zero atR50. Solutions are calcu-
lated and propagated to largeR in order to obtain theR
matrix at an asymptotic hyperradius, where the hyperspheri-
cal channels converge to various atomic target states andFmI
can be matched to asymptotic solutions. The advantage of
the R-matrix propagation is its stability. Unlike the wave
function itself, there are no exponentially decreasing or in-
creasing functions in the propagation. Also, the basis func-
tions used in constructing the propagators are energy inde-
pendent, making it efficient to obtain wave functions for
different energies. Further details of the methods can be
found in Refs.@29,30#.

C. Matching to the asymptotic solutions

The R-matrix propagation method can be continued up to
a large hyperspherical radiusR0 beyond which one particle is
far away from the other pair of particles. In this work we do
not consider the three-body breakup process; thus the
asymptotic wave functionCl

as(R0) of the dissociated system
is represented by

Cl
as~r1 ,r2!5(

i 51

N

@ f i~ki tr2
t !d il

2gi~ki tr2
t !Kil#w i~r1

t !Yl
1
t l

2
tJMJ

~ r̂1
t ,r̂2

t !/r1
tr2

t ,

~35!

where the wave function is expressed in the laboratory-fixed
frame and the base functions are given int5b- or g-set
coordinates. For the present Coulomb three-body system,w i
is a hydrogenic radial wavefunction with angular momentum
l 1, and the relative angular momentum between the hydro-
genlike atom and the heavy particle isl 2, coupled to form a
total angular momentum functionYl 1l 2JMJ

, with total angular
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momentumJ and its projection with respect to the laboratory
fixed quantization axis,MJ . f and g are the regular and ir-
regular asymptotic functions. For the He211H asymptotic
limit, they are Bessel functions and Neumann functions, re-
spectively. For the H11He1 asymptotic limit, they are regu-
lar and irregular Coulomb functions, respectively. Note that
the wave vectork depends on the Jacobi coordinates used.
They are related to the kinetic energy for each channel by

1

2m1
a

ka
25

1

2m2
b

kb
25

1

2m2
g

kg
25E2Un~`!. ~36!

The general asymptotic solution~35! is matched to the inner
solution obtained from theR-matrix propagation,

1

R0
5/2sinf cosf

(
s51

N

HslCs~R0!5Cl
as~r1 ,r2!uR5R0

,

~37!

where the inner solution is expressed ina-set coordinates
and the matching is to be carried out atR5R0. Such a
matching procedure was discussed and employed by Zhou
and Lin@21# for e11H(1s) collisions previously. It involves
transforming theb- andg-set wave functions into thea-set
coordinates, from where integration over all the angular co-
ordinates atR5R0 is carried out. In practice, this requires a
two-dimensional numerical integration involving (f,u) and
the procedure is called two-dimensional matching. From the
resultingK matrix, the partial cross sections are obtained:

s i j 5
4p~2J11!

ki
2 U K

12 iKU
i j

2

. ~38!

Since the wave functions beyondR0 are represented in either
the b- or g-set Jacobi coordinates depending on the disso-
ciation channels, there is no spurious coupling between the
channels.

Calculation of theK matrix using the two-dimensional
matching method is often used for calculations at higher pre-
cision and at low collision energies. For ion-atom collisions
where the matching has to be carried out for each partial
wave, it is desirable to simplify the calculation. Consider the
Bessel and Coulomb functions, which are written asf (ktr2

t)
and g(ktr2

t) in Eq. ~35!; the argument has been written in
terms of Jacobi coordinates. Let the masses of each of the
three particles bem1 , m2, and 1.0, where the last is the mass
of the electron. The hyperspherical radius is related tor1 and
r2 for each Jacobi sett by

R5Am1
a

m
Ar1a

2 1
m2

a

m1
a r2a

2 5Am2
b

m
Ar2b

2 1
m1

b

m2
b r1b

2

5Am2
g

m
Ar2g

2 1
m1

g

m2
g r1g

2 . ~39!

At the matching radiusR0 , r1 is of the same order asr2 for
the a set, butr2 is much larger thanr1 for the two other
sets. Since the ratios of the reduced masses within the square

roots of Eq.~39! are all roughly equal to the ratio of the mass
of the electron to the mass of the heavy particle for any set of
Jacobi coordinates, atR0 we can approximate

R05Am1
a

m
r1a5Am2

b

m
r2b5Am2

g

m
r2g . ~40!

By settingm5m1
a , the argument of the Bessel and/or Cou-

lomb function in theb-set coordinates,kbr2
b , from Eqs.~36!

and~40!, is equal tokaR0. The same is true for the argument
in the g-set coordinates. In other words, the argument in the
Bessel and/or Coulomb functions for each channel calculated
from the a-set coordinates does agree with the argument
calculated in theb-set andg-set coordinates. Since the adia-
batic energies calculated in hyperspherical coordinates do
approach the correct asymptotic energies in the dissociation
limit, at least to order of 1/R2 @43#, it is possible to skip the
two-dimensional matching all together, and obtain theK ma-
trix directly within thea-set coordinates. This is called one-
dimensional matching. We have tested our calculations using
one-dimensional and two-dimensional matching methods, by
changing the matching radius, and concluded that one-
dimensional matching is adequate in general except at very
low energies.

For the present He211H collision system, there is one
additional complication which we need to address. For the
charge transfer to He1(2s) or He1(2p) states, the
asymptotic limits are degenerate. The adiabatic channel func-
tions from the inside region are correlated with the dipole
states@44,45# with noninteger or even complex angular mo-
mentum for each partial waveJ. We do not consider this
complication in the matching procedure in the present work.
However, we established that theJ-dependent charge transfer
cross sections to 2s plus 2p states thus obtained are not
dependent on the matching radius. Thus we do not consider
charge-transfer cross sections to individual 2s or 2p states in
this work. We comment that cross sections to such individual
degenerate hydrogenic final states can be calculated directly
using the two-dimensional matching procedure, or in a one-
dimensional matching procedure if dipole states are used in-
stead of Coulomb functions@44,45#.

III. NUMERICAL DETAILS

In applying the hyperspherical close-coupling method to
ion-atom collisions, special care is needed in two areas in the
numerical implementation. We usedB-spline basis functions
to obtain adiabatic channel functions, but the choice of the
grid distributions has to be tailored to the nature of the chan-
nel functions that are concentrated in the region of smallf.
This is clearly seen from Eq.~2!, which shows that the range
of f is of the order of the square root of the mass of the
electron with respect to the mass of the nuclei. Furthermore,
attractive Coulomb singularities occur at smallf ’s, at f1
55.2531023 andf252.0831022 rad, respectively, for the
present He211H system. Thef grids were chosen such that
they are concentrated in the small-f region. Specifically, we
divided f5@0,p/2# into four intervals, withN1 points in
@0,f1#, N2 points in @f1 ,(f11f2)/2#, N3 points in
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@(f11f2)/2,f2#, andN4 points in @f2 ,p/2#. Within each
interval @fa ,fb#, an exponential sequence of grid points is
chosen according to

f i5fa1~fb2fa!
eg( i 21)21

eg(N21)21
~41!

for i 51, . . . ,N. In the present calculation we choseg
50.3, N1514, N25N3516, andN4534 such that there are
80 points inf. Only ten points were used for the interval
f5@0.1,p/2# in this grid distribution. For theu grids, we
used 61 points in the range@0,p#. The grids are distributed
symmetrically aboutu5p/2, in an exponential sequence ac-
cording to Eq.~41!, with g50.075. The parameters in the
grid distributions were varied to reach at least six-digit accu-
racy in the eigenvalues for the range ofR of interest. Differ-
ent grid distributions can be used in different ranges ofR in
the method, but in the present calculation this particular set
of grid points was used in the final calculation.

In the SVD method the channel functions are to be calcu-
lated at the hyperradial points dictated by the grid distribu-
tions chosen for theR-matrix propagation, following the pro-
cedure of Sec. II B. Thus the range@0,R0# is divided into
many intervals. Within each interval, the hyperradial grid
points are determined by the orderM of the Jacobi polyno-
mials used in the DVR representation of the hyperradial
functions. Ideally one would like to have about ten points per
wavelength in the hyperradial function. Such a prescription
was used by Kato and Watanabe@30#, who applied this
method to electron-atom collisions. A straightforward appli-
cation of their procedure to ion-atom collisions is not prac-
tical. Due to the large reduced mass, the momentum that
enters Eq.~4!, as given byA2m(E2U), becomes quite large
even at thermal energies. For example, for the present
He211H system at center-of-mass energy of, say, 500 eV,
we would need about 10 000 points within the interval ofR
5@0,40# if we wish to have about ten points per wavelength
in the hyperradial function. Since the calculation of the chan-
nel function is the most time-consuming part, this is clearly
not desirable. On the other hand, while the radial wave func-
tions oscillate rapidly, all the matrix elements entering the
SVD method are slow-varying functions of the hyperradius.
Thus, instead of calculating all the matrices needed in the
SVD method, we obtained these matrix elements by interpo-
lation.

Specifically, instead of calculating the matrix elements

^FmI~Ri ;u,f!uT1buFnI~Ri ;u,f!&,

^FmI~Ri ;u,f!uhII 61uFnI 61~Ri ;u,f!&,

and the overlapŝFmI(Ri ;u,f)uFnI(Rj ;u,f)& at all hyper-
radial grid points required for SVD andR-matrix propaga-
tion, we calculated them at a much smaller number of points
and then use interpolations to obtain the required matrix el-
ements. In practice, we used cubic~bicubic for two-
dimensional interpolation of the overlaps! splines. In the
present calculation we chose to interpolate only in the region
where the overlaps, as functions of the hyperradius, are

smooth, although in principle one can interpolate near the
avoided crossing region as well if more points are initially
calculated in the region.

In Table I we compare partial wave cross sections (J de-
pendence! for charge transfer into the He1(n52) states ob-

FIG. 2. Hyperspherical potential curvesUm
I @cf. Eq. ~15!# for

HeH21. ThreeI 50 channels and oneI 51 channel are shown by
solid and dashed lines, respectively.

TABLE I. Comparison of the partial wave charge transfer cross
sections~in a.u.! obtained by using exact and interpolated matrix
elements. The number in square brackets denotes the power of 10.
See the text for more detail.

Ec.m.5210 eV Ec.m.5510 eV
J capture cross section capture cross section

1 ‘‘exact’’ 0.25213@24# 0.10101@23#

interp1 0.25213@24# 0.10101@23#

interp2 0.24324@24# 0.11399@23#

10 ‘‘exact’’ 0.15530@22# 0.11910@22#

interp1 0.15530@22# 0.11910@22#

interp2 0.15368@22# 0.11896@22#

100 ‘‘exact’’ 0.35516@22# 0.72555@22#

interp1 0.35516@22# 0.72548@22#

interp2 0.35484@22# 0.71972@22#

500 ‘‘exact’’ 0.17987@23# 0.32464@23#

interp1 0.17986@23# 0.32465@23#

interp2 0.17693@23# 0.32129@23#

1000 ‘‘exact’’ 0.96640@24# 0.21897@22#

interp1 0.96640@24# 0.21896@22#

interp2 0.93522@24# 0.21724@22#

2000 ‘‘exact’’ 0.22715@26# 0.80453@23#

interp1 0.22717@26# 0.80452@23#

interp2 0.25344@26# 0.80061@23#
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tained with the interpolation procedure at center-of-mass en-
ergies of 210 and 510 eV. All the calculations were carried
out using the four channels shown in Fig. 2 and the propa-
gation in R was carried out fromR50 to R532.32 a.u. In
the ‘‘exact’’ calculation we employed the straightforward
SVD method within each sector where all the relevant matrix
elements were calculated directly from the adiabatic channel
functions. At 510 eV~210 eV! this would require us to cal-
culate channel functions and all the relevant matrix elements
at about 10 000~6000! hyperradial grid points. For the two
interpolation procedures, Interp1 and Interp2, we calculated
adiabatic channel functions only at 2520 and 630 hyperradial
grid points, respectively, from which we obtained the SVD
matrix elements at the same grid points as in the ‘‘exact’’
calculation. In the present work, we did not perform interpo-
lation in the intervalR5@0,0.5#, where the channel functions
vary rapidly with R, and the intervals@1.5,2# and @3.5,4#,
where they are near the avoided crossings atR51.65 a.u.
and 3.62 a.u., respectively. In these intervals we simply cal-
culate channel functions at denser grid points.

In Table I, we note that the results from the Interp1 cal-
culation are essentially identical to the ‘‘exact’’ calculations.
The errors introduced in the Interp2 calculation are within
1% for most of the partial waves. In particular, the relative
errors are smaller for partial waves where the cross sections
are larger. We thus conclude that the interpolation procedure
works adequately.

From Eqs.~14! and ~17!, the matrix elements ofT1b , or
of 1/cos2f, with respect to the adiabatic channel functions
have to be evaluated. The channel functions are sharply lo-
calized nearf50.0, the more so at largerR. From Eq.~14!,
we note that we need to addJ(J11)T1b to obtain the matrix
elementT1. For largeJ, in particular, forJ.103, any small
numerical error fromT1b is greatly enhanced in comparison
with T1a . For largeJ, we found that it is preferable to re-
place the matrix element ofT1b by 1.0 instead. In fact, this
replacement does not affect the result for smallJ either. We
note that this is the same approximation employed in the PSS
calculation.

IV. RESULTS

In this paper we applied the HSCC method to calculate
charge-transfer cross sections for He211H(1s) collisions at
center-of-mass energies from 10 eV up to 4 keV, or for rela-
tive collision velocityv from 0.0223 a.u. to 0.447 a.u.. The
dominant reaction channels are charge transfer to then52
excited states of He1. Thus we include only four channels in
the present calculation: the initial channel He211H(1s),
and the three final channels He1(n52)1H1. In Fig. 2 the
four adiabatic hyperspherical potential curves corresponding
to these four dissociation channels are shown: three curves
for I 50 and one forI 51, for R up to 30 a.u. The incident
channel is identified with the lowest curve of Fig. 2 and the
three charge transfer channels are associated with the three
upper curves.

The potential curves in Fig. 2 are very close to the BO
potential curves in the standard PSS approach. This is not
surprising since with the choice ofm5m1 @cf. Eq. ~1!#, the

hyperradiusR is approximately equal to the internuclear dis-
tance as long asR is not very small. But there are small
differences. We found that, except forR,1.5 a.u., the dif-
ferences between the hyperspherical potential curves and the
BO potential curves are less than 1%. Also, the BO potential
curves do not converge to correct thresholds, whereas the
hyperspherical potentials do, although the energy difference
at R→` is very small, about 331024 a.u., owing to the fact
that in the BO approximation the mass of the nucleus is
assumed to be infinity, but in the HSCC the correct mass of
the nucleus is included. In the present HSCC calculation, we
used one-dimensional matching atR0532.32 a.u. forEc.m.
greater than 200 eV andR0580.79 a.u. at lower energies.

In Fig. 3, total electron-transfer cross sections to He1

states are presented from 10 eV to 4 keV. Note that the cal-
culated charge-transfer cross section decreases rapidly as the
collision energy is decreased. From 4 keV to 200 eV, it drops
by a factor of 50~see inset!, but from 200 eV to 10 eV, it
drops by 12 orders of magnitude. The small cross sections at
the low energies are calculated to compare with other exist-
ing calculations. Note that at low energies radiative charge-
transfer cross sections are much larger. The latter was calcu-
lated to be about 1023 a.u. atE510 eV @46#. Unlike that for
the nonradiative process, the cross section for the radiative
charge transfer increases with decreasing collision energy.

How do the results obtained here compare to existing ex-
perimental data and other calculations? For energies below
200 eV, there are no experimental data available. There are
two previous theoretical calculations where the motion of the
heavy particles was treated quantum mechanically. One was
by van Hemertet al. @15# and the other by Fukuda and Ishi-
hara@31#. The former performed calculations using molecu-
lar orbitals with common translational factor basis functions.
From Fig. 3 it is clear that our results are significantly dif-
ferent from theirs below 200 eV. In fact, by comparing with
the actual numbers, as shown in Table II, we note that their

FIG. 3. Charge-transfer cross sections for the process He21

1H(1s)→He11p. Solid line: present results;s: van Hemertet
al. @15#; 1: Fukuda and Ishihara@31#; n: Winter and Hatton@49#;
,: Erreaet al. @50#; L: Grozdanov and Solov’ev@51#.
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results are larger than ours by a factor of 50 at 20 eV, but
theirs are smaller by a factor of 2, 3, and 2, respectively, at
50, 100, and 200 eV. Interestingly, in this energy region our
results are in perfect agreement with the calculation of
Fukuda and Ishihara@31#. They used the so-called distorted
atomic orbital~DAO! method and carried out the calculation
up to 200 eV. This method introduces adiabatic distorted
atomic orbitals, defined not with respect to the internuclear
separation, but with respect to the relative coordinates of
each arrangement channel~or r2 of b-set andg-set coordi-
nates!. In other words, they used basis functions from the
b-set and from theg-set coordinates. In the DAO method
the wave function is expanded using correct relative coordi-
nates such that there are no spurious asymptotic couplings.
From Fig. 3, we note that their results agree with ours quite
well. This agreement is even more clearly seen in Table II.

From comparing the three calculations in the low-energy
region, we may conclude that the results of van Hemertet al.
@15# are less reliable. At present, the origin of the difference
is not clear. The cross sections are quite small in the low-
energy region. The discrepancy could be due to the some-
what arbitrary character of the common electron translational
factors used in their model, or possibly due to insufficient
numerical accuracy in the calculation. Understanding the ori-
gin of this discrepancy is essential, however, since their MO-
ETF approach is the most widely used method for treating
low-energy ion-atom collisions@10,12,14#. On the other
hand, to trace the origin of the discrepancy, a comparison at
the level of partial wave cross sections should be carried out
in the future. The comparison also appears to establish the
validity of the DAO approach. Since two sets of Jacobi co-
ordinates were used in this formulation, the result is a set of
coupled integro-differential equations which can be solved
only with special numerical techniques. The DAO method
has been applied only to the present collision system and to
muonic collisions@47# so far. It has not been further explored
due to its numerical complications.

We next compare the present results with other calcula-
tions at higher energies where more calculations and some
experimental data are available. The results for center-of-
mass energy from 200 eV to 4 keV are shown more clearly
in the inset of Fig. 3. The numerical values are also com-

pared at a few energy points in Table II. Except for van
Hemertet al. at 200 eV, all the other calculations were car-
ried out using the semiclassical method where the internu-
clear motion is treated classically. All these calculations also
used the molecular orbital expansion method@14,48,49,51#.
The difference is mainly in the number of channels and the
different form of electron translational factors used, except
for Grozdanov and Solov’ev@51# where the calculation was
based on the hidden crossing theory. From Fig. 3, we note
that most of the theoretical results agree with each other.
However, all of these other calculations essentially used the
same method and agreement among themselves is not sur-
prising. Comparing with available experimental data in this
energy region, all the results are within the experimental er-
rors. Our results appear to be slightly higher than these cal-
culations. In the future we need to increase the number of
channels in the higher-energy region to test the convergence
of the present results.

We next show charge-transfer cross sections vs partial
wavesJ at a few energy points. In Fig. 4~a!, the results for
E510 eV are shown. It takes about 100 partial waves to get
the converged total cross section. At 30 eV, as shown in Fig.
4~b!, we need to sum over about 250 partial waves to get the
total charge-transfer cross section, but a large portion of it is
contributed by partial waves less than 20. Note the seven
orders of magnitude difference in the partial cross sections at
these two energies. In Fig. 5 we show our calculated partial
wave cross sections for 200 eV and compare the results with
those presented by Fukuda and Ishihara@31# for J between
150 and 950. Our results agree quite well with theirs, which
in turn have been shown to agree well with the semiclassical
calculation of Winter and Hatton@49#. Interestingly, these
two groups did not present results at small partial waves or
small impact parameters, even though the total charge-

TABLE II. Charge-transfer cross sections in units of 10216 cm2.
The numbers in square brackets are powers of 10. WH: Winter and
Hatton @49#, CTF: Erreaet al. @50#, DMO-ETF: van Hemertet al.
@15#, DAO: Fukuda and Ishihara@31#, HSCC: present results.

E(eV) WH CTF DMO-ETF DAO HSCC

20 3.4@27# 7.1@29# 7.1@29#

50 4.6@25# 7.9@25# 8.0@25#

100 1.1@22# 3.3@22# 3.4@22#

200 2.7@21# 1.3@21# 2.4@21# 2.4@21#

600 1.49 1.56 1.74
1000 3.78 2.69 4.42
1600 6.30 6.62 7.56
2000 8.07 5.73 9.86
4000 12.2 12.8 16.2

FIG. 4. Charge transfer partial cross section forEc.m.510 eV~a!
andEc.m.530 eV ~b!.
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transfer cross section comes primarily fromJ less than 150.
Since the total cross sections from these three calculations
are in good agreement we assume that the partial cross sec-
tions at smallJ are also identical. In comparing the partial
wave cross sections from the quantum calculation with the
transition probabilities from the semiclassical calculation, we
employ this relation:

sJ5
2pbP~b!

k
, ~42!

with J5kb, wherek is the momentum. In Fig. 6 we compare
the impact parameter dependence of the calculated charge-
transfer probabilities with those calculated by Hattonet al.
@48# at 600 eV and by Winter and Hatton@49# at 1.6 keV.
One can observe that there is a general agreement of our
results with theirs, in terms of the impact parameters, where
the weighted probabilities are at the maxima or minima, but
our probabilities are somewhat higher at the peaks, resulting
in our cross sections being somewhat higher compared to
others. Since we used only four channels in the present cal-
culation as compared to 10 channels in their calculations, the
discrepancy can be better understood after we have per-
formed calculations with a larger number of channels. The
comparison illustrates that the present HSCC method can be
extended to higher collision energies where semiclassical
methods are valid.

V. SUMMARY AND CONCLUSIONS

In this paper we presented the hyperspherical close-
coupling method for treating direct and charge-transfer reac-
tions in ion-atom collisions at low energies. As stated in the
Introduction the HSCC method has been used in many areas
of three-body problems in atomic, molecular, and nuclear
physics. The present implementation is targeted at systems
with two heavy particles and a light one. This class of prob-
lems is characterized by the large momentum of the collision
partners, and thus special care and approximations should be
adopted before the HSCC method is used to obtain reaction
cross sections at energies of interest.

In implementing the HSCC method for ion-atom colli-
sions, we also adopted numerical technologies that have be-
come available in the last two decades. We used theB-spline
functions to solve the two-dimensional adiabatic hyper-
spherical channel functions. We also adopted the slow/
smooth variable discretization technique andR-matrix propa-
gation method to solve the hyperradial equation. Due to the
rapid oscillations of the hyperradial wave functions, we
modified the latter method with an interpolation procedure
such that the number of hyperradial grid points where chan-
nel functions need to be calculated does not increase with
collision energies. We also took advantage of the special
properties of ion-atom collision systems such that the chan-
nel functions for the thousands ofJ’s needed are calculated
only once. These implementations make it possible to em-
ploy the HSCC method to treat ion-atom collisions over a
broad range of energies.

We applied the HSCC method to obtain charge-transfer
cross sections for the process He211H(1s)→He1(n52)
1H1 at center-of-mass energies below 4 keV. We presented
our calculated charge-transfer cross sections. In the center-
of-mass energy range between 10 and 200 eV, the total non-
radiative charge-transfer cross section drops very rapidly
with decreasing energies and our results agree with those
from the distorted atomic orbital method of Fukuda and Ishi-
hara@31#, but not with the quantum molecular orbital calcu-
lations of van Hemertet al. At 200 eV, we showed that our
partial wave cross sections also agree with the results of
Fukuda and Ishihara.

FIG. 5. Same as Fig. 4 but forEc.m.5200 eV. The dashed line
in the inset is taken from Fukuda and Ishihara@31#.

FIG. 6. Probability of charge transfer times impact parameter for
Ec.m.5600 eV ~a! and Ec.m.51.6 keV ~b!. Solid lines: present re-
sults; dashed lines: Hattonet al. @48# and Winter and Hatton@49#
for 600 eV and 1.6 keV, respectively.
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We have extended the calculations to higher collision en-
ergies so that we can compare our results with those obtained
using the semiclassical approximation and with experiments.
Our results are slightly higher than the semiclassical calcu-
lations of Winter and Hatton@49#, but both are within the
experimental errors. We also compared our partial wave
cross sections with their impact parameter dependent prob-
abilities and there is a general agreement.

Our results clearly demonstrate that it is possible to em-
ploy the HSCC method to obtain cross sections for ion-atom
collisions that have been traditionally treated using the so-
called molecular orbital expansion method, but without the
need to introducead hoc~or physically motivated! electron
translational factors or switching functions. Further investi-
gation of the HSCC method for other ion-atom collision sys-
tems is under way and extension to include more channels
and at higher energies would allow us to probe the utility of
this method. Careful comparison with molecular calculations
based on reaction coordinates and/or switching functions for
a number of collision systems is desirable to establish the
region of validity of these MO-ETF-type calculations or cal-

culations based on reaction coordinates. The latter methods
are the standard approaches for treating many-electron ion-
atom collision systems, and calculations based on the HSCC
method for one-electron ion-atom collisions are desirable to
provide theoretical data for comparison in view of the lack of
accurate experimental data available for low-energy ion-
atom collisions except for total charge-transfer cross sec-
tions.
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