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ABSTRACT 

 

Sinkholes are inherent features of the karst terrain underlying much of Greene 

County, Missouri.  These features present hazards and engineering challenges to existing 

infrastructure unknowingly constructed on a seemingly benign ground surface. The 

primary objective of this research was to investigate the physical processes chiefly 

responsible for triggering the seemingly random distribution of sinkholes in the study area. 

This research employed an integrated approach encompassing regional scale GIS-based 

spatial analyses and site-specific geophysical data. GIS-based spatial analysis was 

employed to identify significant physical factors that appeared to influence the formation 

and distribution of sinkholes. Seven out of the twelve most cited factors influencing 

sinkhole development were identified in the study area. These factors were: overburden 

thickness, depth-to-groundwater, slope of the ground surface, distance to the nearest water 

course, distance to the nearest geologic structures, distance to nearest springs, and distance 

to the nearest roads.  

In the site-specific geophysical investigations, two dimensional (2D) and pseudo 

three dimensional (3D) - ERT, MASW, and borehole data were used to characterize the 

subsurface morphology of the karstified soil-bedrock interface in five selected sinkholes. 

From the interpretation of the 2D and pseudo 3D-ERT profiles, it was determined that 

four of the five sinkholes occurred at the intersections of regional systematic joint sets. 

The joint sets are characterized by a linear, visually prominent zones of low resistivity. 

The relatively low resistivity values are attributed to vertical seepage and the associated 

piping of fine-grained soils through preexisting fractures (often widened by solutioning). 
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1. INTRODUCTION 

 

Karst area is formed in carbonate and evaporitic rocks, primarily by dissolution and 

is characterized by numerous sinkholes, losing streams, springs, caves, and other related 

features. Karst area is one of the most challenging environment when dealing with 

groundwater, engineering and environmental issues (Chalikakis, 2011). Sinkholes are one 

of the most common karst structures in the world (Festa et al, 2012) and are also one of the 

most important hazard in karst areas (e.g. Waltham et al., 2005; Gutiérrez, 2010). 

Catastrophically collapsing sinkholes may lead to fatal accidents with losses in human life 

and ground deformation associated with the development of subsidence sinkholes may 

cause severe damage to infrastructures (Carbonel et al. 2014). Furthermore, sinkholes are 

frequently associated with hazardous processes such as; differential compaction of 

sinkhole deposits, typically underlain by irregular rockhead; flooding of depressions by 

runoff concentration, water table rise, or back flooding (e.g. Zhou, 2007); water leakage at 

dams and other hydraulic structures (e.g. Milanovic, 2000), or groundwater pollution. 

According to the U.S.Karst map published by AGI (Veni et. al.2001), most of the 

southern part of Missouri, is underlined by carbonate rock and recognized as a karst terrain. 

The study area, Greene County, Missouri, is part of the Ozarks physiographic region and 

is underlain mainly by Mississippian Age limestone which is highly susceptible to karst 

processes. Thousands of sinkholes have been identified in the state of Missouri and Greene 

County is one of the counties in the state known for the presence of sinkholes (Ismail and 

Anderson, 2012).  

Sinkhole formation processes involve a combination of geologic, geomorphologic, 

hydrologic, and anthropogenic influencing factors that interact in the subsurface 
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(Kaufmann, 2008; Galve, 2009; Doctor, 2012). Determining the main controlling factors 

and understanding the nature of interaction among the factors helps to determine where 

and how an individual sinkhole may form. The interactions among the influencing factors 

are mainly in the subsurface and are usually hidden from the scope of direct observation 

and hence, it is unlikely to predict the formation of an individual sinkhole at a given place. 

Nevertheless, analysis of spatial statistical relationships between sinkhole density and the 

associated possible influencing factors can help to determine the main factors controlling 

the formation and spatial distribution of sinkholes.  Knowing the major controlling factors 

and the relationship among them helps to provide an objective means of parameter 

weighting in models of sinkhole susceptibility or hazard mapping which in turn helps for 

land use planning and landscape management to mitigate the risks of future sinkhole 

occurrences. A clustering pattern analysis on the spatial distribution of the sinkholes in the 

area has been done to see if the distribution is clustered or not.  The cluster analysis was 

done using the Nearest Neighbor Analysis (NNA) tool in ArcGIS 10.2. The NNA result 

indicated that the sinkholes are significantly clustered with a p-value (p = 0.000000), and 

Nearest Neighbor Ratio (observed mean distance/expected mean distance) of 0.52.  

The significant clustering implies that it is very unlikely some random process 

created the observed distribution. Rather, the clustering indicates that there is an underlying 

process with a key set of influencing factors responsible for the formation and distribution 

of the sinkholes in the area. The NNA analysis result supported the assumption that the 

sinkhole formation and distribution is not formed due to a random process rather it is the 

result of a certain process controlled by a set of influencing factors. Determining the main 

factors controlling the formation and spatial distribution of sinkholes is important input for 
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prediction of future sinkhole occurrence in the area and this helps for better land use 

management practices, including conservation of natural resources, ground-water 

management, and environmental protection.  

The second major concern is the impacts of the existing active sinkholes and 

sinkhole developments. Investigating the development mechanism and subsurface 

structure of existing sinkholes and characterizing the nature and 3D configuration of the 

geology beneath them enables us to predict their long-term impact and chance of 

reactivation and provide applicable corrective measures. Some of the facts that necessitate 

such kind of investigation on existing sinkholes are: (i) from an engineering standpoint it 

is important to locate and characterize soil piping zone, filled voids, and buried bedrock 

fractures, ravel zone as they may reactivate in the course of time; (ii) for hydrogeological 

studies it may be desirable to determine whether a sinkhole functions as a groundwater 

flow conduit connecting surface and subsurface water. Therefore, site-specific sinkhole 

investigation is required to understand the subsurface structure and development 

mechanism of existing sinkholes to provide proper mitigation measure to avoid or 

minimize their impacts. Effective sinkhole investigation should integrate a variety of 

investigative approaches that include geological, geophysical, and geomorphological 

analysis (Gutiérrez, 2008). 
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ABSTRACT 

 

Sinkholes are inherent features of the karst terrain of Greene County, Missouri, 

which present hazards and engineering challenges to construction / infrastructure 

development. Analysis of relationships between the spatial distribution of sinkholes and 

possible influencing factors can help in understanding the controls involved in the 

formation of sinkholes. The spatial analysis outlined herein can aid in the assessment of 

potential sinkhole hazards. In this research, GIS-Based Ordinary Least Squares Regression 

(OLS) and Geographically Weighted Regression (GWR) methods were used to determine 

and evaluate principal factors appearing to influence the formation and distribution of karst 

sinkholes. From the OLS result, seven out of twelve possible influencing factors were 

found to exert significant control on sinkhole formation processes in the study area. These 

factors are overburden thickness, depth-to-groundwater, slope of the ground surface, 



5 
 

distance to the nearest surface drainage line, distance to nearest geological structure (such 

as faults or folds), distance to the nearest road, and distance to the nearest spring. These 

factors were then used as independent variables in the GWR model. The GWR model 

examined the spatial non-stationarity among the various factors, and demonstrated better 

performance over OLS. GWR model coefficient estimates for each variable were mapped. 

These maps provide spatial insights into the influence of the variables on sinkhole densities 

throughout the study area. GWR spatial analysis appears to be an effective approach to 

understand sinkhole influencing factors. The results could be useful to provide an objective 

means of parameter weighting in models of sinkhole susceptibility or hazard mapping.  

Keywords: Geographic Information Systems (GIS), Sinkhole, Geographic 

Weighted Regression (GWR), Ordinary Least Squares Regression (OLS), Greene 

County. 

 

1. INTRODUCTION 

 

Karst topography develops on carbonate and evaporitic rocks, primarily by 

dissolution of soluble minerals.  It is usually characterized by numerous sinkholes, caves, 

losing streams, springs, and preferential seepage pathways often influenced by geologic 

structure, stratigraphy, and watershed area. Karst is often a challenging environment when 

dealing with groundwater, engineering, and environmental issues (Chalikakis, 2011). 

Sinkholes are one of the most significant hazards in karst areas (Waltham et al., 2005; 

Gutiérrez, 2010).  Sinkholes that suddenly collapse can result in loss of human life and 

property; and ground deformation associated with subsidence often damage infrastructure, 

such as highways and utilities (Carbonel et al., 2014). Thousands of sinkholes have been 
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identified in the state of Missouri; Greene County, in particular, is one of the counties in 

the state most known for the occurrence of sinkholes. 

The formation of sinkholes is influenced by a combination of interacting geologic, 

geomorphologic, hydrologic, and anthropogenic factors (Kaufmann, 2008; Galve, 2009; 

Doctor, 2012). Ascertaining the main influencing factors and understanding the nature of 

their interactions can enable researchers to better understand where and how individual 

sinkholes may appear. The interactions between influencing factors are frequently not 

obvious and are often hidden from direct observation, making it unlikely to predict the 

occurrence of an individual sinkhole at a specific site. Nevertheless, the analysis of the 

spatial statistical relationships between sinkhole density and the potential influencing 

factors could help determine the principal causal factors influencing the formation and 

general spatial distribution and density of sinkholes in a particular area.  Identifying the 

major influencing factors and the interactive relationships between them should provide an 

objective means of parameter weighting that would be useful in any GIS-driven model 

examining sinkhole susceptibility for hazard mapping. 

Geographic Information System (GIS) techniques have been employed in various 

types of geohazard zonation analyses for land use planning and landscape management 

(Rogers, 1997). GIS spatial data processing and analysis techniques can be used to facilitate 

handling and processing of large data sets for sinkhole susceptibility modeling and to 

determine and evaluate the factors influencing the formation of sinkholes. Researchers 

have used different spatial analytical approaches to model sinkhole susceptibility. The most 

commonly used approaches are those that use proximity of neighboring sinkholes (i.e., 

Drake and Ford, 1972; Magdalene and Alexander, 1995) or sinkhole density (i.e., Brook 
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and Allison, 1986; Orndorff et al., 2000).  These approaches have sought to make a 

qualitative evaluation of the relation between sinkhole occurrence and the primary 

influencing factors (geologic, geomorphologic, hydrologic or anthropologic effects). 

Another approach is a heuristic model, in which weights are assigned to the factors that 

influence sinkhole susceptibility for risk assessment (i.e., Kaufmann, 2008).  The main 

limitation of the heuristic approach is the subjectivity related to expert evaluation and the 

difficulty of reproducing the method for different geologic areas. Galve et al. (2009b) found 

that nearest neighbor and sinkhole density methods performed better than other techniques 

when identifying areas of sinkhole susceptibility, but those methods do not include 

sinkhole formation explanatory variables. Their ability to measure the influence of various 

factors on sinkhole development was limited (Doctor, 2012). The methods based on density 

and proximity may not satisfactorily identify sinkhole alignments; for instance, a sinkhole-

prone belt determined by a fracture or a lithologic boundary may be missed in such 

susceptibility maps. The other classes of susceptibility modeling are probabilistic or 

statistical methodologies that derive the susceptibility models from the analysis of spatial 

statistical relationships between known sinkholes and a group of influencing factors 

(Galve, 2009). 

Geographically Weighted Regression (GWR) is a relatively recent and 

sophisticated method of spatial statistical analysis that seeks to measure spatially varying 

relationships, such as the influence of controlling factors on sinkhole formation. GWR is a 

local regression version of the global Ordinary Least Squares regression (OLS) method. 

Geographically Weighted Regression (GWR) can be an effective tool to study spatial data 

relationships with spatial non-stationarity (Fotheringham et al., 2002). In this research, 
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GIS-Based global (Ordinary Least Squares, OLS) and spatial (Geographically Weighted 

Regression, GWR) multivariate regression methods were applied to evaluate and assess 

the variables controlling the formation of sinkholes in Greene County. The results suggest 

that there are seven variables that appear to be the principal sinkhole influencing factors. 

Moreover, coefficient surface maps for each influencing factor were generated to observe 

how each relationship between sinkhole occurrence and the influencing factors varied 

across the study area. 

 

2. LOCATION AND GEOLOGY OF THE STUDY AREA 

 

Greene County is located in southwestern Missouri (Figure 1) and is underlain 

mainly by Mississippian age Burlington-Keokuk Limestone (Figure 2). This bedrock 

underlies more than 70% of the county. About 98% of the sinkholes in Greene County are 

formed on Burlington-Keokuk Limestone bedrock. The study area encompasses about 

1336 sq.km.  

The Burlington-Keokuk Limestone is characterized by layers of limestone 

interbedded with thin layers of chert and the presence of chert nodules within the limestone 

layers. The limestone is a light gray, coarsely crystalline, and nearly pure calcite. Uneven 

dissolution of the Burlington-Keokuk Limestone has resulted in highly irregular bedrock-

overburden interface (Fellows, 1970) and is characterized by the formation of prominent 

knobs (pinnacles) of bedrock bounded by deep troughs (grikes or “cutters”) caused by 

dissolution along fractures.   
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Figure 1. Location map of the study area. 

 

 

 

Figure 2. Geological and sinkhole locations map of Greene County.  

(ESRI data source: Missouri Geological Survey-GeoSTRAT). 
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3. DATASETS AND METHODOLOGY 

 

3.1. DATASETS 

A set of relevant ESRI (Environmental Systems Research Institute) datasets and 

digital maps of the study area were gathered from a variety of open sources e.g., Missouri 

Geological Survey-GeoSTRAT program (2016), Missouri Spatial Data Information 

Service (MSDIS, 2016), and United States Department of Agriculture (USDA, 2016). 

Further refinements, processing, and conversions were then made on the gathered datasets 

using ArcGIS 10.2® to derive a set of variables. The derived variables that were 

implemented in the multivariate regression modeling are sinkhole density (dependent 

variable) and a set of potential sinkhole influencing factors (independent variables). The 

independent variables consist of geological, geomorphic, hydrogeologic, and 

anthropogenic raster datasets. The ESRI datasets and digital maps, together with the 

corresponding derived variables are summarized in Table 1. 

 

3.2. DEPENDENT AND INDEPENDENT VARIABLES 

The sinkhole dataset of the study area was extracted from the publicly available 

Missouri sinkhole database of the Missouri Geological Survey in June 2016, and it shows 

the point locations of 1419 sinkholes (Figure 3). The Nearest Neighbor Analysis (NNA) 

tool in ArcGIS 10.2 was used to analyze the spatial distribution pattern of known sinkholes 

to ascertain if the distribution is random or not. NNA provides p-value and nearest neighbor 

ratio as indicators of predictive patterns.  The p-value is the probability that some random 

process created the observed spatial pattern. If the Nearest Neighbor Analysis on the 

sinkhole distribution shows a clustered pattern, it is very unlikely that the observed pattern 



11 
 

is the result of random processes. Rather, it implies that there is an underlying process with 

a set of controlling factors responsible for the formation and distribution of the sinkholes 

in the study area. 

The dependent variable used in the OLS and GWR analysis consisted of sinkhole 

density values of each sinkhole location, extracted from sinkhole density map. The 

sinkhole density map was generated using the kernel density tool in ArcGIS 10.2. A buffer 

size of 2500m was ascribed around each sinkhole location and used to calculate the kernel 

density. This size (2500m) was determined by using Multi-Distance Spatial Cluster 

Analysis (Ripleys K-function) tool in ArcGIS, which is useful in assessing possible scale 

effects that may be influencing spatially clustered sinkhole arrays.  

 

 

 

Figure 3. Sinkhole distribution map of the study area. 



12 
 

Table 1. Shows the gathered ESRI datasets and digital maps, data sources and the derived 

variables. 

Main dataset/map Data sources Derived 

variables 

Cell size 

(mxm) 

Sinkhole locations 

(ESRI data)  

Missouri Geological 

Survey-GeoSTRAT 

Sinkhole density 

raster 

50x50 

Bedrock type (ESRI 

data) 

Missouri Geological 

Survey-GeoSTRAT 

Bedrock type 

map 

 

-- 

Geologic structures 

(ESRI data) 

Missouri Geological 

Survey-GeoSTRAT 

Distance to 

nearest 

geological 

structure raster 

50x50 

Overburden thickness 

contour lines (ESRI 

data) 

Missouri Spatial Data 

Information Service 

(MSDIS) 

Overburden 

thickness raster 

50x50 

Depth to Groundwater 

contour lines (ESRI 

data) 

Missouri Geological 

Survey-GeoSTRAT 

Depth to 

Groundwater 

raster 

50x50 

Ground elevation 

contour lines (ESRI 

data) 

Missouri Spatial Data 

Information Service 

(MSDIS) 

DEM (Digital 

Elevation 

Model) 

50x50 

Ground surface 

Slope  

50x50 

Curvature 

(planar and 

profile) 

50x50 

Soil type map United States Department 

of Agriculture 

Soil type map  

-- 

Drainage lines map United States Department 

of Agriculture 

Distance to 

nearest drainage 

line raster 

50x50 

Spring locations 

(ESRI data) 

Missouri Geological 

Survey-GeoSTRAT 

Distance to 

nearest spring 

raster 

50x50 

Missouri 

Highway/road feature 

data 

http://www.mapcruzin.co

m/ 

Distance to 

nearest road 

raster 

50x50 
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The independent variables are the raster data layers encompassing the potential 

sinkhole influencing factors. Twelve independent variables were considered for input into 

the model. These variables are: overburden thickness, depth-to-groundwater, distance to 

the nearest geological structure (faults, folds and other related tectonic structures), distance 

to the nearest drainage line, distance to the nearest spring, groundwater elevation, ground 

surface elevation (altitude), bedrock elevation, slope of the existing ground surface, 

distance to the nearest road, and ground surface curvature (planar and profile). Some 

potential influencing factors that include soil type, rate of groundwater drawdown, 

geochemical, and climatic processes could not be included in the sinkhole formation model 

due to paucity of data, insufficient data form, and model criteria. 

 

3.3. MULTIVARIATE REGRESSION METHODS 

Multivariate spatial regression analysis is a statistical technique that can examine, 

model, and explore spatial relationships among given variables across any designated area. 

In this research, it was used to evaluate possible relationships between sinkhole density 

and the physical factors believed to be influencing the sinkhole formation processes at the 

current time. When dealing with spatial data relationships, regression methods may assume 

that these relationships are consistent geographically (stationarity), or take into account the 

spatial locations of features, permitting the estimated parameters to vary locally (non-

stationarity). The later assumption better reflects spatially varying relationships between 

dependent and independent (explanatory) variables, and usually results in improved model 

performance. 

Ordinary Least Squares regression (OLS) is the most commonly employed 

regression technique and is usually the starting point for all spatial regression analysis 
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(ESRI, 2014). OLS provides a global model of the variable or process that one needs to 

understand or predict by creating a single regression equation to represent that process 

(ESRI, 2014).  The OLS regression model with k, number of independent variables is of 

the form (Charlton and Fotheringham, 2009), 

y = β0 + β1x1 + β2x2+ β3x3 +…+ βkxk + ε 

where y is the dependent variable and x1 is the explanatory/independent variable. β0 is the 

intercept of the line on the y-axis, and β1 represents the slope coefficient for independent 

variable x1. ε is a mean zero random error term with constant (but unknown) variance, and 

is normally distributed. 

The ordinary least squares regression (OLS) method assumes that the spatial 

relationships between dependent and independent variables are static, and would not be 

efficient if there exists spatial non-stationarity in the relationships between the variables. 

When the relationship between variables under study exhibit non-stationarity (spatially 

varying) behavior, Geographically Weighted Regression (GWR), a local regression 

technique, is normally preferred.  

Geographically Weighted Regression (GWR) is one of the most sophisticated 

applied methodologies for local regression analysis (Kalogirou and Hatzichristos, 2007; 

Brunsdon et al., 1996; Brunsdon et al., 1998). GWR allows for local (spatial) variables to 

be estimated (Fotheringham and Brunsdon, 1999).  It allows examination of spatial non-

stationarity of the factors influencing the formation and distribution of sinkholes. The 

GWR version of the OLS regression model extends the traditional regression framework 

by allowing parameters to be estimated locally (Charlton and Fotheringham, 2009), and 

can be expressed as: 
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𝑌𝑖 = 𝛽0(𝑢𝑖,𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖,𝑣𝑖)𝑋𝑖𝑘 +  𝜀𝑖

𝑑

𝑘=1

        𝑖 = 1, 2, … , 𝑛 

where Yi is the dependent variable in spatial location with the coordinate (ui, vi); X1, X2, 

…,Xd are explanatory (independent) variables; and Xik means the k-th explanatory variable 

in spatial location with coordinate (ui, vi); β0(ui, vi) represents the intercept value;  βk(ui, 

vi) is a set of values of coefficients at spatial location i. 

Several researchers have used GWR to model spatially varying relationships or 

processes. Some examples include (i) the exploration of the relations between riverbank 

erosion and geomorphological controls (Atkinson et al., 2003); (ii) analysis of the 

relationship between geologic and hydrologic features and sinkhole occurrence (Doctor et 

al., 2012); (iii) the spatial simulation of regional land use patterns (Liao et al., 2010); (iv) 

assessing risk factors for malaria hotspots (Ndiath et al., 2015); (v) assessment of land 

subsidence potential (Blachowski, 2016); (vi) landslide susceptibility mapping (Arzu et al., 

2010); and (vii) the exploration of spatial non-stationarity of fisheries survey data (Windle 

et al., 2010). In this research OLS followed by GWR were employed to analyze the 

influencing factors for the formation and distribution of sinkholes across the study area. A 

flow chart outlining the procedures and methods used in this study are summarized in 

Figure 4. 

 

4. RESULTS AND DISCUSSIONS 

 

4.1. SINKHOLE DENSITY AND CLUSTER ANALYSIS 

Several authors (e.g., Brezinski, 2004; Zhou, 2003) have mentioned that in areas 

where active sinkholes have developed, there is a greater chance that new sinkholes will 
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form. Therefore, sinkhole density is an important factor in determining the areas most 

prone to sinkhole development. Kemmerly (1982) has asserted that cluster analysis may be 

applied to evaluate if the generation of new sinkholes is influenced by the location of the 

pre-existing sinkhole population. 

 

 

 

Figure 4. Flowchart showing the procedures and methods used in the study 
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Other authors (Hyatt et al., 1999; Gutiérrez-Santolalla et al., 2005b) have studied sinkhole 

distributions centered on manipulation of statistical values for prediction of future 

sinkholes. In this research, a sinkhole density dataset (Figure 5) was generated using the 

kernel density tool in ArcGIS along with cluster analysis using the Nearest Neighbor 

Analysis (NNA) tool to see if any spatial patterns of sinkholes were discernable. The NNA 

result (Figure 6) suggests that the sinkholes are significantly clustered, with a p-value (p = 

0.000000), and nearest neighbor ratio (observed mean distance/expected mean distance) of 

0.52. The significant clustering implies that it is very unlikely some random process created 

the observed distributions. Rather, the clustering indicates that there is an underlying 

process with a set of key influencing factors that is likely responsible for the formation and 

distribution of the sinkholes in the study area.  

 

 

 

Figure 5. Map showing sinkhole locations (dots) and densities (number of sinkholes per 

sq.km). 
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After ascertaining the clustered nature of sinkhole distribution, the next logical 

question was “what” are the main factors controlling this observed clustered pattern? OLS 

followed by GWR analysis was employed to explore the spatial relationship between 

sinkhole density and the explanatory variables, so we could extract the significant 

controlling variables. 

 

 

 

Nearest Neighbor Ratio:  0.522323  

z-score:  -34.423642 
 

p-value:  0.000000  

Figure 6. Results of Nearest Neighbor Analyses showing the sinkhole distribution 

pattern. 
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4.2. ORDINARY LEAST SQUARES REGRESSION (OLS) MODEL RESULTS 

As mentioned previously, twelve potential sinkhole influencing factors were 

considered in the OLS analysis. A series of model checks were performed to evaluate the 

reliability of the OLS regression model. According to the Robust probability significant 

test results, ground surface curvature (both planar and profile),  elevation to top of rock, 

and groundwater elevation were not significantly correlated with the dependent variable 

(sinkhole density), and were, therefore, removed from the model. 

Another test was multicollinearity test, in which the Variance Inflation Factor (VIF) 

was employed  to make sure that none of the explanatory variables were redundant.  The 

rule of thumb for interpreting VIF values was that they should be less than 7.5, with smaller 

values representing better correlations.  Variables with VIF values greater than 7.5 are 

generally removed from the model. The test results showed that the VIF values of all the 

variables were less than 7.5, except for ground surface elevation (altitude), elevation to top 

of rock, and groundwater elevation, so the ground surface elevation (altitude) variable was 

also removed from the model. After peforming all these model tests, seven of the twelve 

variables were selected as significant explanatory variables likely influencing the 

formation of sinkholes in the study area. These variables are; overburden thickness, 

distance to the nearest drainage line, depth to groundwater, slope of ground surface, 

distance to the nearest geological structure, distance to the nearest road, and distance to the 

nearest spring (Table 2) and their thematic maps are presented in Figure 7. The explanatory 

variables were selected on the basis of exhibiting robust probability statistics with low VIF 

values, in the range of 1.08 to 4.0 (Table 2). They also exhibit theoretically justifiable 

coefficient signs on a global scale.  Overburden thickness, distance to nearest road, slope 
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of ground surface, and distance to nearest geological structure exhibit negative correlations 

with the occurrence of sinkholes, which suggests that, for example, areas closer to 

geological structures have a higher incidence of sinkhole occurrence than areas further 

away. The remaining factors, depth to groundwater, distance to nearest spring, and distance 

to nearest drainage line exhibit positive coefficient signs. 

The result from the OLS model showed that the adjusted R2 value is 0.570 and that 

the Akaike Information Criterion (AIC) value is 4853.  This suggests that the OLS global 

model can explain about 57 % (adjusted R2 = 0.570) of the variation in sinkhole density, 

with AIC = 4853. The adjusted R2 and the AICc are statistics derived from the regression 

equation to quantify model performance (ESRI, 2014). The ANOVA returned a statistically 

significant F- statistic value = 157.84 and the Wald statistic has a significant Chi-squared 

value = 2443.37. These results indicate that the model formulation was statistically 

significant. The Jarque–Bera statistic returned a non-significant Chi-squared value = 3.42, 

indicating that the model’s prediction is free from bias (i.e. the residuals have a normal 

distribution). All of these diagnostic tests suggests a fairly strong model, although one 

statistic, the Koenker test, was found to be statistically significant, which indicates the 

relationship between some or perhaps all of the explanatory variables and the dependent 

variable are non-stationary (spatially varying) across the study area. The reason for this is 

that some explanatory variables may be important for predicting the formation of the 

sinkhole in some locations, but not in other areas.  The spatial autocorrelation test run on 

the OLS model’s residuals with the Moran’s I tool exhibited a clustered pattern. The 

presence of spatially clustered residuals, as well as the statistically significant value of the 

Koenker statistic in the OLS model, suggests the presence of spatial non-stationarity in the 
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data.  This supports the premise  that a local regression method can better explain the 

process than a global regression model (OLS). For these reasons, GWR was applied and it 

is evident that the model’s fitness will likely be improved by incorporating GWR, which 

takes into account the spatial variability of factors.  

 

 

Table 2. Summary statistics for OLS (Significant at ** 0.01 % level; * 5 % level). 

Variables Coefficient 

values 

Robust_Pr [b] VIF 

Overburden thickness -0.044726 0.00** 2.192135 

Distance to nearest drainage line 0.002405 0.00** 1.321380 

Depth to groundwater 0.023164 0.00** 4.004964 

Distance to nearest road -0.000845 0.00** 1.086326 

Slope of ground surface -0.153766 0.00** 1.270746 

Distance to nearest geological 

structure 

-0.000041 0.040* 1.156041 

Distance to nearest spring 0.000207 0.00** 2.301522 

 

 

 

4.3. GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) MODEL 

RESULTS 

As mentioned earlier, OLS appears to be the best starting point in building GWR 

models, so the GWR model was run using the same dependent variable and seven 

independent variables selected from the OLS analysis (Table 2). 

The results of the GWR analysis showed that 86% (adjusted R2 = 0.8557) of the 

variance in sinkhole density can be explained by the model, which is much higher than that 
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of OLS (57%). The AICc value for the GWR model was 758, whereas that derived from 

the OLS was 4853. Greater adjusted R2, and smaller AICc values indicate that the GWR 

model (local regression) is superior to the OLS model (global regression), and has captured 

the spatial non-stationarity of variables. 

GWR calculates different regression parameter values (e.g. coefficient) for each 

cell that can be mapped, so the spatial variations of parameters can be examined and 

observed visually.  Coefficient surface maps for each explanatory variable were generated 

to ascertain how the relationship between sinkhole occurrence and the influencing factors 

varies across the study area. For example, coefficient maps of two variables (slope and 

depth to groundwater) are shown in Figure 8. These maps help us understand which of the 

influencing factors were most important in the sinkhole formation process and how the 

relations vary spatially. For instance, results derived from the global OLS model indicated 

that the slope variable has a negative relationship with sinkhole occurrence across the study 

area; however, according to the GWR analysis, the contribution of this variable to sinkhole 

occurrence spatially varies across the study area, with coefficients ranging from -0.44 to 

0.23. The range of coefficient values suggest that the nature (positive or negative) and 

strength of the relationship varies spatially across the study area (Figure 8).  Similarly, the 

coefficients of the other variables also vary across the study area, including: depth to 

groundwater (-0.02 to 0.06), overburden thickness (-1.66 to 0.11), distance to nearest 

spring (-0.00040 to 0.0014), distance to nearest geological structures (-0.00026 to 

0.00050), distance to nearest drainage line (0.0000027 to 0.0033), and distance to neares 

road (-0.0018 to 0.0012).  
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Figure 7. Thematic maps of seven independent variables in our regression (OLS and 

GWR) model. 
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Figure 8. Slope and depth to groundwater coefficient surface maps derived from the 

GWR analysis. 

 

 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

The Burlington-Keokuk Limestone bedrock underlies more than 70% of Greene 

County and 98 % of the identified sinkholes in the county (Missouri Geological Survey-

GeoSTRAT, 2016) formed in this unit. Analysis of the sinkholes’ spatial distribution and 

patterns suggest that the sinkholes are not randomly distributed, but are spatially clustered.  

This implies that there is a process controlled by a finite set of factors that promote the 

formation and development of karst sinkholes.   

In this study GIS-based multivariate regression methods (OLS and GWR) were 

applied to evaluate the spatial relationships between potential sinkhole influencing factors 

(explanatory variables) and sinkhole density (dependent variable), with the aim of 

evaluating the significant controlling factors. The OLS analysis revealed that seven of the 
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twelve possible influencing factors considered in the analysis likely play important roles 

in triggering the formation of sinkholes. These factors are overburden thickness, slope of 

ground surface, depth to groundwater, distance to the nearest drainage line, distance to the 

nearest road, distance to the nearest geological structure, and distance to the nearest spring.  

The OLS results also indicated that the relationship between some or perhaps all of 

the explanatory variables and the dependent variable are non-stationary across the study 

area.  Hence, GWR emerged as being more appropriate for analyzing those relationships 

because it has the capability of capturing the spatial non-stationarity of the influencing 

factors.  GWR improved the model and explained 86% (better than OLS=57%) of the 

sinkhole density variability. The GWR model coefficient values for each explanatory 

variable provide visual insight into the influence of these variables on localized sinkhole 

density and patterns, and the values can be used to provide an objective means of parameter 

weighting in models of sinkhole susceptibility or hazard mapping/zoning. 

Due to paucity of data, insufficient data form and model criteria, there are some 

potential influencing factors which were not included in the model (this may include falling 

or rising depth-to-groundwater, soil type, geochemical processes e.t.c). The OLS and GWR 

models were able to explain only 57% and 86% of the processes responsible for the 

formation of mapped sinkholes, respectively. Therefore further research incorporating 

more data with better resolution is recommended to improve the model. 
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ABSTRACT 

 

Investigating sinkhole morphology and formation mechanisms is key to 

understanding their long term impact and susceptibility to development, and aids in the 

design of effective mitigation measures. In this study, ERT (electrical resistivity 

tomography), MASW (multichannel analysis of surface waves) and borehole data were 

used to image the subsurface morphology of an active sinkhole in Greene County, 

Missouri. The study reveals that the sinkhole developed along a natural surface drainage 

pathway above a pervasively fractured limestone. The subsurface image of the sinkhole 

depicts a zone of near-vertical water seepage and soil piping. Based on the nature of the 

overburden material, and the morphology and current/past surface expression of the 

sinkhole, it is concluded that the sinkhole is predominantly a cover subsidence type of 

sinkhole. However, it is possible that minor cover collapse occurred locally and in an area 

slightly to the north of the current active sinkhole.  

Key words: sinkhole; ERT; MASW; piping; borehole control; subsidence 
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1. INTRODUCTION 

 

Greene County, Missouri, is part of the Ozarks physiographic region and is known 

for its karst terrain. Karst terrain forms in carbonate and evaporitic rocks, primarily by 

dissolution and is typically characterized by numerous sinkholes, losing streams (swallow 

holes), springs, caves, and other related features. Because of this, karst areas are one of the 

most challenging environments in terms of groundwater, engineering and environmental 

issues [1]. Sinkholes are one of the most common karst structures in the world [2] and 

constitute a major hazard in karst areas [3, 4].  

Greene County Missouri is known for the presence of karstic features such as caves, 

springs and, more importantly, sinkholes [5]. It is reported that more than 2500 sinkholes 

and 245 caves have been identified in Greene County (Greene County Comprehensive 

Plan, page 52, 2007). As stated by Carbonel et al. in [6], catastrophic collapsing sinkholes 

may lead to injury, fatalities and cause significant damage to infrastructure. For example, 

the sinkhole that occurred in Nixa, Missouri, on August 13, 2006, swallowed a car, the 

garage it was parked in, and part of the adjoining house [7].  

Geology, hydrology, and anthropogenic factors have an impact on the formation of 

sinkholes [7–9]. Hence, an understanding of the interaction between these factors assists 

in determining where and how a sinkhole may form. Moreover, the investigation of the 

formation mechanism and sinkhole morphology allows for design of applicable mitigation 

measures. Investigation of existing sinkholes is necessary from an engineering standpoint 

to locate and characterize the source of water, seepage/piping pathways, voids (if present) 

and variable depth to top of rock. As stated by Gutiérrez in [10], effective sinkhole 

investigation should integrate a variety of investigative approaches that include geological, 
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geophysical, and geomorphological analysis. The author’s perspective is that any sinkhole 

can be mitigated using appropriate engineering technologies if the flow of piping water is 

effectively cut-off.  

Geological analysis and geophysical methods can assist in characterizing sinkhole 

morphology, evolution and formation mechanisms, while geomorphological methods 

assist in the understanding of recent sinkhole activity and human influences [2]. 

Geophysical methods are often particularly useful as there is usually a good contrast 

between the physical properties of the sinkhole fill, which consists of either water, air, or 

soil, and the surrounding less disturbed strata. Geophysical methods that are commonly 

used for sinkhole investigation include seismic reflection and refraction [11], gravimetry 

[12], ground-penetrating radar [13, 14], electrical resistivity tomography [15–18], and 

multichannel analysis of surface waves [19, 20].  

Electrical resistivity tomography (ERT) is routinely used in Missouri to image the 

shallow subsurface in karst terrain because undisturbed soil, carbonate rock, clay in-fill, 

and air-filled cavities are generally characterized by very high resistivity contrasts [5]. 

Multichannel analysis of surface waves (MASW) is also often a very appropriate method 

for sinkhole investigation, because variations in shear-wave velocity can be used to 

differentiate between various types of unconsolidated soils and bedrock [21].  

In this research ERT and MASW techniques were employed together with a 

confirmatory boring to effectively characterize the subsurface morphology of an active 

sinkhole, hereafter referred to as Sinkhole_1. Moreover, historical maps were analyzed to 

reveal the evolution of the karst feature and land use changes. Analyses suggest the 

sinkhole developed along a natural north-south surface drainage pathway. Furthermore, the 
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subsurface structure of the sinkhole depicts a vertical zone of moisture flow and associated 

soil piping. From the nature of the overburden material and the characteristics of the 

sinkhole, it is concluded that the sinkhole is predominantly a cover subsidence sinkhole 

(gradual subsidence) based on the sinkhole classification system described by Waltham et 

al. in [22]. Historical photographs suggest that cover collapse could have occurred in an 

area slightly to the north of the current active sinkhole.  

 

2. LOCATION AND GEOLOGY OF STUDY AREA 

 

Sinkhole_1, is located in Greene County, Missouri (Figure 1). The geology of 

Greene County comprises thick Mississippian-age limestones and cherty limestones 

underlain by Ordovician and Cambrian-aged strata (Table 1). Greene County lies on the 

western side of the Ozark Uplift and the rock layers regionally dip gently towards the west 

with minor faulting and folding. 

The Mississippian age Burlington-Keokuk Limestone is the dominant bedrock 

exposed in the study area (Figure 2). In this bedrock, layers of limestone are interbedded 

with thin layers of chert and the presence of chert nodules within limestone layers.  

The Burlington-Keokuk Formation is up to 270ft (82.3m) thick [23] but varies in 

thickness from place to place due to erosion. The limestone is a light gray, coarsely 

crystalline, and nearly pure calcite which is highly susceptible to solution. Uneven 

dissolution of this formation has resulted in highly irregular bedrock-overburden interface 

[24]. This limestone bedrock is mainly characterized by the formation of prominent knobs 

(pinnacles) of bedrock bounded by deep troughs (grikes) caused by dissolution in pre-

existing fractures. The thickness of residuum is highly variable, in many areas stream 
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erosion has removed the residuum and rock is at or very near to the surface, whereas in 

other areas it reaches to a thickness of about 40ft (12.2m) [25].  

The limestone bedrock in Greene County was subjected to tectonic forces and has 

undergone some structural deformations during the Ouachita Orogeny. Orndorff in [26] 

has mentioned that the geological structures formed from this deformation appear to have 

controlled the development of karst. Generally, the faults in the study area are oriented 

northwest and northeast [27]. Joints are common structural features, similar to faults, where 

lateral and vertical displacements have not occurred. McCracken in [27], states that the 

bedrock in the study area is characterized by two nearly orthogonal joint sets that exhibit 

general strike orientations: N 20 º W, and N 60 º E and with vertical dipping. 

 

 

 

Figure 1. Location Map of the study area: the blue color region represents Greene 

County, Missouri. 
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Table 1. Geologic and stratigraphic units in Greene County [23].  

 

 

 

Karst features are prevalent almost throughout Greene County. The Burlington-

Keokuk Limestone has been extensively affected by solution process resulting in the 

formation of numerous karst features: caves, springs, sinkholes, losing streams, cherty clay 

residuum, etc. As stated by Ismail and Anderson in [5], the sinkholes are formed when 

carbonic acid from atmospheric carbon dioxide, present in rainwater, percolates 

downwards into the subsurface and dissolves carbonate bedrock, enlarging fractures and 

joints into cavities that in most cases were in-filled with piped fine-grained soil as they 

developed, resulting in gradual subsidence at the surface. 
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Figure 2. Geological map of Greene County, Missouri (Esri data source: Missouri 

Geological Survey GEOSTRAT system, Sept 2015). 

 

 

 

3. ASSESSMENT OF THE SINKHOLE 

 

3.1. AERIAL PHOTOS  

An aerial photograph from 1960 and a series of historical google earth images 

(Figure 3) were analyzed to reveal the evolution of Sinkhole_1, anthropogenic factors and 

land use changes. The 1960 aerial photo on the top left of Figure 3 shows a north-south 

elongated feature which is a row of trees along a natural north-south surface drainage 

pathway in the middle of a farmer’s field. To the north of the row of trees, there is a small 
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surface depression. This suggests that Sinkhole_1 developed at this location originally as 

a result of the localized ponding of surface water immediately to the north of the zone of 

dense vegetation. The ponded water and piped fine-grained sediment percolated into the 

subsurface through the soil and underlying pervasively fractured limestone. The piping of 

soil lead to surface subsidence and the enlargement of the sinkhole over time. 

 

 

 

Figure 3. Historical Aerial photos of Sinkhole_1; the paved road ways can give an idea 

about the scale of the images. 
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The second image, a Google Earth® image from March 1997, shows a well-defined 

circular depression, immediately west of the row of trees imaged in the 1960 photograph. 

The circular depression is the surface expression of the Sinkhole_1 in 1997. The sinkhole 

appears to have migrated to the west as a result of the broadening of the surface expression 

of the original area of subsidence. The observation that the zone subsidence is covered by 

vegetation and not characterized by scarp features indicates Sinkhole_1 is predominantly 

a cover subsidence type of sinkhole. The Google Earth® image from April 2003, shows a 

small surface depression to the north of the main circular depression. The steep angle and 

the lack of vegetation/grass cover on the scarp in the collapse feature suggest that this 

collapse may have occurred relatively abruptly. It is possible that this depression is a 

localized cover collapse feature. Cover collapse is a typical feature of sinkhole 

development in cohesive soils where the covering sediments contain significant amount of 

clay. The sediments spall into a cavity and as spalling continues, the cohesive covering 

sediments form a structural arch and eventually the cavity breaches the ground surface, 

resulting in sudden and dramatic collapse usually with steep angle scarps.  

The series of historical images indicate that Sinkhole_1 is not an instantaneous 

collapse type of sinkhole; rather it appears to have developed gradually and evolved over 

time. Sinkhole_1 is therefore classified as cover subsidence. It appears to have initiated 

about the time the 1960 photograph was taken. 

 

3.2. BOREHOLE CONTROL  

One borehole (BH1) was drilled to facilitate the correlation of the ERT profiles to 

the actual subsurface geology. The drilling was advanced to the bedrock surface using 8.5 

inch (21.6cm) O.D. hollow-stem augers and bedrock was cored using HQ core barrels.  
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The borehole (BH1) was drilled along ERT profile T13 and ties at 97.5m mark on 

the profile (Figure 5 and 6a). It was drilled to a depth of 30m below ground surface. The 

first 2m comprises red clay residuum with chert, with brown silty loam with chert from 0 

- 1.1m; 1.1m - 1.8m comprises red silty high plasticity clay, and finally 1.8m - 2m reveals 

low plasticity clay. Underlying the residual soil is Burlington-Keokuk Limestone, 

characterized, in core specimens, by numerous horizontal fractures. The rock quality was 

found to be fair to excellent.  

The decomposition of the beds of limestone and chert formed a highly ferruginous 

deposit of clay mixed with broken and decomposed chert. The broken and decomposed 

chert gives more porosity to the residual clay soil. Furthermore, the high iron content of 

the ferruginous clay residuum causes flocculation and form blocky aggregates resulting in 

increased porosity of the soil. Therefore, as a result of the presence of chert fragments and 

the flocculated clay structure, the residuum clay soil has higher permeability than expected 

from a more uniform clay soil. From the borehole samples it is evident that the clay content 

increases with depth, and this supports the idea that there is piping of fine grained soils.  

 

3.3. MULTICHANNEL ANALYSIS OF SURFACE WAVES (MASW)  

Multichannel analysis of surface waves (MASW) data were acquired in proximity 

to Sinkhole_1 and along west-east oriented ERT profiles (Figures 4 and 5). A 24 channel 

geophone array connected to a seismograph is used to record the seismic data. As presented 

in Figure 5, six MASW profiles (MASW1, MASW2, MASW3, MASW4, MASW5 and 

MASW6) were generated and used to verify and constrain the interpretation of the ERT 

profiles. The NEHRP (National Earthquake Hazard Reduction Program) site classification 

chart for different geological material, as published in 2000 by the International Building 
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code, provides a basis for the classification of subsurface materials based on their shear 

wave velocity values. Based on this chart and the borehole control, the shear wave velocity 

of soil is generally less than 1200feet/sec (366m/sec). An example dispersion curve and 

corresponding 1-D shear wave velocity profile from MASW5 is presented as Figure 4. 

 

 

 

Figure 4. A dispersion curve (left); and 1-D shear wave velocity profile (right) of 

MASW5 presented as sample; acquisition parameters used are 10ft (3.05m) off-set, 

5ft(1.52m) geophone spacing, and aligned E-W. Red color arrow indicates interpreted 

depth to top of rock. 

 

 

 

3.4. ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT)  

Sixteen west-east oriented 2D electrical resistivity tomography (ERT) profiles were 

taken at the site with the intent of imaging and characterizing the shallow subsurface in the 

vicinity of Sinkhole_1. The ERT profiles were acquired along sixteen west-east oriented 
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traverses spaced at 6.1m (20ft) intervals. The traverses are labeled T1, T2, T3, to T16 

(Figure 5). Each 2D-ERT profile extends to a maximum depth of 36.5m (120ft). The west-

east direction was selected as it is nearly perpendicular to major joints and regional 

geological structures in the study area, which have a general approximately north-south 

orientation. ERT data were acquired using an AGI R-8 Supersting multi-channel and multi-

electrode resistivity system with 168 electrodes spaced at 1.52m (5ft) intervals and using a 

dipole-dipole electrode array. 

 

 

 

Figure 5. Alignment and location of acquired geophysical data and borehole control: 

West-east oriented blue lines represent ERT traverses (254.5m long each). The red color 

circle represents the approximate location of the surface expression of Sinkhole_1. 

 

 

The borehole control and MASW interpretations were superposed on the respective 

ERT profiles to help verify the interpretations of the electrical resistivity images. Based on 

the borehole data (BH1) (Figure 6a), the top of weathered rock corresponds approximately 
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to the 125 ohm-m resistivity contour interval on ERT profile T13. Therefore, the resistivity 

contour value of 125 ohm-m is interpreted as the top of weathered rock on all of the other 

ERT profiles. Further, BH1 overlain (superposed on T13; Figure 6a) indicates that the zone 

of relatively low electrical resistivity (Zone A) is not a soil/water filled cavity, but rather 

fractured and weathered rock with fair to good quality. Therefore, the relatively low 

resistivity values (less than 125 ohm-m) are attributed to the presence of moisture and/or 

clay filled fractures. Hence, Zone A is interpreted as a moist fractured rock with some clay 

infilling fractures. MASW5 ties ERT T13 at 61m mark (Figure 6). The “resistivity” top of 

weathered rock at the MASW5 location is estimated to be 20ft (6.1m). The 1-D shear wave 

velocity profile in MASW5 (Figure 6b) shows an abrupt increase of velocity from 

1300ft/sec (396m/sec) to 1650ft/sec (503m/sec) at a depth of 20.5ft (6.2m). This increase 

presumably marks the boundary between dense residual soil and the top of weathered rock 

and is interpreted as the “acoustic” top of rock. The additional acquired MASW data also 

correlate with ERT profiles, in terms of estimated depths to top of rock. Figure 7a shows 

MASW1 tied to the ERT profile T1 at 183m mark; the “resistivity” and “acoustic” top of 

weathered rock are 2.4m and 2.1m respectively. In Figure 7b, Zone B has very low 

electrical resistivity (less than 125 ohm-m), but its average shear wave velocity in MASW4 

is about 1800ft/sec (549m/s). Similarly, the low resistivity zone (Zone C) in Figure 7c, is 

characterized by a shear wave velocity ranging from 1450ft/sec (442m/sec) to 1800ft/sec 

(549m/sec). These values of shear wave velocity are consistent with that of fractured rock. 

Moreover, strata with comparable resistivity values and similar geological conditions 

encountered in the borehole was fractured rock (Figure 6a). Hence the most plausible 
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interpretations of zones B and C is that they are zones of fractured rock probably with moist 

clay infill. 

Based on control available, the following interpretational guidelines were 

established: moist soils are characterized by resistivity values of less than 125 ohm-m; dry 

soils by resistivity values greater than 125 ohm-m; moist weathered and/or fractured rock 

by resistivity values less than 600 ohm-m; moist fractured rock with moist piped clay/soil-

fill by resistivity values less than 125 ohm-m; and drier, possibly less weathered rock by 

resistivity values greater than 600 ohm-m. Large air filled cavities should be characterized 

by very high resistivity values, but dependent on the conductivity of the surrounding 

material and depth/size/shape of the void. The ERT data acquired at this study indicated 

that the active sinkhole is not underlain by any substantive air-filled cavities. Four ERT 

profiles crossing the sinkhole (T7, T8, T9, and T10), with interpreted depths to moist 

weathered rock and depths to drier, possibly less weathered rock, are shown as Figure 8. 

 

4. PROMINENT JOINT SET 

 

A linear, north-south oriented zone of relatively low resistivity that extends through 

Sinkhole_1 is readily identified on Figure 9. This linear feature (labeled as joint set 1 in 

Figure 9) could be a zone of more intense fracturing (i.e. north-south trending joint set). 

Alternatively, in as much as the zone underlies a natural north-south trending surface 

drainage pathway, this zone of low resistivity could simply be the result of moisture with 

piped fines percolating into the subsurface over an extended period of time presumably 

with some attendant solution-widening. In addition to the prominent north-south oriented 

linear feature (joint set 1), other roughly linear trends of low resistivity anomalies with 



43 
 

different orientations are also observed in Figure 9. These anomalies are not visually 

prominent enough and also not well defined linear features to be interpreted as joint sets. 

However, their general linear trend gives an insight into the possibility of presence of other 

joint sets or lineaments. 

 

 

 

 

Figure 6. (a) ERT profile T13 with overlaid MASW5 and borehole (BH1). MASW5 tied 

T13 at the 61m mark; BH1 ties T13 at the 100m mark; (b) MASW5 1-D shear wave 

velocity profile. MASW depth to top of weathered rock (“acoustic” top of rock) is 20.5ft 

(6.2m). Red color line on Figure 6b indicates interpreted depth to top of rock. 
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Figure 7. Correlation of the interpretation of ERT and MASW. The acquisition 

parameters: Offset, geophone spacing and alignment used are as follows in MASW1, 10ft 

(3m), 2.5ft (0.76m), N-S); in MASW4, 10ft (3m), 5ft (1.52m), E-W), and in MASW6, 

10ft (3m), 5ft (1.52m), N-S). 
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Figure 8. 2D-ERT profiles (T7, T8, T9 and T10) with interpreted top of moist weathered 

rock and top of drier, possibly less weathered rock. The labels given for the white and 

black lines in T7 are the same for T8, T9 and T10. 
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Figure 9. Parallel alignment of 16 W-E oriented 2D-ERT profiles with an approximate 

location of surface expression of Sinkhole_1 (in red). Each ERT profile has a length of 

835ft (254.5m). Horizontal scale and vertical scale are not the same. 

 

 

 

5. GEOLOGICAL MODEL OF SUBSURFACE STRUCTURE OF THE 

SINKHOLE 

 

The interpreted 2D-resistivity profiles (T7, T8, and T9) together with information 

from the borehole log were used to generate geological models depicting the subsurface 

structure of Sinkhole_1 (Figure10.T7, T8 and T9). Sinkholes develop as a result of 
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interrelated processes, including bedrock dissolution, rock collapse, soil down-

washing/piping and soil collapse. Any one or more of these processes may lead to the 

development of a sinkhole. The bedrock structure underneath the surface expression of 

Sinkhole_1 (Figure 10) does not show any sign of major rock collapse. In all the three 

images (Figure 10), there are zones interpreted as moist, intensely weathered rock with 

clay fill at various depths beneath and in proximity to the surface expression of Sinkhole_1. 

This implies that the major process involved in the development of the sinkhole is 

downward piping of fine-grained sediments, which fill existing and/or developing 

fractures. As mentioned in previously, the clay residuum has chert fragments and is not as 

cohesive as it would be expected from a more uniform clay soil. Hence, it is concluded that 

the sinkhole development involved predominantly a cover subsidence processes, possibly 

with minor localized cover collapse. From the subsurface structure and surface expression 

of the sinkhole, plus the nature of the overburden material, Sinkhole_1 is classified as 

predominantly a cover subsidence sinkhole. 

 

6. CONCLUSION AND RECOMMENDATION 

 
Two-dimensional electrical resistivity profiles were acquired across and in 

proximity to a sinkhole in Greene County, Missouri. The acquired 2-D resistivity data were 

processed as 2-D resistivity profiles and the interpretation was supported by a 

complementary MASW and borehole control data.  

The study shows that Sinkhole_1 developed along a natural surface water drainage 

pathway, possibly above a north-south oriented joint set, and is characterized by a visually 

prominent zone of low resistivity.  



48 
 

 

Figure 10. Geological model of the subsurface structure of Sinkhole_1, reconstructed 

from interpreted 2D-ERT images; T7, T8, T9 and borehole control and MASW. 

Horizontal and vertical scale are not the same. 
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The relatively low resistivity values are due to vertical water seepage and the 

associated piping fine grained soils primarily into preexisting fractures. This supports the 

principle that sinkholes develop in areas where water is ponded or temporarily retained and 

able to percolate into the subsurface. Thus a sinkhole can be mitigated using appropriate 

engineering technologies if the source of piping waters is shut-off. 
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ABSTRACT 

 

A two dimensional (2D) Electrical Resistivity Tomography (ERT) investigation 

was conducted on a karst sinkhole site in Greene County Missouri (Kidanu et al., 2016) 

and the results have shown the suitability of the 2D-ERT method to image the subsurface 

structure of the sinkhole. However, in some situations, 2D-ERT images are less accurate 

than desired because 2D-ERT processing software cannot compensate for the lateral 

variations in resistivity that occur outside of the vertical plane of 2D-ERT profile. Three 

dimensional (3D) changes in resistivity can be mapped using true 3D-ERT acquisition and 

processing method, but this method tends to be costly and time-consuming. In this study, 

a convenient alternative called pseudo 3D-ERT method is applied, which is expected to 

have a higher resolution than the previously done conventional 2D-ERT and significantly 

less expensive than true 3D-ERT data. Based on borehole control, MASW data and surface 

observations, it is concluded that the sinkhole is more reliably imaged in the pseudo 3D-

ERT dataset than in the 2D-ERT dataset. From the interpretation of the pseudo 3D-ERT it 

is concluded that the sinkhole developed at the intersection of three vertical joints sets. 

Key words: 3D-ERT, MASW, sinkhole.  
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1. INTRODUCTION 

 

Sinkholes that suddenly collapse can result in loss of human life and property; and 

ground deformation associated with sinkholes often damage infrastructure such as 

highways and utilities. For example, the catastrophic sinkhole that developed in Nixa, 

Missouri, on August 13, 2006, swallowed a car, the garage it was parked in, and part of the 

adjoining house (Kaufmann, 2008). Furthermore, sinkholes are frequently associated with 

other hazardous processes and problems (Zhou, 2007; Milanovic, 2000; Kaufmann, 2008). 

Therefore, investigating the subsurface structure of sinkholes and their development 

mechanisms enables scientists and engineers to predict subsequent impact and chance of 

reactivation and provide applicable mitigation measures (Kidanu et al., 2016). 

Sinkhole detection using appropriate geophysical techniques is relatively feasible 

since there is a good contrast between the physical properties of sinkhole fill, which 

consists of water, air, or soil, and the adjacent strata.  Geophysical methods that are 

commonly used for sinkhole investigation include seismic reflection and refraction (Cook, 

1965), gravimetry (Bishop et al., 1997), ground-penetrating radar (Ballard, 1983; Annan et 

al., 1991), electrical resistivity tomography (Labuda and Baxter, 2001; Roth et al., 2002; 

Zhou et al., 2002; and Ahmed and Carpenter, 2003), and multichannel analysis of surface 

waves (Lee et al., 2010; Debeglia et al., 2006). ERT is commonly used in Missouri to 

investigate the shallow subsurface (depths < 60 m) in karst terrain because the subsurface 

karst features are generally characterized by highly varying resistivities (Ismail and 

Anderson, 2012). As stated by Williams (1996) and Cardimona et al. (1998), clays in 

Missouri are normally characterized by low resistivity (usually less than 50 ohm-m). 

Residual soils are typically characterized by intermediate resistivity (typically between 25 
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and 600 ohm-m). Weathered to intact carbonate rock is generally characterized by 

resistivity (typically more than 125 ohm-m). Air-filled voids are generally characterized 

by very high resistivity (typically >2000 ohm-m), depending on the conductivity of the 

encompassing strata and size/shape of the void. 

ERT can provide 2D or 3D images of the distribution of the electrical resistivity in 

the subsurface. The 2D-ERT imaging has been proven to be a suitable technique to map 

and characterize sinkholes in karst terrain. However, in some situations, 2D-ERT images 

are less accurate than desired because 2D-ERT processing software cannot compensate for 

the lateral variations in resistivity that occur outside of the vertical plane of the 2D-ERT 

profile.  Acquisition of real three-dimensional (3D) apparent resistivity data, by placing 

current electrodes on the nodes of a rectangular grid and measuring all the possible 

potentials can be used to map 3D changes in resistivity. But this method tends to be costly 

and time-consuming (Vargemezis et al., 2015; Loke and Barker, 1996).  Usually, a cost-

effective alternative to image the 3D subsurface apparent resistivity variation is through 

the application of dense parallel and/or orthogonal surface 2D-ERT lines and process them 

as though they are true 3D data (Yi et al., 2001; Chambers, et al., 2002).  This method has 

been studied in detail by many authors (Papadopoulos et al., 2006; Gharibi and Bentley, 

2005) and their studies have shown that 3D inversion of dense 2D-ERT lines is certainly a 

surrogate to a real 3D survey and in many times the only fully 3D survey that someone can 

perform given instrumentation and logistic limitations. Therefore, this 3D resistivity 

imaging approach is widespread in geophysical practice (Negri et al., 2008; Drahor et al., 

2008; Aizebeokhai et al., 2010; Ismail and Anderson, 2012; G. Vargemezis et al., 2015). 
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2D-ERT investigation was conducted by Kidanu et al., (2016) to image the 

subsurface structure of a sinkhole in Greene County, Missouri (Figure 1).  The result of the 

investigation has suggested the presence of a linear, vertical, N-S oriented prominently low 

resistivity anomaly and additional less prominent but seemingly linear, low resistivity 

anomalies. Furthermore, it is stated that, the prominent N-S oriented anomaly is interpreted 

as N-S oriented joint set, but the other apparently linear, low resistivity anomalies were not 

distinct enough to be interpreted as joint sets. The author has recommended further studies 

to verify these less prominent low resistivity anomalies and better image the 3D-subsurface 

structure of the sinkhole. Due to the limitations of 2D-ERT profiles, as mentioned earlier, 

the E-W oriented 2D-ERT profiles in the previous study (Kidanu et al., 2016) might not be 

capable of detecting linear subsurface features oriented parallel or at an acute angle to the 

profiles. Therefore, in this research a Pseudo 3D-ERT imaging is generated by processing 

2D-ERT data as though they were true 3D data, to characterize the 3D subsurface structure 

of the sinkhole and get better understanding on its formation and development mechanism. 

 

2. GEOLOGIC AND GEOMORPHOLOGIC SETTING 

 
The study area is located in Southwestern Missouri and its geology consists of 

mainly the Osagean Series. The area lies on the western side of the Ozark Uplift and the 

rock layers regionally deep gently towards the west with minor faulting and folding. The 

bedrock in the study area is the Mississippian age Burlington-Keokuk limestone (Figure 

2). This bedrock is characterized by layers of limestone interbedded with thin layers of 

chert and the presence of chert nodules within the limestone layers. The limestone is a light 

gray, coarsely crystalline, and nearly pure calcite. 
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Figure 1. Location map of the study area. 

 

 

 

Figure 2. Geological map of Greene County. 



57 
 

Uneven dissolution of the Burlington-Keokuk Formation has resulted in highly 

irregular bedrock-overburden interface (Fellows, 1970) and is mainly characterized by the 

formation of prominent knobs (pinnacles) of bedrock bounded by deep troughs (grikes) 

caused by dissolution in fractures (Figure 3). The thickness of overburden/residuum in 

Greene County varies from 0 to about 40ft. In many areas stream erosion has removed the 

overburden and rock is at or very close to the surface, whereas in other areas it reaches to 

a thickness of about 40 ft.  

 

 

 

Figure 3. Carbonate rock outcrops with Cutters and pinnacles (Schultheis, 2013). 

 

 

According to Randall (2000), the geological structures in southwestern Missouri 

appear to have controlled the development of karst. As stated by McCracken (1971), the 

geologic faults in the study area are oriented northwest and northeast. McCracken (1971) 

has also stated that the bedrock in the study area is characterized by two nearly orthogonal 

joint sets that exhibit general strike orientations of N 20 º W., and N 60 º E and with vertical 

dipping.   
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3. METHODOLOGY 

 

This research used mainly Electrical Resistivity Tomography (ERT). Multichannel 

Analysis of Surface Waves (MASW) was also used to determine depth to bedrock and aid 

in the interpretation of the ERT results. Moreover, core logging data from borehole control 

was also used to verify, constrain and interpret the ERT profiles. Therefore, the 

interpretations of 2D and 3D ERT data are done based on MASW, borehole control and 

available pertinent previous data in the study area. 

 

3.1. ELECTRICAL RESISTIVITY TOMOGRAPHY 

Electrical resistivity method is used to determine the electrical resistivity of the 

subsurface by injecting an electrical current (I) into the ground through two electrodes 

(current electrodes) and measuring the electrical potential difference (V) at two other 

electrodes (potential electrodes). The apparent resistivity (ρa) is determined as follows: 

ρa=K · V/I, where K is a geometric factor defined by the electrode array configurations on 

the surface. The ERT acquisition in this study was performed using an AGI R-8 Supersting 

multi-channel and multi-electrode resistivity system with 168 electrodes spaced at 1.52m 

(5ft) intervals and using a dipole-dipole electrode array. Sixteen parallel East-West 

oriented 2D-ERT profiles of 835ft (254m) long, with 20ft (6.1m) spacing between profiles 

were acquired over an area in the vicinity of an existing active Sinkhole (Figure 4). These 

2D-ERT profiles were used as input for the pseudo 3D-ERT inversion process.  
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Figure 4. Orientation and location of acquired data. 

 

 

Both 2-D and 3-D ERT data processing routines were applied to the 2-D ERT data 

acquired at the sinkhole site with the intent to integrate the 2-D and 3-D images produced 

from the 2-D resistivity survey to attain better resolution and enhance the interpretation of 

the resistivity images. Accordingly, the sixteen 2D-ERT data files were later combined into 

a 3D data file in the RES2DIVN program and inverted using the RES3DINV program 

(Loke and Barker, 1996b).  Sixteen horizontal sections that give planar 2D-ERT image 

slices with corresponding vertical layer depths were generated from the 3D inversion. 

 

3.2. MULTICHANNEL ANALYSIS OF SURFACE WAVES 

In this research MASW was used mainly to determine depth to top of rock and to 

complement the interpretation of ERT profiles. The locations of the acquired MASW 
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profiles are given in Figure 4 above. To acquire MASW data the ground is struck with a 

sledge hammer and the MASW measures the amplitude and arrival time of Raleigh waves. 

A 24 channel geophone array spaced at typically 2.5 to 5 feet and connected to a 

seismograph was used to record the seismic data. After acquiring the seismic data, a 1-D 

shear wave velocity profile of the subsurface was calculated using an inversion process in 

Surfseis3. In summary, the procedure used for the MASW survey consists of three steps. 

These are; (i) Data Acquisition---acquiring multichannel field records, (ii) Dispersion 

Analysis---extracting dispersion curves, and (iii) Inversion---back-calculating shear-wave 

velocity (Vs) variation with depth (called 1-D Vs profile) that gives theoretical dispersion 

curves closest to the extracted curves (one 1-D Vs profile from each curve). The NEHRP 

(National Earthquake Hazard Reduction Program) site classification chart for different 

geological material, as published in 2000 by the International Building code, provided a 

basis for the classification of subsurface materials based on their shear wave velocity 

values. Therefore, the interpretation of the MASW profiles was done based on the NEHRP 

chart and available borehole control data in the area. 

 

4. RESULTS AND DISCUSSION 

 

4.1. RESISTIVITY AND SHEAR WAVE VELOCITY VALUES 

The interpretation of the electrical resisitivity values were made based on the 

corehole log data, MASW data, and data from previous studies in the area. According to 

the interpretation; moist soils have resistivity value of less than 125 ohm.m, dry soils 

greater than 125, moist weathered and/or fractured rock less than 600, fractured rock with 

moist piped clay fill less than 125, and drier, possibly less weathered/fractured rock greater 
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than 600 ohm.m. In the MASW data, based on the NEHRP site classification chart and 

corehole data, a shear wave velocity of less than 1200 feet/sec is typically interpreted as 

the shear wave velocity of soil.  

The resistivity and seismic data interpretation results showed a good fit and 

consistent correlation with the corehole log data. Specially, the vertical and horizontal 2D-

ERT slices from the pseudo 3D-ERT images found to be more consisitent than the actual 

2D-ERT data.  

 

4.2. PSEUDO 3D-ERT DEPTH SLICES 

A sequence of sixteen horizontal depth slices (layer-1 to layer-16) which extend to 

a maximum depth of 29.7m were extracted from the 3D-ERT image and are presented in 

Figure 5a&b. The upper four depth slices (depth range from 0.0m to 2.66m) indicate that 

the subsurface material in this depth range has mainly low resistivity (<600Ωm) except for 

some scattered zones of higher resistivity (>600Ωm). The slices from layer-7 (4.67 - 5.9m) 

to layer-16 (25.4 – 29.7m) show mainly higher resistivity (>600Ωm) zones (bedrock) and 

some linear low resistivity anomalies which are most likely moist clay-rich vertical joints 

sets.  Depth Slices layer-5 to layer-12 depict two linear prominently low resistivity 

anomalies trending S 60̊ W-N 60̊ E and W-E (Figure 5 a&b, Figure 6). Depth slices layer-

12 to layer-16 show similar low resistivity anomalies oriented S 60̊ W-N 60̊ E but instead 

of the W-E anomaly, another S-N oriented anomaly is more prominent in these slices 

(Figure 5a&b, Figure 7). 
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Figure 5. (a) Sixteen ERT-depth slices and location of surface expression of the sinkhole 

(black circle), (b) ERT-depth slices with the location of the surface expression of the 

sinkhole and its vertical extrapolation. 

 

 

It can be seen that the W-E oriented anomaly is not clearly visible on the deepest 

slices (layer 12 to layer 16), rather the S-N oriented linear anomaly is more visible at these 
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depths. The most plausible explanation for the fact that the visibility and linearity of the 

low resistivity anomalies varies vertically (from layer to layer) and laterally (with in a 

layer) is due to the variation in the amount of moisture and clay content along the joints. 

The variation in clay and moisture content along joints/fractures is in turn a function of the 

groundwater flow direction. Therefore, from the 3D-ERT depth slices (Figure 5a), three 

interpreted joint sets (Figure 5b) have been identified. These three joints sets are labeled 

as, N-S trending joint set (JS1), E-W trending joint set (JS 2), and S 60̊ W-N 60̊ E trending 

joint set (JS3). Furthermore, an overlay of the location of surface expression of the sinkhole 

and the 3D-ERTdepth slices (Figure3b) shows that the sinkhole is developed at the 

intersection of the three joint sets. 

The linear, low resistivity anomalies representing the images of joint sets often tend 

to be wider with depth and have lower resistivity values with an increase in depth. This 

characteristic of the linear features is visible in both the 2D profiles (Figure 8a) and the 

2D-ERT slices extracted from the 3D-ERT image (Figure 8b). This characteristic is 

attributed most likely to one or combination of the following phenomenon; (1) higher 

moisture concentrations at depth, (2) the widening of vertical seepage pathways through 

fractured rocks, and (3) more extensive solution-widening of fractures at depth and 

increased concentrations of piped clay. 

 

4.3. 3D-MODEL OF SINKHOLE FORMATION AND DEVELOPMENT 

PROCESS 

From preliminary topographic assessment it appears that the vertical, linear low 

resistivity anomalies interpreted as joint sets have a surface expression characterized by an 

elongated depression or saddle which are more preferential pathways for surface water.  
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Figure 6. Mainly two linear low resistivity anomaly are visible (SW-NE, and W-E). 

 

 

 

Figure 7. Mainly two linear low resistivity anomaly are visible (SW-NE, and S-N). 
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Figure 8. (a) 2D-ERT profile (b) Layers of ERT slices showing the increase in width and 

the decrease in resistivity value with depth along a vertical low resistivity anomaly. 
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These implies that the intersection of the three joint sets is relatively the location where 

more water is first ponded and infiltrated to the subsurface, which is usually the initial stage 

for the development of subsidence/piping sinkhole. Therefore, from the pseudo 3D-ERT 

data interpretation and other similar studies in the region, a 3D-model depicting the 

formation and development process of the sinkhole is developed (Figure 9). The formation 

and development of the sinkhole involved the following stages of processes: (i) the 

relatively higher susceptibility for weathering and erosion along joint sets results in the 

development of elongated depressions and suddle as surface expression of the joint sets 

which inturn makes the joint sets to be a preferential pathway for surface water flow, (ii) 

water is ponded at the ground surface above the intersection of the three joint sets and 

followed by a subsequent infiltration and percolation to the subsurface, (iii) piping of fine 

grained soils and associated subsidence and minor collapse of residual soils. Previous study 

by Kidanu et al (2016) has suggested that the sinkhole is not an instantaneous collapse type 

of sinkhole; rather it appears to have developed gradually and enlarged over time. The soil 

piping and associated subsidence is a slow and gradual process that continues unless the 

source of water draining to the sinkhole is retained or blocked. Thus, this kind of sinkhole 

development can be mitigated using appropriate engineering technologies if the source of 

piping waters is curtailed. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

2D and Pseudo 3D-ERT methods were used to image the subsurface structure of an 

active sinkhole in Greene County Missouri.  A set of 16 West-East oriented 2D-ERT 

profiles were acquired as an input for the Pseudo 3D-ERT inversion. The interpretation of 
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the resistivity properties of the subsurface materials were made based on ground truth 

corehole data and MASW data.  

As compared to the 2D-ERT, the results from the Pseudo 3D-ERT showed a more 

reliable 3D image of the subsurface structure of the sinkhole and improved the 

understanding of the sinkhole formation processes. From the Pseudo 3D-ERT 

interpretation, it is concluded that the sinkhole developed at the intersection of three 

vertical joints sets (JS-1, JS-2, and JS-3). 

 

 

 

Figure 9. 3D-model, depicting the formation and development process of the sinkhole. 

JS-1, JS-2 and JS-3 represent joint sets identified based on ERT interpretation. 

 

 

The interpretation of the ERT images also revealed that there are no major collapse 

features in the bedrock where the sinkhole developed, except the small soil collapse 

features deduced from the historical google earth images. Moreover, the interpretation of 
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the ERT depth slices concerning clay and moisture content implies the presence of soil 

piping processes. Therefore, this is in agreement with the previous study which stated that 

the sinkhole is formed due to soil piping which results in gradual ground subsidence and 

some associated soil collapse. The soil piping and associated subsidence is a slow and 

gradual process that continues unless the source of water draining to the sinkhole is retained 

or blocked. Thus, this kind of sinkhole development can be mitigated or halted using 

appropriate engineering technologies if the source of piping waters is curtailed. 
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SECTION 

 

2. CONCLUSIONS  

 

The Burlington-Keokuk Limestone bedrock underlies more than 70% of Greene 

County and 98 % of the identified sinkholes in the county (Missouri Geological Survey-

GeoSTRAT, 2016) formed in this unit. Analysis of the sinkholes’ spatial distribution and 

patterns suggest that the sinkholes are not randomly distributed, but are spatially clustered.  

GIS-based multivariate regression methods (OLS and GWR) were applied to evaluate the 

spatial relationships between potential sinkhole influencing factors (explanatory variables) 

and sinkhole density (dependent variable), with the aim of evaluating the significant 

controlling factors. The OLS analysis revealed that seven of the twelve possible influencing 

factors considered in the analysis likely play important roles in triggering the formation of 

sinkholes. These factors are overburden thickness, slope of ground surface, depth to 

groundwater, distance to the nearest drainage line, distance to the nearest road, distance to 

the nearest geological structure, and distance to the nearest spring.  GWR improved the 

model and explained 86% (better than OLS=57%) of the sinkhole density variability. The 

GWR model coefficient values for each explanatory variable provide visual insight into 

the influence of these variables on localized sinkhole density and patterns, and the values 

can be used to provide an objective means of parameter weighting in models of sinkhole 

susceptibility or hazard mapping/zoning. The OLS and GWR models were able to explain 

only 57% and 86% of the processes responsible for the formation of mapped sinkholes, 

respectively. Therefore further research incorporating more data with better resolution is 

recommended to improve the model. 
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In the site-specific geophysical investigations, two dimensional (2D) and pseudo 

three dimensional (3D) - ERT (electrical resistivity tomography), MASW (multichannel 

analysis of surface waves), and borehole data were used to characterize the subsurface 

morphology of the karstified soil-bedrock interface in five selected sinkholes. The detailed 

investigation of one of the selected sinkholes is presented in the second and third paper.  

From the interpretation of the 2D and pseudo 3D-ERT profiles, it was determined that four 

of the five sinkholes occurred at the intersections of regional systematic joint sets. The joint 

sets are characterized by a linear, visually prominent zones of low resistivity. The relatively 

low resistivity values are attributed to vertical seepage and the associated piping of fine-

grained soils through preexisting fractures (often widened by solutioning). The soil piping 

and associated subsidence is a slow and gradual process that continues unless the source of 

water draining to the sinkhole is retained or blocked. Thus, this kind of sinkhole 

development can be mitigated or halted using appropriate engineering technologies if the 

source of piping waters is curtailed. 
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