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ABSTRACT

Rising climatic concerns call for unconventional/renewable energy sourceswhich re-

duce the carbon footprint. Microgrids that integrate a variety of renewable energy resources

play a key role in utilizing these energy resources in a more efficient and environmentally

friendly manner. Battery systems effectively help to utilize these energy resources more

efficiently. This research work presents a framework based on Markov Decision Process

(MDP) integrated with load and solar forecasting to derive an optimal charging/discharging

action of Battery with rolling horizon implementation. The load forecasting regression

models are discussed and developed. Also, various solar forecasting models like clear sky,

multi-regression and Non-Linear Autoregressive Neural Network model with Exogenous

time-series are discussed and compared. The control algorithm is developed to reduce the

monthly billing cost by reducing the peak load demand while also maintaining the state of

charge of the battery. The presented work simulates the control algorithm for one month

based on historic load and solar data. The results indicate substantial cost savings are

possible with the proposed algorithm.
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1. INTRODUCTION

The rising popularity of microgrids has encouraged integration of more renewable

sources like Solar, wind and bio-diesel energies [6]. Integration of renewable energy in a

microgrid helps to reduce the monthly bill as well as the maximum peak load demand. The

load peak and renewable sources peaks must be matched to utilize the full potential of the

renewable resources. The microgrid has no control over the renewable sources output and

it is not a viable solution to expect the customer to plan their load demand according to

the renewable source’s output. Battery systems play a key role in managing such system

by synchronizing load demand and renewable output [7]. Solar energy is widely popular in

the consumer & industrial markets as a source of renewable energy. The system taken into

consideration has a solar energy system as its renewable source. Solar energy and consumer

load are stochastic in nature. Therefore, there is a need to design a smart grid controller

which would predict load demand, solar energy output and eventually schedule the battery

charging/discharging rate.

1.1. MOTIVATION

Energy storage devices are key components in utilizing the capabilities ofmicrogrids

while eliminating the need of fossil fuels/power system in some cases like island mode.

However, energy storage has a variety of functionalities beyond providing energy while

islanded, such as smoothing out an intermittent alternative generation source, load peak

shaving, frequency regulation, demand response, etc. There are numerous applications

of energy storage. Therefore, the main benefits of energy storage that this research work

addresses are as follows:
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Figure 1.1. Load and solar profiles during the day. [1]

1. Synchronizing load and solar power profiles

2. Curbing the Duck curve

3. Economic factors

1.1.1. Synchronizing Load and Solar Power Profiles. Typically, the consumer

load has a common trend throughout the day. The load increases in the morning as everyone

in the house wakes up and get ready for work. In the afternoon load demand decreases and

again rises up to a second peak in the evening depending on the consumer’s lifestyle. On

the contrary, the solar power output gradually increases in the morning, attains a maximum

value at solar noon and reduces to zero in the evening (Figure 1.1). Without energy storage,

surplus energy generated in the microgrid is fed back to the grid for which the utilities gives

incentives to the customer. However, the costs of buying & selling electricity are different.

The buying tariff is seven to ten times the selling tariff. From the economics point of view,

the customer is buying the same electricity which was produced in the afternoon.

Due to the non-synchronized peaks of solar and load profiles, the renewable energy’s

capabilities are not fully utilized. Therefore, energy systems can help overcoming such

problems by storing the surplus energy and utilizing it when needed (Figure 1.2) using

sophisticated control algorithms which will be discussed in the later chapters.
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Figure 1.2. Store and utilize the surplus energy during peak load

1.1.2. Curbing the Duck Curve. In 2013, California ISO (Independent System

Operator) published a series of graphs projecting the future timing imbalance between peak

load demand & renewable generation (Figure 1.3). The large scale installation of solar

energy in the state of California has led to an imbalance of load demand during the solar

peak and evening. The duck curve refers to the transition from solar peak to the sunset where

the electricity generators needs to quickly ramp up the production during this time period.

This leads to instability in the power system & higher operational cost. There are two

solutions to this problem. One is at the macro level where different states/utilities can share

load so that the load curve is consistent in power system. This solution is more complex

& time consuming due to various economic and political hurdles. Another solution is at

the micro level where the customer can locally install energy storage. The energy storage

can store the surplus energy generated during solar peak hours and use it during load peak

hours. This not only minimizes the imbalance between load demands during different times

but also helps in peak shaving. This approach helps both the customers to lower down there

monthly billing cost and also reduce operational cost for utilities which indirectly saves

customer’s money.
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Figure 1.3. Load demand projections for different years[2]

1.1.3. Economic Factors. We live in an economically driven society where every

product is bought with a motivation to have economic benefit from it. When a customer

installs a microgrid, they expect some kind of service or a return of investment. Figure

1.4 depicts the ownership of microgrid by different sectors and the incentives they expect

to receive. The top two motivations/expectations for installing a microgrid are system

reliability and Cost reduction. As discussed in previous sections, solely using renewable

energy cannot ensure cost reduction. Installing Energy storage not only ensures reliability

but cost reduction too so that the consumer get return of investment in minimum possible

time frame.
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Figure 1.4. Microgrid ownership in different sectors and their motivation[3]

1.2. LITERATURE REVIEW

AMarkovDecision Process (MDP) is amathematical tool to take decision in systems

where the outcome is partially stochastic&partially deterministic. MDP iswidely popular in

different areas of specialization from banking to biomedical engineering. The emergence of

smart grids has called for implementation of MDP algorithms in microgrids too. Different

problem statements might demand for different MDP models for the microgrids. For

instance, in [6, 7], the authors discuss the problem of reducing the difference between

the demand & the supply. At every time step, system takes a decision of meeting the

power requirement either by renewable energy or the main grid. The MDP model is solved

using Multi-Agent Q-Learning technique which doesn’t require any prior information of

the system. [7] further discusses the difference between Q-learning and Coordinated Q-
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Learning where the objective function remains reducing the power consumption from the

grid. Both of these research works do not include any forecasting models for load and solar.

Rather, they depend on the immediate changes on the environment.

Research work presented in this thesis is more closely related to works in [8, 9].

In [9], the MDP optimally schedules the energy storage in power distribution including

renewable resources. The output of the algorithm is an optimal policy for scheduling

the energy system while minimizing the objective function, which includes total cost and

the energy losses in the power system. Besides scheduling the battery using dynamic

programming, this paper assesses & compares the battery system size optimal for a network

operation.

Paper [10] formulates an optimal management & sizing of energy storage with

dynamic pricing keeping dynamic pricing stochastic in nature. The algorithm solves the

problem with minimum cost incurred to the customer keeping conversion losses, transmis-

sion losses and investment costs into consideration. This paper also analyzes the size of the

energy system vs its gains.

The MDP algorithm in microgrids runs for indefinite period of time. Therefore, a

finite horizon problem i.e. an algorithm which optimizes only a finite time frame cannot

work for microgrid applications. Therefore, infinite horizon or rolling horizon MDP is a

feasible solutions for the given scenario. In [11], the Rolling horizon MDP algorithm in

microgrids is presented with combined heating and power (CHP) generation to satisfy the

electric & heat loads in the system.The research solves the problem with variable number of

CHPs using greedy algorithm. The researchwork lacks the prediction ofwind turbine output

& load demand which is an integral part in implementing a practical energy management

system.

Research work [12] presents an energymanagement system based on rolling horizon

strategy with solar and wind as renewable resources. The energy system proposed also

considers the SOH (State of Health) of the batteries which accounts for the investment and
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the life of ESS. The paper also implements the load forecasting using Neural Network and

solar forecasting using clear sky model integrated with MDP. The load and solar energy are

stochastic in nature therefore the forecasting models cannot predict them accurately every

time. Therefore simulating only one day of battery scheduling cannot accurately capture

the performance of Energy Management System. Research work presented in this thesis

attempts to develop the energy management system with MDP, Load forecasting using

Auto-regressive Moving Average with Exogenous Input (ARIMAX) and solar forecasting

using Non-Linear Auto-Regressive Exogenous Input (NARX) simulating for 30 days.

Load forecasting is a central area of interest for electric utilities and microgrids

[13, 14, 15]. Time series models, which include a linear combination of past values and

Gaussian errors, have been widely popular in the research community for short-term load

forecasting. [16] implements a short-term load forecasting using ARIMA model & transfer

function model by considering the weather forecast. It formulates models for different

sectors like residential, commercial and industrial loads. The transfer function relationship

between load and weather are different for different sectors therefore, different models are

required. The paper concludes that the transfer function ARIMA models perform better

than the ARIMA models.

Paper [17], analyzes nine different methods for short-term load forecasting like

regression, adaptive load forecasting, stochastic time-series, fuzzy logic, etc. The research

concludes that the load forecasting models require more sophisticated forecasting models

with an inclination towards stochastic & dynamic forecasting techniques. There is also a

trend towards developing hybrid models which combine two or more techniques to extract

the best features of these techniques.

Similar forecasting techniques are applied to Solar forecasting too. Either the solar

radiation is predicted or the PV output is predicted directly using various forecastingmodels.

Time series models have been well used in solar forecasting [18, 19, 20]. The solar energy

is partially predictive due the Earth-Sun geometry constraints and partially stochastic due
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its dependence on surrounding environment like clouds & nearby materials. Therefore,

traditional models tend to fail. Techniques like Neural Networks and Support Vector

Machines are used for solar forecasting due to their abilities to capture the non-linearity and

non-stationarity of the time series.

Paper[21], presents a comparison between multi linear analysis model, Persistence

and Neural network model. Multi linear model is a regression of various parameters

affecting the solar radiation like temperature, humidity, time of day, etc. Persistence model

as the name suggests is obtained by keeping the actual value constant for the current hour

and using it for the forecast. Though this technique works for very short-term forecasting

but if the prediction window is large, this technique fails. The Artificial Neural Network

models have better accuracy than the multi liner and Persistence models.

Paper [22] presents a Neural network model for PV output forecasting taking ex-

ogenous time series like temperature, humidity, Pressure, cloud cover and past observed

PV output into consideration. These are also called Non-Linear Autoregressive Neural

Network (NARX) models. The paper further studies the Mean Average Error (MAE) in

different cloud conditions. The research presented in this thesis has adopted this technique

for implementation of Energy Management System.

1.3. ORGANIZATION OF THE THESIS

In addition to the section 1, which represents the motivation of using battery sys-

tems in microgrids, need of energy systems and literature review, section 2 presents the

formulation of the microgrid system and there mathematical constraints. Markov Decision

Process is discussed in reference to the microgrids and mathematical framework behind the

implementation of the same. The implementation of MDP in microgrid is discussed with

zero forecasting errors to obtain a proof of concept and the theoretical limitations of the

system.
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Section 3 discusses load forecasting techniques like ARIMA (Auto RegressiveMov-

ing Average), SARIMA ( Seasonal Auto Regressive Moving Average) & ARIMAX (Auto

Regressive Moving Average with Exogenous time series) models. The implementation

of the load forecasting models is presented and results of a one month load forecasting

simulation is shown. Chapter 4 presents the solar forecasting techniques. Clear Sky model,

Multi linear model and Auto Regressive Exogenous Neural Network Models are discussed

and compared.

Section 4 shows the implementation of the Energy Management system by integrat-

ing MDP, Load & Solar forecasting. The Energy Management system presented in this

thesis is compared with a Heuristic approach which does not require any intelligent control.
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2. SYSTEMMODELING &MDP

2.1. SYSTEMMODELING

The system under consideration contains a local load, PV source, battery system and

grid connection. System is shown in Figure 2.1. Arrows describe the flow of energy. Solar

(PPV )and load power (PL) flows are unidirectional and only take positive values. Whereas

the power flows of Grid (PG) and battery system (PE ) are bidirectional and can take both

positive and negative values. Grid power (PG) is positive when energy is drawn from it

and negative when surplus energy is fed into the grid. Similarly, Battery power (PE ) is

positive when it is discharged and negative when charged. Solar output power (PPV ) and

Load demand (PL) are always positive. The system operates with the following constraints:

PL − PG − PE − PPV = 0 (2.1)

SoCmin ≤ SoC(k) ≤ SoCmax (2.2)

Pmin
E ≤ PE ≤ Pmax

E (2.3)

The Battery power (PE ) is bounded by maximum and minimum powers Pmax
E &

Pmin
E respectively. The State of Charge (SoC(k)) at any time step k cannot exceed minimum

(SoCmin) and maximum (SoCmax) values based on battery specifications.

2.2. MARKOV DECISION PROCESS

Markov Decision Processes (MDPs) are a class of stochastic sequential decision

processes in which the cost and transition functions depend only on the current state of

the system and the current action [8]. As load demand and PV generation are uncertain in
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Figure 2.1. System architecture

nature, MDP is a good option to schedule the battery charging/discharging rate. A day is

discretized into 15 minutes interval i.e. 96 epochs thereby reducing the problem statement

to making 96 decisions of charging/discharging battery rate in 24 hours. Rolling Horizon

MDP is implemented in the system to ensure that the control algorithm always keeps 24

hours into consideration while making a battery action.

The state, sk , at epoch k has all the information necessary to define cost and transition

probabilities

sk = {E, ûPV, σ̂PV, ûL, σ̂L, θs, θb, k} (2.4)

where,

E = Discretized energy of battery in kWh

ûPV = Point forecast of PV Generation in kW

σ̂PV = Standard error of PV Generation in kW

ûL = Point forecast of Load demand in kW

σ̂L = Standard error of Load demand in kW
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θs = Electricity selling cost in $/kW

θb = Electricity buying cost in $/kW

k is the epoch

2.2.1. Battery Energy. During transitions between epochs,ûPV , σ̂PV , ûL , σ̂L , θs,

and θb are independent of control actions and are deterministic. Therefore, state transitions

are determined by the change in battery energy, e(t). To facilitate calculation, energy is

discretized into M bins of size.

Ebin =
Emax − Emin

M
(2.5)

So, a battery can have energy (state) Ei as:

Li = Emin + (i − 1) Ebin (2.6)

Ui = Emin + iEbin (2.7)

Li ≤ e(t) ≤ Ui (2.8)

Ui is the upper limit of Energy at E = i and Li is the lower limit of Battery Energy at

E = i. Therefore battery can have M discrete states during the scheduling and energy e(t)

of battery would be greater than Li and smaller than Ui. In the simulations, M is taken as

200, Emax as 200 kWh and Emin as zero but during practical implementation, boundaries

can be set on Emax & Emin to ensure that the battery is charged/discharged till certain levels.

2.2.2. Battery Actions. In MDP formulation for battery scheduling, actions(n) is

considered to be Charging/Discharging rate in kWh. This is defined by the specification

of the battery system. From each state Ei, some finite discrete actions are possible. These

actions i.e. charge/discharge rates (n) are chosen such that there is an increment/decrement
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in energy E with a probability of 1 (Equation 2.9).

Pi j =


1 i f (i − j) = n

0 i f (i − j) , n
(2.9)

Where, i is the state at epoch k and j is the state at epoch k + 1. The action in kWh can be

computed by referring to the specification of the Battery system (Equation 2.10).

PE =


nEbinηd
∆t

nEbin

∆tηc

n > 0

n < 0
(2.10)

where,

PE is battery charging/discharging power

ηd & ηc are discharging and charging efficiency respectively

∆t is the time interval between two actions (15 minutes in our case)

2.2.3. Cost. Total cost accumulated at each state denoted byCi j,k of a certain epoch

is a function of destination state of the next epoch and the action taken. It is to be noted that

the cost mentioned here is not the actual cost of the day. Rather, it is divided into two parts:

1. Grid Cost

2. Energy Transfer Cost

2.2.3.1. Grid cost. This is the expected cost by transitioning from state Ei to E j at

epoch k.

Now, PG is estimated by the following constraint:

PG = PL − PPV − PE (2.11)

PE is held constant. Distribution of PG is Gaussian with following parameters:

µ̂G = µ̂L − µ̂PV − PE (2.12)
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σ̂G =

√
σ̂2

L + σ̂
2
PV (2.13)

There are majorly two types of rate structures imposed by utilities on customers:

1) Time of Use (TOU) rate: In this structure, the prices are increased during peak load

periods. For example, utilities might have peak period from 12:00 PM to 7:00 PM when

the demand is the highest. Purchase price for the off peak hours would be lower than the

on-peak hours thereby encouraging customers to consume less power during those periods.

Cost associated with this scheme for a particular epoch with PE held constant is as follows:

CG =


PGθs∆t PG < 0

PGθb∆t PG > 0
(2.14)

Where, ∆t is the size of one epoch which is 15 minutes in this study. The expected cost of

CG is given in Equation 2.15

E [CG] =
0∫

−∞

θs∆t x
√

2πσ̂G
exp

(
−(x − µ̂G)2

2σ̂2
G

)
dx +

∞∫
0

θb∆t x
√

2πσ̂G
exp

(
−(x − µ̂G)2

2σ̂2
G

)
dx (2.15)

E [CG] =
µ̂G∆t
√

2σ̂G

[
(θb − θs)

(
σ̂G

µ̂G

√
2
π

exp

(
−µ̂2

G

2σ̂2
G

)
+ erf

(
µ̂G√
2σ̂G

))
+ θb + θs

]
(2.16)

2) Demand charge: This charge is generally levied on Industrial/commercial facil-

ities or customers with high power consumption. Some utilities in states like Alabama,

Arizona, Wyoming, California and many more [23] have implemented demand rate struc-

ture for residential customers too. Bill is generated on the basis of two components, first is

fixed rate where the purchase rate remains constants throughout the billing cycle. Second
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is the demand rate which accounts for a large amount in the bill. Demand charge is based

on the highest power consumed in a 15 min duration for one month billing cycle. The Cost

associated with this rate structure is as follows:

CG=


PGθs∆t PG < 0

PGθb∆t 0 < PG < γ

(PG − γ) θd∆t + γθb∆t PG > γ

(2.17)

where,

θs = Selling price in $/kWh

θb = Buying price in $/kWh

θd = Demand charge in $/kWh

γ = Threshold value for demand in kWh

Expected cost of CG is given in Equation 2.18 and 2.19. In this research, Demand

charge rate structure is going to be followed.

E [CG] =
θs∆t
√

2πσ̂G

0∫
−∞

x exp

(
−(x − µ̂G)2

2σ̂2
G

)
dx+

θb∆t
√

2πσ̂G

γ∫
0

x exp

(
−(x − µ̂G)2

2σ̂2
G

)
dx

+
θd∆t
√

2πσ̂G

∞∫
γ

x exp

(
−(x − µ̂G)2

2σ̂2
G

)
dx

(2.18)

E [CG] =
(θd − θs)

2

(
σ̂G

√
2
π

exp

(
−(γ − µ̂G)2

2σ̂2
G

)
+ (γ − µ̂G) erf

(
γ − µ̂G√

2σ̂G

)
+ γ

)

+
(θb − θs)

2

(
σ̂G

√
2
π

exp

(
−(µ̂G)2

2σ̂2
G

)
+ µ̂Gerf

(
µ̂G√
2σ̂G

))
+
µ̂G (θd + θs)

2

(2.19)
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2.2.3.2. Energy transfer cost. This is the cost of Energy transfer from/to battery

to emphasize on the notion that the battery is degraded while charging/discharging it and

enabling the MDP to determine whether it is financially advantageous to supply the load

with grid energy or battery energy. Battery cost CB is defined as :

CB = Ebin (i − j) θe (2.20)

where,

θe = Energy transfer cost in $/kWh

i = Initial energy state at epoch k

j = Final energy state at epoch (k+1)

From Equation 2.20, the cost is positive when j < i and negative when j > i. The

primary objective of the system is to attain least cost. Therefore, this cost term tries to

attain higher SoC (State of Charge) of the battery which heavily dependent on θe.[24, 25],

estimate the value of θe by considering the battery installation cost and lifetime. Though

it is out of the scope of this study but SoC and SoH (State of Health) estimation can be

implemented in this topology to calculate θe for considering the degradation and lifetime of

battery system. The total cost for transitioning from state “i” to “j” at epoch “k” is described

in Equation 2.21.

Ci j,k = CG + CB (2.21)

2.2.4. Optimal Policy. Dynamic programming is used to calculate the optimal

policy of the MDP. The tree diagram shown in Figure 2.2 summarizes the implementation

of MDP in microgrid. The optimal policy of each state at epoch k is defined by the Bellman

equation.

U∗i,k = min
nA

M∑
j=1

Pi j(Ci j,n +U∗j,k+1) (2.22)
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Figure 2.2. Implementation of MDP using Dynamic Programming

U∗i,K = −θe (Emin + (i − 0.5) Ebin) (2.23)

a∗i,k = argmin
n∈A

M∑
j=1

Pi j(Ci j,n +U∗j,k+1) (2.24)

Where, Ui,K is the optimal utility at epoch k and state i, K is the last epoch (e.g. 96), and a∗i,k

is the optimal action at epoch k and state i. Actions determined by Equation 2.24 determine

the optimal policy for the battery controller. Since the terminal cost is based on the energy,

the system prioritizes high battery energy at the end of the horizon while reducing the grid

cost.

Rolling Horizon MDP ensures that there is always enough energy in the battery

system to supply day ahead load demand taking into consideration both solar output and

load demand.
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2.3. IMPLEMENTATION

To validate the performance of MDP model and obtain a theoretical limit of the

system, forecasting errors are ignored. In other words, MDP model is integrated with load

and solar forecasting models which have zero forecasting errors. The load & solar data are

taken from a research facility Pecan Street dataport situated in Austin. A community of

20 houses is considered with 10 houses having PV panels installed. demand charge rate

structure is imposed using parameters from RMU (Rolla Municipal Utilities) given in Table

2.1. The battery system is assumed to have a capacity of 200 kWh with an initial SoC of

50%. The battery system has maximum charging power of 68.4 kW and maximum charging

capacity of 75.7 kW.

Table 2.1. Demand rate structure used in simulations (Adopted from Rolla Municipal
Utilities)

Parameter Rate
Buying Rate (θb) ($/kWh) 0.07009
Selling Rate (θs) ($/kWh) 0.01326
Demand Rate (θd) ($/kW) 14.5

It can be observed from Figure 2.3 & 2.4 that the solar output is stored in battery

bank during surplus generation and the same energy is used during peak load. This helps

to maintain constant power drawn from the grid and reduce the maximum peak power. This

in turn reduces the demand charge in the system. Table 2.2 shows the cost comparison of

system with & without MDP & battery system.
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Table 2.2. MDP one month simulation results

Without Battery Storage MDP without forecasting errors
Cost ($) 1944.9 1015.49
Savings ($) NA 929.4
Maximum Load (kW) 74.4 34

It can be observed fromTable 2.2 that the systemwith no battery pack has amaximum

load demand of 74.4 kW. Whereas, a system with battery pack and MDP algorithm reduces

the maximum load demand to 34.6 kW thereby saving $929.4 in one month. Though,

this model only signifies the capabilities of MDP algorithm & a theoretical limit to the

cost savings. The MDP model is incomplete without load and solar forecasting models.

Therefore, forecasting models are discussed in proceeding chapters in order to integrate

them with MDP.
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3. LOAD FORECASTING

Load forecasting is a tool used by utilities and power companies for planning & op-

eration of power systems. Increased acceptability of microgrids has encouraged researchers

to forecast loads at a micro level for energy control purposes and increase the penetration

of renewable energies in the microgrid system. Load forecasting captures the customer

behavior and predicts load with a lead time from several minutes to even days depending

on the application. Load forecasting can be categorized based on the forecast horizon:

1. Short term forecast: The prediction period ranges from several minutes to weeks.

It is generally used for Network planning, supply/demand matching, load shedding

strategy, etc.

2. Medium term forecast: The prediction period ranges from weeks to months. The

main advantages of medium term forecast are network planning, power procurement

& rate case development.

3. Long term forecast: The prediction window ranges from months to years. Long

term forecasting is generally used by power companies for investment planning and

projecting the need for infrastructure.

The system load in a microgrid is the sum of all individual loads of all houses forming a

microgrid. In principle, if the characteristic consumption of individual house is known,

load can be predicted easily. The total load in a microgrid results in distinct features which

can be statistically predicted.The load pattern is influenced by a number of factors which

are listed below:

1. Economic: Economic factors have different meaning for different sectors where load

forecasting is performed. For microgrids, the rate structure imposed by the utilites

is crucial. For example, in case of Time of Use (TOU) rate structure, consumer
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will try to maintain low load demand during specific times. Whereas, in case of

Demand charge structure customer will try to maintain low load demand peak (flatter

consumption profile). Therefore, knowing the economic factors can play a key role

in predicting the future load demand .

2. Time: The consumer load has a specific profile which can be extracted from the time

of prediction. The load profile therefore repeats itself after every 24 hours. This is

called seasonality. Even if the consumer’s load consumption pattern changes, it is

updated on the next day’s forecasting results. Other time factors affecting the load

profile are weekends, holidays like Christmas and special events like the Super Bowl.

3. Weather: Meteorological changes are major factors affecting load consumption due

to the presence of weather sensitive components in the system, particularly air con-

ditioning and space heating. The inputs for the load forecasting can be temperature,

humidity, dew point & wind speed. However, not all weather parameters can have

correlation with the load consumption. Analysis is needed to decide which weather

parameters directly affect the load consumption.

4. Stochasticity: Random behavior of the customer or event can cause a change in load

consumption which cannot be explained from the other factors discussed above. This

property largely calls for the load forecasting models.

3.1. LOAD FORECASTING MODELS

Load forecasting can be performed with different models like multiple regression

technique [13, 26], Time series model &Artificial Neural Networks. Time series models are

the classical approach to load forecasting. It is a linear combination of past observed values

of the load demand. Time series models are relatively simple compared to the Artificial
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intelligence (AI) methods and produces same accuracy as that of the AI models [27]. This

research work focuses on developing a Time series model for load forecasting due to its

simple mathematical framework and wide acceptability for practical applications.

3.1.1. Time Series Models. Time series is defined as the series of data generated

sequentially in time [28]. The time series models assume that the future data is related to

the past observed values of the time series.

Introduced by Box and Jenkins [29], ARIMA (Auto Regressive Integrated Moving

Average) modeling has been a popular technique to predict the future load demand [30].

ARIMA model has three components: Autoregressive (AR), Moving Average (MA) and

differencing.

The primary requirement of the ARIMA model is that the time series has to be

stationary. In other words, a time series is stationary if the statistical properties (mean,

variance, autocorrelation) do not changewith time. Kwiatkowski−Phillipsi−Schmidti−Shin

(KPSS), Dickey−Fuller test (ADF) and unit root test are the common methods to determine

the stationarity of a time series. Mathematical operations are needed to be performed

if the time series is not stationary. A non-stationary time series can be made stationary

by differencing the data set with various methods like normal differencing, exponential

smoothing, regressing on trends, etc. In most of the cases, one or two differencing is

enough to make a series stationary. The order of differencing is denoted by “d”.

If d = 1, the time series is stationary.

yk = Yk (3.1)

If d = 1, the series is differenced with itself once.

yk = Yk − Yk−1 (3.2)
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If d = 2, the time series is differenced twice.

yk = (Yk − Yk−1) − (Yk−1 − Yk−2) = Yk − 2Yk−1 + Yk−2 (3.3)

where,

yk is the stationary series obtained after differencing

Yk is the original time series

k is the discretized time step

It can be observed that as the differencing order increases, the equations also become

complex. Therefore, to make the time series equations easy to perceive, a lag operator “B”

is introduced (Equation 3.4). Operator “B” is similar to the z−1 operator in discrete domain.

BYk = Yk−1 BmYk = Yk−m (3.4)

Therefore, a one and two differencing equations (Equation 3.5 & 3.6) can be represented as

follows:

yk = (1 − B)Yk = Yk − BYk (3.5)

yk = (1 − B)2Yk = Yk − 2BYk + B2Yk (3.6)

Autoregressive (AR) component stresses on the fact that the present value of the load

demand is related to the past observed values. It is weighted sum of past observed/forecast

values of the time series. The order of autoregressive model (p) is determined using partial

autocorrelation. The Moving average (MA) term is a weighted sum of the forecast errors.

The order of MA (q) is determined from auto-correlation plots.

Though, the partial correlation and auto correlation plots gives a ballpark numbers

for the orders of AR & MA orders respectively.Figure 3.1 & Figure 3.2 shows the pacf &

acf plots of a stationary time series.
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Figure 3.2. Partial correlation of stationary time series
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It can be observed from Figure 3.1 & 3.2, that the auto correlation and partial

correlation damps to zero after some lags. These lags can be used as ball park numbers to

start with the AR & MA lags. Though these might not be the actual orders but it helps to

look for the starting point. During the modeling phase, different combinations of MA &

AR orders are tested and the model with highest accuracy is chosen. ARIMA equation is

represented as follows:

φ(p)(1 − B)d(Yk − u) = ϕ(q) (3.7)

φ(p) = 1 −
i=p∑
i=1

φi Bi ϕ(q) = 1 +
i=q∑
i=1

ϕi Bi (3.8)

where,

Yk is time series to be predicted

φ(p) is the Autoregressive function

φi is the autoregressive coefficient

ϕi is the moving average coefficient

ϕ(q) is the Moving Average function

u is constant or intercept

d is differencing order

p is autoregressive order

q is moving average order

3.1.2. Seasonality. Load trends are seasonal in nature. Present data is correlated

with previous day’s data. Addition of seasonal terms in time series forecasting increases

the accuracy of forecasting model. There is no formal method of calculating the order of

seasonality. It can be observed by carefully studying the time series trend and looking for

highest past cross correlation function (Figure 3.3). Plotting frequency spectrum of the

time series can also help in investigating the seasonality of data set. In Figure 3.3, a load
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data set is discretized into 15 minutes intervals/epochs and shows that the current value is

highly correlated with the past 96th epoch/past 24 hour value. This also makes sense as the

typical load behavior of a consumer load does not change on a daily basis.

Therefore, the past 24 hours load value can also be used to predict the future load.

Seasonality integrated with ARIMA model is called SARIMA (Seasonal Auto Regressive

Integrated Moving Average) Model. The equation of SARIMA model is given below

φ(p)φs(P)(1 − BS)D(1 − B)d(Yk − u) = ϕ(q)ϕs(Q) (3.9)

φs(P) = 1 −
i=P∑
i=1

φs
i Bi ϕ(Q) = 1 +

i=Q∑
i=1

ϕs
i Bi (3.10)

where,

φ(P) is the Seasonal Autoregressive function

φs
i is the autoregressive coefficient

ϕs
i is the moving average coefficient

ϕ(Q) is the Moving Average function
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S is the seasonality of time series

D is the seasonal differencing of time series

P is the order of Seasonal Autoregressive function

Q is the order of Seasonal Moving Average function

The coefficients of SARIMA model is calculated using SAS (Statistical Analysis

Tool). Other software tools like MATLAB & R can also be used for this purpose. Equation

3.9 is represented as ARIM A(p, d, q)S(P,D,Q) in short. Different SARIMAwere tried and

model with ARIM A(5, 1, 5)96(0, 1, 1) produced the best accuracy. Simulations for 24 hours

ahead load forecasting is performed for one month data where the model is updated every

15minutes. Mean Average Percentage Error (MAPE) (Equation 3.15) histogram is plotted

for the simulations. The histogram (Figure 3.4) represents the MAPE of 2500 day-ahead

load forecasting. The minimum MAPE of the simulation is 9.7131% and the maximum

MAPE is 81.9178%. As the SARIMA model predicts the future load by regressing the

past value, it fails to predict the future load change due to external factors like weather.

Therefore, weather parameters are important to be integrated in the system to accurately

forecast the load demand.

3.1.3. Weather Correlation. Among all the dependent factor of load consump-

tions, weather dependent load plays a vital role in short-term load forecasting [19]. Weather

components can constitute Temeprature, Humidity, Wind speed, dew point, etc. Though it

depends on the consumer load and behavior which needs to be investigated before including

the weather factors.

The data set being used in this research work only has correlation with temperature

(0.8466) with a lag of 150 minutes. This means that the load demands react to the

temperature changes after 150 minutes. Figure 3.5 shows that the load is linearly dependent

on temperature but it is not necessary for all load demands. Some load demand might have

a quadratic or even no relationship with load. Therefore, a thorough analysis is necessary

while choosing the weather parameters.
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Figure 3.5. Load is linearly dependent on Temperature
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3.2. LOAD FORECASTING MODELING

Load forecasting involves two steps i.e. formulating a relationship between load -

weather parameters (Regression Method) and predicting the residuals regression method

using SARIMA model. For example, the regression model obtained from the data set is a

linear equation between load and temperature (Equation 3.11).

X̂ [k] = u + aTemp × T [k − 10] (3.11)

where,

X[k] is the load predicted using regression method

u is the intercept equal to -129.698 for the data set taken into consideration

aTemp is the regression factor of Temperature equal to 1.945

T[k] is the temperature expressed in Fahrenheit

The temperature forecast is obtained from the weather stations which predict the

weather for next 48 hours. Various weather stations provide with APIs which can be used

to acquire the weather forecast (Appendix-A).

The residual error after applying (Equation 3.11) is predicted using SARIMA of the

form SARIMA(5,1,5)X(0,1,0)96 (Equation 3.12). This form gave the best accuracy for the

given data.

φ(p)(1 − B96)(1 − B)(êk − u) = ϕ(q) (3.12)

φ(p) = 1 −
i=5∑
i=1

φi Bi ϕ(q) = 1 +
i=5∑
i=1

ϕi Bi (3.13)

The error/residuals predicted (Equation 3.12) using SARIMA model are added to the load

predicted using regression model (Equation 3.11). The addition of both the models results

into the final prediction of the load (Equaiton 3.14).
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Figure 3.6. Load forecasting approach

The parameters in Equation 3.11 & 3.12 are obtained from SAS software. The flow

diagram of the load prediction is depicted in Figure 3.6.

Ŷ [k] = X̂[k] + ê[k] (3.14)

where,

Y [k] is the load forecasted at epoch/time step k

X[k] is the load predicted using regression model

e[k] is the residual predicted using SARIMA model



32

0 20 40 60 80 100
MAPE (%)

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 (

%
)

Figure 3.7. One month simulation MAPE result of load forecasting

3.3. RESULTS

The load data was obtained from Pecan Street data port. The minutely data is

converted to 15 minutes averaged data. The aim of the forecasting model is to predict 24

hours ahead load demand from the current epoch. This reduces to predicting future 96

epochs of load demand. SARIMA model discussed in previous sections is used for load

predictions . The forecasting model is analyzed based onMAPE (Mean Average Percentage

Error) (Equation. 3.15)

M APE =
1
96

k=96∑
k=1

��Y [k] − Ŷ [k]
��

Y [k] × 100 (3.15)

For day-ahead load forecasting updated every 15 min for 30 days, simulation results show

MAPE (mean absolute percentage error) within 30% for 95% of the epochs (Figure 3.7),

with a highest MAPE of 36.2% and lowest MAPE of 10%. It can be observed that the
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temperature parameters act as the backbone of load forecasting thereby effectively predicting

the future load trend. SARIMAmodel is applied on top of the load predicted using weather

parameter to improve the forecasting.
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4. SOLAR FORECASTING MODELING

Solar energy is one of the most abundant renewable energy in the United States.

Since 2008, US solar installation have grown from 1.2 GW to 30 GW which is enough to

power 5.7 million American home. The PV panels have also become affordable as their

price dropped by more than 60% in the past decade (Figure 4.1). Based on average prices,

the system cost of installing solar panels in the US is $3.14/watt.

GTM (Green Tech Media) research suggests that the solar installation cost in India

has reached as low as 65 cents per watt. Increased popularity, tax incentives, cutting edge

technology are some of the reasons contributing to cheaper solar panels.

Solar energy integrated with microgrids improves the reliability of the system too.

For example, in case of storms, the infrastructure of power systems is destructed due to

which the solar panels directly tied to the power system stop working too. Microgrids have

are more advanced and prepared for such scenarios and there smart software senses the

incoming disruption. They isolate the microgrid from the power system and directly rely on

their solar power and battery systems till the power system is again operating. Therefore,

microgrids integrated with solar power not only provide green energy, cost reduction but

also increases the reliability of the system.

All these factors contribute in encouraging the microgrid customers to install solar

panels in their systems. Though, having solar panel in the system is not enough. In order

to increase the penetration of solar energy, one needs to predict the upcoming solar power

to better manage the energy output. There are a few solar terminologies which are needed

to be discussed before discussing the forecasting models.



35

Figure 4.1. Solar panel cost reduction trend[4]

4.1. FUNDAMENTAL CONSIDERATIONS

Before diving into the solar forecasting methodologies, basic terminologies are dis-

cussed in this section.

1. DeclinationAngle (δ): Solar declination is the angular distance between the equatorial

plane and the earth-sun line (Figure 4.2). Declination angle varies from +23.45◦ to

−23.45◦ throughout the year. Solar declination can be defined as a function of day in

a year as follows:

δ = 23.45 × sin
(
360◦
(n + 284)

365

)
(4.1)

where,

n=Day of the year (n=1 for 1st Jan, n=32 for 1st Feb, etc)

δ and angle inside sin are in degrees
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Figure 4.2. Declination angle of earth is different at different times of the day

2. HourAngle (ω): Hour angle is an expression of observing the Sun fromEarth through-

out the day. It is expressed in degrees. At solar noon, hour angle is equal to 0 degrees.

Time before solar noon is expressed in negative and after solar noon is expressed in

positive. Sunrise/Sunset hour angle equation is described in Equation(4.2).

cos (ωo) = − tan (ϕ) tan(δ) (4.2)

where,

ωo is Sunset/Sunrise hour angle (Negative for sunrise and positive for sunset)

ϕ is Latitude of the location of interest

Earth rotates at an angular velocity of 15◦ hour angle/hour. Therefore, if the time

of the day is known, hour angle can be calculated accordingly. Hour angle has the

following constrain at a particular day:

−ωo ≤ ω ≤ ωo (4.3)
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3. Solar Altitude (β): Solar Altitude is the angle between the horizontal plane and the

line which joins the point of interest with the Sun (Figure 4.3). Expression for solar

angle is given in Equation(4.4).

sin (β) = cos (ϕ) cos (δ) cos (ω) + sin (ϕ) sin(δ) (4.4)

where, β is Solar altitude

4. Zenith angle (φ): It is the angle between the vertical plane and line which joins the

point of interest with the Sun (Figure 4.3). Therefore, Zenith angle and Sun altitude

angle are co-dependent (Equation 4.5).

φ = 90 − β (4.5)

5. Azimuth Angle (θ): Azimuth angle is defined as the angular displacement of the

projection of earth-sun line with south on the horizontal plane (Figure 4.3). Azimuth

angle can be computed from Equation 4.6.

cos (θ) = (cos (ω) cos (δ) sin (ϕ) − sin (δ) sin (ϕ))
cos(φ) (4.6)

where, θ is the Azimuthal angle

6. Extraterrestrial Solar Radiation: Extraterrestrial Solar Radiation Eo is the solar ra-

diation flux just outside the EarthâĂŹ‘s atmosphere. Due to the elliptical path of

Earth‘s orbit, Eo is not constant throughout the year, but can be approximated by

Eo = Esc

{
1 + 0.033 ∗ cos

[
360◦

n − 3
365

]}
(4.7)



38

Figure 4.3. Solar Angles for horizontal and vertical surfaces[5]

where,

Esc = Solar constant (1367 W/m2)

n = Day of the year (n=1 for 1st Jan, n=32 for 1st Feb, etc)

7. Air mass (m): It is the ratio of the actual air mass present in the atmosphere to the

air mass that would be present when the sun was directly overhead. Air mass is the

function of solar altitude (Equation 4.8)

m =
1

sin (β) + 0.50572(6.07995 + β)−1.6364 (4.8)

Where, β is the solar altitude in degrees.
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4.2. FORECASTING MODELS

Total extraterrestrial solar radiation is the solar radiation received by the outer

atmosphere of the Earth which fluctuates around the average value of 1360 W/m2. This

radiation is attenuated in the atmosphere by complex reflections, refractions and absorptions

by various factors like clouds, aerosols, air mass, etc. Therefore, there involves a challenge

in predicting the solar radiation received by the surface of the due to its complex attenuation

by the atmosphere. This research work discusses three major methods to predict day ahead

solar radiation / solar power output in the system i.e. Clear Sky Model, Regression Model

and Non-Linear Autoregressive Neural Network Model.

4.2.1. Clear Sky Model. ASHRAE (The American Society of Heating, Refrig-

erating and Air-Conditioning Engineers) [16] clear sky model estimates the Global solar

radiation assuming that there are no clouds present in the sky[31, 32, 33]. Broadly, Global

solar radiation on a clear sky day is defined as the sum of direct solar beam and the diffused

beam from the sun. These two radiances are described as follows:

Eb = E0exp[−τbmab] (4.9)

Ed = E0exp[−τdmad] (4.10)

ab = 1.454 − 0.406τb − 0.268τd + 0.021τbτd (4.11)

ad = 0.507 + 0.205τb − 0.080τd − 0.190τbτd (4.12)

Where,

Eb is the direct radiation. It is the radiation directly coming from the Sun in a straight line

to the surface of the Earth (Measured perpendicular to Sun rays).

Ed is the Diffused solar radiation which is scattered by the atmospheric particles (Measured

horizontal to the surface)

Eo is Extraterrestrial radiation (Equation 4.7)
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m = Air Mass

τb&τd are the Pseudo optical depths. These values also considers the atmospheric effects

of the location. ASHRAE handbook-fundamentals provides these values for each month

based on the site. These values are updated every year for better accuracy.

ab&ad are the beam and diffused air mass exponents.

4.2.1.1. Calculation of incident radiation on a surface. Total Global radiation

on a surface inclined to the horizontal plane is defined as the sum of the Direct radiation,

Diffused radiation and Reflected radiation.

Et = Et,b + Et,d + Et,r (4.13)

where,

Et = Global solar radiation

Et,b = Radiation directly originating from the sun

Et,d = Radiation diffused by the EarthâĂŹs atmosphere

Et,r = Radiation after getting reflected from the ground

Et,b = Ebcos(θi) (4.14)

Eb is direct beam radiation described in Equation 4.9 and θi is the angle of incidence which

can be calculated from the relationship given in Equation 4.15

cos (θi) = cos (β) cos (θ) sin (α) + sin (β) cos(α) (4.15)

where,

θ is Effective Azimuth Angle

α is Angle of tilt of the surface from ground

β is Solar altitude
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Et,d = Ed (Y sin(α) + cos(α)) (4.16)

Y = max
(
0.45, 0.55 + 0.437cos(θ) + 0.313cos2(θ)

)
(4.17)

It is to be noted that Equation 4.14 and 4.16 are a modified versions of Equation 4.9 & 4.10

respectively to calculate the Solar radiations in case surface/PV panel is placed in a certain

orientation w.r.t. to the horizontal plane

Et,r =
(Ebsin(β) + Ed) ρg (1 − cos(β))

2
(4.18)

Where, ρg is the coefficient of ground reflectance. It has been empirically calculated for

different surfaces which can be found in ASHRAE handbook-fundamentals.

4.2.1.2. Clear sky model results. Solar power output is directly proportional to

the solar radiation incident on the PV panel (Equation 4.19)

OutputPower = Solar_Radiation × Area × E f f iciency (4.19)

Preliminary requirement in case of clear skymodel is to predict the solar radiation accurately.

Core assumption of clear sky model is that there should be no clouds in the sky. Therefore

ASHRAE model gives best performance on days without no clouds but fails to predict the

solar radiation on cloudy days.

Therefore, it is necessary to add some external factors in the solar forecasts.

ASHRAEmodel alone cannot be used to predict the solar output but it can act as a backbone

structure to predict the solar radiation which will be discussed in following sections.

4.2.2. RegressionModel. Solar radiation is dependent on Earth-Sun geometry, the

cloud cover and the weather[34, 35, 36]. Therefore, if the weather is known beforehand,

solar radiation can also be predicted. Weather stations have past years weather data base,

satellite imageries and complex algorithms to predict the weather with up to one week
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Figure 4.4. Solar radiation & Relative humidity are linearly correlated with a correlation
coefficient of -0.8402

of prediction window. Most of the weather stations provide APIs to give 48 hours ahead

weather forecast with a time step of one hour. Though, the weather is affected by the solar

radiation but if we can use the reverse technique and predict the solar radiation from the

predicted weather. Weather stations mostly provide with temperature, relative humidity,

dew point, wind speed, precipitation, etc. The correlation between solar radiation/solar

power output and other weather parameters are needed to be analyzed before moving to the

modeling part. From the available dataset, temperature (Figure 4.4) and humidity (Figure

4.5) had the highest correlation with solar radiation.

Clear sky model gives the solar radiation available on a clear sky day. This means

that it is themaximum solar radiation that is incident on the surface of solar panel. Therefore,

ASHRAE clear sky model is taken as a reference and regressed against temperature and

relative humidity forecasts. ASHRAE model consists all the necessary information for

predicting the solar radiation such as latitude, time of day, air mass, reflectivity around the

PV panel, etc. Rest of the information like weather parameters, efficiency of PV panel, area
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Figure 4.5. Solar radiation & Temperature are linearly correlated with a correlation
coefficient of 0.7429

of PV panel is included in the model using Regression model (Equation 4.20)

Sk = µ + ASHRAE k × α + Temperaturek × β + Humidityk × χ (4.20)

where,

Sk is the predicted solar radiation at epoch k

ASHRAEk is the ASHRAE model prediction at epoch k

Temperaturek is the temperature forecast at epoch k acquired from weather station

Humidityk is the relative humidity forecast at epoch k acquired from weather station

µ is the intercept equal to 345.36433 for available dataset

α is the regression factor of ASHRAE model 0.59383 for available dataset

β is the regression coefficient of temperature forecast 2.44879 for available dataset

χ is the regression coefficient of relative humidity -743.69570 for available dataset
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Figure 4.6. Regression model flow diagram

Regression factors are calculated using SAS software. The performance of solar

output is analyzed based onNAPE (Normalized Average Percentage Error) andMAE (Mean

Average Error) Equation 4.21 and Equation 4.22 respectively.

N APE =
1
96

k=96∑
k=1

���S[k] − Ŝ[k]
���

max (S[k]) × 100 (4.21)

M AE =
1
96

k=96∑
k=1

���S[k] − Ŝ[k]
��� (4.22)

The errors are normalized because it is difficult to analyze the performance of solar

radiation when the output is near to zero; small errors can generate high error percentage

which is insignificant in practical applications but reflects poor models in histograms.

Therefore, errors are normalized to analyze the models in an efficient way. Regression

model flow diagram is depicted in Figure 4.6.
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Figure 4.7. Regression NAPE histogram

Simulation for one month is performed where solar radiation is predicted from

sunrise to sunset and updated every 15 minutes (1 epoch). Therefore, there are 1300

simulations. In order to analyze the performance of model, NAPE & MAE histogram are

plotted (Figure 4.7 & 4.8) to visualize performance of model.

4.2.3. NeuralNetworkModel. NARX(NonlinearAutoregressive exogenousmodel)

is a nonlinear autoregressive process which uses both past values of the time series being

predicted and current & past values of the exogenous series (temperature, clear sky pre-

diction, relative humidity). NARX combines the properties of both Autoregressive and

Neural networks[37, 38, 33]. PV output is not only dependent on solar radiation but area

and efficiency of solar panel too. Though the area of solar panel is constant but the effi-

ciency is not. The efficiency of the solar panel depends on a lot of factors like temperature,

type/magnitude of load, material of silicon, aging, etc. Therefore, NARX not only predicts

the solar radiation but the efficiency of the system too. NARX model has been developed

with the help of MATLAB Neural Network Time Series Tool Box. The tool box requires

the user to input the number of lags of both time series being predicted and exogenous
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Figure 4.8. Regression Mean Absolute Error (MAE) histogram

series, the number of neurons in the hidden layer and dataset of all the time series to train

the Neural network. The activation function of neurons in the hidden layer is sigmoidal

(Equation 4.23)

F(n) = 2
1 − e2n − 1 (4.23)

n =
dy∑

i=1
y (t − i)W y

i +

dx∑
i=1

x (t − i + 1)W x
i + b (4.24)

where,

dy is the delay of predicted series

dx is the delay of exogenous series

Wyi are the weights of predicted series to the neuron

Wxi are the weight of the exogenous series to the neuron

b is the offset of the neuron

All the offsets and weights are calculated by the tool box. The flow diagram of

NARX model is shown in Figure 4.9. The number of neurons in hidden layer & number

of lags are decided by trial & error method. Different models are compared based on their
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Figure 4.9. Flow diagram of NARX model

NAPE histogram. Model with 15 neurons in hidden layer and 1 lags are chosen. It can

be observed that the performance of NARX method (Figure 4.10 & 4.11) outperforms the

performance of Regression model. The NAPE & MAE histogram plot in case of NARX

model have converged towards zero indicating better performance.
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Figure 4.10. NARX NAPE histogram

Figure 4.11. NARX MAE histogram
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5. RESULT

In previous chapters, formulation of Markov Decision Process (MDP) for battery

scheduling in microgrids is discussed. The results of MDP show a reduction of maximum

load demand from 74 kW to 34 kW. This results in cost reduction of $929.40 in one month.

Though these figures are theoretical limits of the model. In other words, control algorithm

implemented with MDP model cannot achieve further accuracy. When the Load and PV

forecasts are integrated with MDP model, there errors are also induced. Load demand and

PV output are highly stochastic in nature therefore, 100% accuracy cannot be achieved in

practical applications. Therefore, for realistic implementation ofMDPmodel, load and solar

forecasts are necessary to realize a battery management system. This chapter discusses the

effects in cost and maximum load demand when forecasting models are added to the system.

Also, there is a need to compare the MDP model with a heuristic approach to prove that the

microgrid system requires a stochastic approach in order to control the battery systems. The

following section discusses the formulation of a heuristic approach to schedule the battery

system in microgrid.

5.1. HEURISTIC METHOD TO SCHEDULE BATTERY

Battery schedulingmethod is developed to compare it with theMDP control method.

The heuristic method does not forecast load and solar data. The modules tries to maintain

the grid power to 33 kW. The only boundary condition imposed on the system is that the

energy stored in the battery bank cannot exceed minimum (0 kWh) and maximum (200

kWh) energy.Following steps demonstrates on calculating a scheduling policy of battery

using a heurisitc approach.
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Step 1: Assume that the maximum power drawn from the grid should not exceed 33

kW. Therefore the battery actions can be found from the following equation:

BatteryPower(k) = Load(k) − Solar(k) − 33 (5.1)

Equation 5.1 shows how should the battery charge/discharge into order to consistently draw

33 kW from the grid. This policy is calculated from the first day of the month and would be

repeated everyday keeping into considerations the boundary conditions of the battery bank

energy.

The equation with which the policy is derived does not consider the energy stored

in the battery. Therefore, battery boundary conditions are applied in the next step.

Step 2: Following is the Pseudocode to ensure that the energy is within limits in the

battery

1. Initialize energy stored in battery “E” before starting the simulation (100 kWh in our

case) and epoch(k)=1

2. Convert Battery power to energy stored/withdrawn from battery using Equation 5.2

E (k) =



P (k) dT
ηc

P (k) > 0

0 P (k) = 0

P (k) ηddT P (k) < 0

(5.2)

3. Compute energy stored in battery after 1 iteration E = E − E(k)

4. Check if 0 ≤ E ≤ 200

(a) If Yes, Action(k) = E(k)

(b) If No, Increase or decrease E(k) according to the sign of E(k) till 0 ≤ E−E(k) ≤

200 and store Action(k) = E(k)
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5. Increment k=k+1

6. Goto 2

After running the simulation for 30 days, the maximum load demand is 62.27 kW whereas

the maximum load demand without any battery system is 74.4 kW.

5.2. SIMULATION RESULT

The MDP integrated with load and solar forecast is simulated for one month. The

load and solar data are acquired form Pecan Street Dataport. A community of 20 houses

is assumed with ten houses having PV panels installed. Demand charge rate structure is

assumed which is adopted from Rolla Municipal Utility (RMU) with parameters given in

Table 5.1.

In demand rate structure, the customer is penalized based on the maximum load drawn

Table 5.1. Demand rate structure used in simulations (Adopted from Rolla Municipal
Utilities)

Parameter Rate
Buying Rate (θb) ($/kWh) 0.07009
Selling Rate (θs) ($/kWh) 0.01326
Demand Rate (θd) ($/kW) 14.5

from the grid during a 15 minutes time period in a month. The demand rate structure is

typically above $12 due to which it becomes the major part of the electricity bill. Therefore,

peak shaving plays in an important role in reducing the billing cost.

30 days simulation captures the performance of the battery scheduling system as it

covers all types of days like cloudy, partly cloudy and clear sky which play an important

role in affecting the PV output and load demand. The MDP without forecasting errors gives

a cost saving of 47.7% which is a theoretical limit of the model. Therefore, load and solar

forecasting models are important to be integrated with the MDP framework to come up with
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Figure 5.1. Implementation of Management system topology

a realistic system. The improved SARIMA model for load forecasting and NARX model

for Solar forecasting are integrated with MDP to realize a battery management system. The

block diagram of the proposed energy is system is shown in Figure. 5.1.

The initial condition of Battery SoC is assumed to 50% and the day is discretized into

15 minutes time interval. The battery system is assumed to have 200 kWh capacity which

is discretized into 200 bins while the charging and discharging efficiency of bi-directional

inverter connected to the battery system is 95%. A total of 37 charging and discharging

actions in kWh ∈ [−17, 18] are available in the system. A one month simulation results are

given in Table 5.2.

It can be observed from Table 5.2, that the MDP model integrated with solar and

load forecasting is able to shave the maximum peak to 54.01 kW thereby saving a total

cost of $687.6 for one month billing cycle. MDP model without load and solar forecasting

saves 47% in one month while model with load and solar forecasting saves 35% which is a

difference of 12%. This change is caused because of the stochastic nature of load demand

and PV output.
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Table 5.2. One month MDP simulation with solar and load forecasting

No Algorithm MDP Algorithm
with zero fore-
casting errors

MDP with Load
and Solar fore-
casting errors

Cost ($) 1944.9 1015.49 1257.3
Savings ($) NA 929.4 687.6
Maximum Load
(kW)

74.4 34 54.01

5.3. CONCLUSION

Markov Decision Process is a mathematical framework which proves to be effective

in peak shaving and lowering the system cost in microgrids. The rolling horizon MDP is

implemented using dynamic programming which is invoked every 15 minutes in order to

make sure that the next 24 hours load demand and PV output are taken into consideration.

During one month simulation, MDP framework successfully shaves the maximum peak

from 74.4 kW to 34 kW thereby saving 47% in the monthly billing cycle.

The MDP is incomplete without introducing Load and Solar forecasting it. There-

fore, different modeling techniques have been discussed in this work to generalize a method

to generate load and solar forecasting models for different locations. Load forecasting is

implemented using improved SARIMA model and PV forecasting is performed using Neu-

ral Network with exogenous inputs. Both the forecasting models are supported by weather

forecasts acquired from weather stations which help to increase the forecasting accuracy

of the models. After introducing forecasting models with MDP, the maximum load in the

system is 54 kW and monthly saving of 35%. The difference of 12% between the models

with and without forecasting models is due to the errors in predicting load demand and

PV output. Load and PV output are highly stochastic in nature therefore, errors are bound
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to be introduced in the system which reduces efficiency of MDP framework. In order to

achieve the high accuracy in the system, better forecasting models can be integrated thereby,

reducing the errors in the system and monthly billing cost.



APPENDIX A

API FOR ACQUIRINGWEATHER FORECAST FROM DARKSKY.NET
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API FOR ACQUIRINGWEATHER FORECAST FROM DARKSKY.NET

import r e q u e s t s

c l a s s f o r e c a s t i o ( ob j e c t ) :

# d e f i n e t h e f o r e c a s t c l a s s t o i n i t i a l i s e ap i key , l o n g i t u d e

and , l a t i t u d e

def _ _ i n i t _ _ ( s e l f , l a t =37 .958534 , long= −91.774461 , a p i = ’

daa69534a0f7809fbb190745b647717b ’ ) :

s e l f . l a t i t u d e = l a t

s e l f . l o n g i t u d e = long

s e l f . f o r e c a s t i o _ a p i = a p i

s e l f . u r l = ’ h t t p s : / / a p i . d a rk sky . n e t / f o r e c a s t / ’

s e l f . d a t a =0 # I n i t i a l i s e v a i a b l e t o s t o r e a l l t h e

da ta

# Genera te URL based on l o n g i t u d e , l a t i t u d e and , API key

def u r l _ g e n ( s e l f ) :

u r l = s e l f . u r l + s e l f . f o r e c a s t i o _ a p i + ’ / ’+ s t r ( s e l f .

l a t i t u d e ) + ’ , ’+ s t r ( s e l f . l o n g i t u d e )

re turn ( u r l )
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# Fe tch da ta from t h e s e r v e r

# Th i s i n c l u d e s a l l t h e i n f o r m a t i o n i . e . hour l y , d a i l y

c u r r e n t , e t c

def g e t _ d a t a ( s e l f ) :

u r l = s e l f . u r l _ g e n ( )

r e s p = r e q u e s t s . g e t ( u r l )

s e l f . d a t a = r e s p . j s o n ( )

# I n h e r e t e d from f o r e c a s t i o c l a s s t o man i pu l a t e da ta

c l a s s f o r e c a s t ( f o r e c a s t i o ) :

def _ _ i n i t _ _ ( s e l f , l a t =37 .958534 , long= −91.774461 , a p i

= ’ daa69534a0f7809fbb190745b647717b ’ ) :

f o r e c a s t i o . _ _ i n i t _ _ ( s e l f , l a t =37 .958534 , long=

−91.774461 , a p i = ’

daa69534a0f7809fbb190745b647717b ’ )

# Gener i c f u n c t i o n t o w r i t e da ta t o f i l e s

def w r i t e _ f i l e ( s e l f , param , type ) :

s t r i n g =param+ ’_ ’+ type+ ’ . t x t ’

f i l e =open ( s t r i n g , ’w’ )

f o r m in s e l f . d a t a [ type ] [ ’ d a t a ’ ] :

f i l e . w r i t e ( s t r (m[ param ] ) )
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f i l e . w r i t e ( ’ \ n ’ )

f i l e . c l o s e ( )

# Fe tch h o u r l y da ta . Can be any d e s i r e d arguments p r e s e n t i n

t h e j s o n f i l e .

# Arguments are case s e n s i t i v e

def hou r l y ( s e l f ,∗ a r g s ) :

f o r a rg in a r g s :

s e l f . w r i t e _ f i l e ( arg , ’ h ou r l y ’ )

# Fe tch m i n u t e l y da ta . Can be any d e s i r e d arguments p r e s e n t

i n t h e j s o n f i l e .

# Arguments are case s e n s i t i v e

def minu t e l y ( s e l f ,∗ a r g s ) :

f o r a rg in a r g s :

s e l f . w r i t e _ f i l e ( arg , ’ m i nu t e l y ’ )

# Fe tch d a i l y da ta . Can be any d e s i r e d arguments p r e s e n t i n

t h e j s o n f i l e .

# Arguments are case s e n s i t i v e

def d a i l y ( s e l f ,∗ a r g s ) :
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f o r a rg in a r g s :

s e l f . w r i t e _ f i l e ( arg , ’ d a i l y ’ )

IMPLEMENTATION OFWEATHER FORECASTING API

from f o r e c a s t i o import f o r e c a s t

l a t = ’ 37 .951935 ’ # L a t i t u d e o f So l a r V i l l a g e

long= ’ −91.779811 ’ # Long i t ude o f So l a r V i l l a g e

ap i_key= ’ daa69534a0f7809fbb190745b647717b ’ # API key

r e c e i v e from www. Darksky . n e t

f o r e c a s t _ o b j e c t = f o r e c a s t ( l a t , long , a p i _key ) # Crea t e o b j e c t

w i t h r e q u i r e d pa rame t e r s

f o r e c a s t _ o b j e c t . g e t _ d a t a ( ) # Fe tch da ta from s e r v e r

f o r e c a s t _ o b j e c t . h ou r l y ( ’ t emp e r a t u r e ’ , ’ c loudCover ’ , ’ i c on ’ ) #

Wr i t e d e s i r e d da ta t o a t e x t f i l e

f o r e c a s t _ o b j e c t . m i nu t e l y ( ’ p r e c i p I n t e n s i t y ’ )

f o r e c a s t _ o b j e c t . d a i l y ( ’ t empe r a t u r eMin ’ )
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IMPLEMENTATION OF MARKOV DECISION PROCESS (MDP.C)

# inc lude < s t d i o . h>

# inc lude < s t d l i b . h>

# inc lude "MDP. h "

# inc lude " i n i t . h "

# inc lude " Cal . h "

# inc lude "ARMA. h "

# de f i n e M 200 / / Maximum energy o f b a t t e r y

# de f i n e K 96 / / Epoch

# de f i n e N 37 / / Number o f A c t i o n s a v a i l a b l e

# de f i n e Ebin 1 / / Minimum Energy change

# de f i n e Emin 0 / / Minimum Energy

# de f i n e t h e t a 0 . 5 / / Cost− to −go

/ / # d e f i n e Grid_avg 18 .4473 / / Avg power s e t f o r load demand

# de f i n e Grid_avg 33 / / Avg power s e t f o r load demand

/ / I n i t i a l i z e S e t o f A c t i o n s A v a i l a b l e

i n t At [37]={−17 ,−16 ,−15 ,−14 ,−13 ,−12 ,−11 ,−10 ,−9 ,−8 ,−7 ,

−6 , −5 , −4 , −3 , −2 , −1 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,

15 , 16 , 17 , 18 , 19} ;

/ / ALL Avg da ta ( Data can be e n t e r e d here f o r c o n v i n i e n c e )

double Load [ 1440 ]={} ;

double Load_s i [ 1 440 ]={} ;

/ / ALL Avg da ta

/ / doub l e So l a r [1440]={} ;
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double S o l a r _ s i [ 2 880 ]={} ;

i n t main ( ) {

double Load_ r o l l [ 9 6 ]= {0} ; \ \ F o r e c a s t e d Load w i l l be

s t o r e d he r e

double e r ro r_map [ 97 ]={0} ; \ \ P a s t 5 e r r o r s o f

f o r e c a s t e d l o ad a r e s t o r e d he r e

double ∗ l o a d _ p t r ; \ \ P o i n t e r p o i n t i n g

f o r e c a s t e d l o ad

double ∗ e r r o r _map t r ; \ \ P o i n t e r p o i n t e r Load

e r r o r s

double S o l a r _ r o l l [ 9 6 ]={0} ; \ \ F o r e c a s t e d So l a r Power

s o t r e d he r e

double ∗ S o l a r _ p t r ;

S o l a r _ p t r = S o l a r _ r o l l ;

i n t i , j , k , n , a , ho r i zon , count , epoch ;

l o a d _ p t r = Lo ad_ r o l l ;

e r r o r _map t r = e r ro r_map ;

FILE ∗ a r ; / / Fo r e ca s t e d load s t o r e d i n f i l e s y s t em f o r

a n a l y s i s

FILE ∗ e r ; / / Pas t 5 e r r o r s s t o r e d i n f i l e s y s t em f o r

s i m u l a i t o n
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FILE ∗ s o l ; / / Fo r e ca s t e d s o l a r s t o r e d i n f i l e s y s t em f o r

a n a l y s i s

a r = fopen ( " Load . t x t " , "w+" ) ;

s o l = fopen ( " S o l a r . t x t " , "w+" ) ;

e r = fopen ( " e r r o r . t x t " , " r " ) ;

double m;

Optimum m1 ; / / S t r u c t u r e used f o r MDP

Optimum ∗ p t r ;

p t r=&m1 ;

Val_min mini ; / / S t r u c t u r e s t o r e s minimum v a l u e s

Val_min ∗m2;

m2=&mini ;

double ∗ p t r _ a r ;

p t r _ a r =Load ;

double Cost ;

V a r _ i n i t ( p t r ) ; / / I n i t i a l i z e V a r i a b l e s

char l i n e [ 1 0 0 ] ;

char l i n e 1 [ 2 5 5 ] ;
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i n t pos =99; / / De f i n e I n i t i a l SoC o f B a t t e r y

f o r ( h o r i z o n =96∗2+76−1; ho r i zon <96∗28+76; h o r i z o n ++) { / /

S p e c i f y how many h o r i z o n s t o run .

i =0 ;

j =0 ;

/ / Read Load e r r o r s from f i l e s y s t em . I n i t i a l i z e d t o z e ro

whi le ( f g e t s ( l i n e , s i z e o f ( l i n e ) , e r 2 ) ) {

f o r ( i =0 ; i <100; i ++) {

i f ( ( l i n e [ i ] ) == ’ \ n ’ ) {

( l i n e [ i ] ) = ’ \ 0 ’ ;

i =257;

}

}

∗ ( e r r o r _map t r + j ) = a t o f ( l i n e ) ;

j ++;

}

f c l o s e ( e r 2 ) ;

ARMA( ho r i zon , l o a d _p t r , e r r o r _map t r ) ; / / P r e d i c t Load u s i ng

ARMA
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Neura l_Network ( ho r i zon , S o l a r _ p t r ) ; / / P r e d i c t S o l a r Power

u s i ng NN

/ / En t e r e r r o r s from f o r e c a s t e d da ta

e r2= fopen ( " e r r o r . t x t " , "w" ) ;

f o r ( i =0 ; i <5 ; i ++) {

f p r i n t f ( er2 , "%f \ n " ,∗ ( e r r o r _map t r + i ) ) ;

}

f c l o s e ( e r 2 ) ;

V a r _ i n i t ( p t r ) ; / / I n i t i a l i z e V a r i a b l e s

/ / S e t Cost− to −go f u n c t i o n

f o r ( i =0 ; i <M; i ++) {

p t r −>U[ i ] [K−1]=− t h e t a ∗ ( Emin+( i +1)∗Ebin+Emin+( i ) ∗Ebin ) / 2 ;

}

epoch =94;

coun t =0 ;

whi le ( epoch >=0) {

f o r ( i =0 ; i <M; i ++) {

f o r ( n =0; n<N; n++) {

a=At [ n ] ;
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i f ( ( i −a ) >=0 && ( i −a ) <M) {

j = i −a ;

Cos t=Temp_Cost ( i , j , a , epoch , ho r i zon , l o a d _p t r ,

S o l a r _ p t r ) ; / / C a l c u l a t e u t i l i t y c o s t

p t r −>Ut [ i ] [ n ]= Cos t+ p t r −>U[ j ] [ epoch +1 ] ;

}

}

minimum1 (m2 , p t r −>Ut , i ) ; / / C a l c u l a t e minimum

U t i l i t y

p t r −>U[ i ] [ epoch ]=m2−>minimum ;

p t r −> F i n a l _ a c t i o n [ epoch ] [ i ]=At [m2−>pos ] ; / / S t o r e

f i n a l a c t i o n

}

epoch −−;

c oun t ++;

/ / I n i t i a l i z e U t i l i t y f o r n e x t MDP s i m u l a i t o n

f o r ( i =0 ; i <M; i ++) {

f o r ( j =0 ; j <N; j ++) {

p t r −>Ut [ i ] [ j ]=1000000 ;

}
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}

}

p r i n t f ( "%d \ n " , p t r −> F i n a l _ a c t i o n [ 0 ] [ pos ] ) ; / / P r i n t A c i t o n

t a k en on Conso le

pos=pos−p t r −> F i n a l _ a c t i o n [ 0 ] [ pos ] ;

}

re turn ( 0 ) ;

}

MDP.H

# i f n d e f MDP_H_INCLUDED

# de f i n e MDP_H_INCLUDED

# de f i n e M 200 / / Maximum energy o f b a t t e r y

# de f i n e K 96 / / Epoch

# de f i n e N 37 / / Number o f A c t i o n s a v a i l a b l e

# de f i n e Ebin 1 / / Minimum Energy change

# de f i n e Emin 0 / / Minimum Energy

# de f i n e t h e t a 0 . 5 / / Cost− to −go

/ / # d e f i n e Grid_avg 18 .4473 f / / Avg power s e t f o r load demand

# de f i n e Grid_avg 33 .1844 / / Avg power s e t f o r load demand

ex tern i n t At [ 3 7 ] ;
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ex tern i n t i ;

ex tern double Load [ 2 8 8 0 ] ;

ex tern double So l a r [ 2 8 8 0 ] ;

ex tern double Load_s i [ 2 8 8 0 ] ;

ex tern double S o l a r _ s i [ 2 8 8 0 ] ;

ex tern double s t a d_dev [ 9 6 ] ;

t ypede f s t r u c t {

double U[M] [K] ; / / F i na l u t i l i t y f u n c t i o n

double Ut [M] [N ] ; / / Temp U t i l i t y f u n c t i o n

double Cost [M] [K ] ; / / Cos t f u n c t i o n

i n t a c t i o n s [K] [M] ; / / A c t i o n s w i t h d i f f e r e n t U t i l i t i e s

i n t F i n a l _ a c t i o n [K] [M] ; / / Optimum A c t i o n s

}Optimum ;

t ypede f s t r u c t {

double minimum ;

i n t pos ;

}Val_min ;

# end i f / / MDP_H_INCLUDED

INITIALIZATION OF MDP VARIABLES (INIT.C)

# inc lude < s t d i o . h>

# inc lude "MDP. h "

# inc lude " i n i t . h "

i n t i , j , k , coun t ;
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/ / I n i t i a l i s e a l l v a r i a b l e s

void Va r _ i n i t ( Optimum ∗ p t r 1 ) {

/ / ====F ina l U t i l i t y & Cos t I n i t i a l i s a t i o n ==========

/ / p r i n t f ( " F i na l U t i l i t y & Cos t I n i t i a l i s e d . . . \ n " ) ;

f o r ( i =0 ; i <M; i ++) {

f o r ( j =0 ; j <K; j ++) {

p t r 1 −>U[ i ] [ j ] = 0 ;

p t r 1 −>Cos t [ i ] [ j ] = 0 ;

}

}

/ / ====Temp U t i l i t y I n i t i a l i s a t i o n ==========

/ / p r i n t f ( " Temp U t i l i t y I n i t i a l i s e d . . . \ n " ) ;

f o r ( i =0 ; i <M; i ++) {

f o r ( j =0 ; j <N; j ++) {

p t r 1 −>Ut [ i ] [ j ]=10000 ;

}

}

/ / ====A c t i o n & F i n a l _ a c t i o n s I n i t i a l i s a t i o n ==========

/ / p r i n t f ( " F i na l A c t i o n & A c t i o n I n i t i a l i s e d . . . \ n " ) ;

f o r ( i =0 ; i <K; i ++) {
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f o r ( j =0 ; j <M; j ++) {

p t r 1 −> a c t i o n s [ i ] [ j ] = 0 ;

p t r 1 −> F i n a l _ a c t i o n [ i ] [ j ] = 0 ;

}

}

}
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IMPLEMENTATION OF SARIMAMODELING (SARIMA.C)

# inc lude < s t d i o . h>

# inc lude < s t d l i b . h>

# inc lude <math . h>

# inc lude "MDP. h "

# inc lude " Cal . h "

double p r e v _ e r r o r ;

double p r e v_v a l u e ;

void ARMA( i n t ho r i zon , double ∗ p t r , double ∗ e r r o r _map t r ) {

i n t i , j , i ndex_coun t , l i n e ;

char d a t a [ 5 1 2 ] ;

double sum=0;

double P [ 2 6 8 9 ] ;

double ∗ p t r _P ;

p t r _P=P ;

double AR1=0 .08651 ;

double AR2=0 .38199 ;

double AR3= −0.31334;

double AR4=0 .39401 ;

double AR5=0 .05516 ;

double MA1= −0.57553;

double MA2= −0.44625;

double MA3=0 .38522 ;

double MA4= −0.54557;
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double MA5=0 .19079 ;

double u =0 .002048 ;

double e r r o r [ 2 6 8 9 ] ;

double I n t e r c e p t [ 2 871 ]={} ;

double no i s e [ 2871 ]={} ;

/ / Imp lemen t SARIMA============================

j =4 ;

i n t t ;

t =0 ;

f o r ( i = ho r i z on1 ; i < ho r i z on1 +96; i ++) {

P [ i ]=−(AR1∗ ( P [ i −2]+ P [ i −97] − P [ i −98]−P [ i −1] ) − P [ i −1] + AR2

∗(−P [ i −2]+ P [ i −3] + P [ i −98] −P [ i −99] ) + AR3∗(−P [ i −3]

+P [ i −4] + P [ i −99] − P [ i −100] ) +AR4∗(−P [ i −4] + P [ i −5]

+ P [ i −100] − P [ i −101] ) +AR5∗(−P [ i −5] + P [ i −6] +

P [ i −101] − P [ i −102] ) − P [ i −96] + P [ i −97] ) ;

P [ i ]=P [ i ]+MA1∗ e r r o r [ j ]+MA2∗ e r r o r [ j −1]+MA3∗ e r r o r [ j −2]+MA4∗

e r r o r [ j −3]+MA5∗ e r r o r [ j −4 ] ;

j ++;

t ++;
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}

e r r o r [ 5 ]= −P [ ho r i z on1 ]+ no i s e [ ho r i z on1 ] ;

i n d ex_coun t =97;

f o r ( i =0 ; i <=95; i ++) {

∗ ( p t r + i ) =P [ ho r i z on1+ i ]+ I n t e r c e p t [ h o r i z on1+ i ] ;

}

}

f o r ( i =0 ; i <5 ; i ++) {

∗ ( e r r o r _map t r + i ) = e r r o r [ i + 1 ] ;

}

}
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PV OUTPUT PREDICITON USING NEURAL NETWORKMODEL

# inc lude < s t d i o . h>

# inc lude <math . h>

double mapminmax_apply ( double x , double s e t t i n g s _ g a i n , double

s e t t i n g s _ x o f f s e t , double s e t t i n g s _ ym i n ) {

double y ;

y=x− s e t t i n g s _ x o f f s e t ;

y=y∗ s e t t i n g s _ g a i n ;

y=y+ s e t t i n g s _ ym i n ;

re turn ( y ) ;

}

void t r a n s i g _ a p p l y ( double ∗n , double ∗ ou t ) {

i n t i ;

f o r ( i =0 ; i <15; i ++) {

∗ ( ou t + i ) = ( 2 / ( 1+ exp ( −2∗ (∗ ( n+ i ) ) ) ) ) −1;

}

}



77

double mapminmax_reverse ( double y , double s e t t i n g s _ g a i n ,

double s e t t i n g s _ x o f f s e t , double s e t t i n g s _ ym i n ) {

double x ;

x=y− s e t t i n g s _ ym i n ;

x=x / s e t t i n g s _ g a i n ;

x=x+ s e t t i n g s _ x o f f s e t ;

re turn ( x ) ;

}

void Neura l_Network ( i n t ho r i zon , double ∗ s o l a r ) {

double Temp_new2 [2672 ]={} ;

double Hum_new2 [2672]={}

/ / I n p u t 1 Normal i z e t h e I n p u t s

double x1_ s t e p 1_xo f f s e t _ t emp = 70 . 8 4 ; \ \ t emp e r a t u r e o f f s e t

double x 1 _ s t e p 1 _ x o f f s e t _ E t = 6 .07953724213161 ; \ \ C l e a r Sky

o f f s e t

double x1_ s t ep1_xo f f s e t _hum = 0 . 3 6 ; \ \ Humidi ty o f f s e t

double x1_s t ep1_ga in_ t emp = 0 .0903342366757001 ; \ \

Tempera tu r e g a i n

double x1_ s t e p1_ga i n_E t = 0 .00190970262240737 ; \ \ C l e a r sky

ga i n

double x1_s tep1_ga in_hum = 3 .3195020746888 ; \ \ Humidi ty ga i n
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double x1_s tep1_ymin = −1; \ \ boundry

/ / I n p u t 2

double x 2 _ s t e p 1 _ x o f f s e t = −0.160733333333333; \ \ S o l a r

r a d i a t i o n o f f s e t

double x2_ s t e p1_ga i n = 0 .0510055749093376 ; \ \ PV ou t p u t g a i n

double x2_s tep1_ymin = −1; \ \ boundry

/ / Layer1

double b1 [ ] = {} ; \ \ De f ine b1 from model

double IW1_1_temp [ ] ={} ; \ \ De f ine Tempera tu r e we i gh t s from

MATLAB

double IW1_1_Et [ ] ={} ; \ \ De f ine C l e a r Sky we i gh t s from

MATLAB

double IW1_1_hum [ ] ={} ; \ \ De f ine Humidi ty we i gh t s from

MATLAB

double IW1_2 [ ] = {} ; \ \ De f ine PV Outpu t we i gh t s from MATLAB

/ / Layer 2

double b2 = −1.8322820572359226; \ \ Layer 2 o f f s e t

double LW2_1 [ ] = {} ; \ \ d e f i n e l a y e r 2 we i gh t s form MATLAB

/ / Ou tpu t 1

double y1_s tep1_ymin = −1; \ \ Ou tpu t boundary

double y1_ s t e p1_ga i n = 0 .0510055749093376 ; \ \ Outpu t g a i n

double y 1 _ s t e p 1 _ x o f f s e t = −0.160733333333333; \ \ o u t p u t

o f f s e t
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double xd1_temp , xd1_Et , xd1_hum , xd2_pv , a2 ;

i n t i , t s , coun t ;

double t apede l ay1_ t emp , t a p ed e l a y1_E t , tapede lay1_hum ,

t a p ed e l a y2 , f i n a l _ r e s u l t [ 1 5 ] , r e s u l t _ o u t [ 1 5 ] , y1 [ 9 6 ] , Gen3

[ 9 6 ] ;

double ∗ f i n a l _ r e s u l t _ p t r ,∗ ou t ;

f i n a l _ r e s u l t _ p t r = f i n a l _ r e s u l t ;

ou t = r e s u l t _ o u t ;

double c , d , e ;

xd1_temp=mapminmax_apply ( Temp_new2 [ ho r i z o n ] ,

x1_s t ep1_ga in_ t emp , x1_ s t e p1_xo f f s e t _ t emp ,

x1_s tep1_ymin ) ;

xd1_Et=mapminmax_apply ( Et_new2 [ ho r i z o n ] ,

x1_ s t ep1_ga i n_E t , x 1 _ s t e p 1 _ xo f f s e t _E t , x1_s tep1_ymin )

;

xd1_hum=mapminmax_apply (Hum_new2 [ ho r i z o n ] ,

x1_s tep1_gain_hum , x1_s t ep1_xo f f s e t _hum ,

x1_s tep1_ymin ) ;

xd2_pv=mapminmax_apply ( pv [ ho r i zon −1] , x2_ s t ep1_ga in ,

x 2 _ s t e p 1 _ x o f f s e t , x2_s tep1_ymin ) ;

d= ho r i z o n / 9 6 ;

f o r ( t s =0 ; t s <96; t s ++) {

t ap ede l ay1_ t emp=xd1_temp ;

t a p e d e l a y 1 _E t =xd1_Et ;

t apede lay1_hum=xd1_hum ;
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t a p e d e l a y 2 =xd2_pv ;

f o r ( i =0 ; i <15; i ++) {

( f i n a l _ r e s u l t [ i ] ) =b1 [ i ]+ IW1_1_temp [ i ]∗

t a p ede l ay1_ t emp+IW1_1_Et [ i ]∗ t a p e d e l a y 1 _E t

+IW1_1_hum [ i ]∗ t apede lay1_hum+IW1_2 [ i ]∗

xd2_pv ;

}

t r a n s i g _ a p p l y ( f i n a l _ r e s u l t _ p t r , ou t ) ;

a2=b2 ;

f o r ( i =0 ; i <15; i ++) {

a2=a2+LW2_1[ i ]∗ r e s u l t _ o u t [ i ] ;

}

y1 [ t s ]= mapminmax_reverse ( a2 , y1_ s t ep1_ga in ,

y 1 _ s t e p 1 _ x o f f s e t , y1_s tep1_ymin ) ;

i f ( y1 [ t s ] <0 | | y1 [ t s ] >40) {

y1 [ t s ] = 0 ;

}

xd1_temp=mapminmax_apply ( Temp_new2 [ ho r i z o n + t s

] , x1_s t ep1_ga in_ t emp , x1_ s t e p1_xo f f s e t _ t emp ,

x1_s tep1_ymin ) ;
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xd1_Et=mapminmax_apply ( Et_new2 [ ho r i z o n + t s ] ,

x1_ s t ep1_ga i n_E t , x 1 _ s t e p 1 _ xo f f s e t _E t ,

x1_s tep1_ymin ) ;

xd1_hum=mapminmax_apply (Hum_new2 [ ho r i z o n + t s ] ,

x1_s tep1_gain_hum , x1_s t ep1_xo f f s e t _hum ,

x1_s tep1_ymin ) ;

xd2_pv=a2 ;

}

t s =80+( c e i l ( ( d ) ) −1)∗96−( h o r i z o n%96)+1−(( c e i l ( d )

) −1) ∗96 ;

f o r ( i = t s ; i <96; i ++) {

i f ( ( ( h o r i z o n + i ) %96)<28 | | ( ( h o r i z o n + i ) %96)

>80)

{

y1 [ i ] = 0 ;

}

}

coun t =0 ;

f o r ( i =0 ; i <96; i ++) {

∗ ( s o l a r + i ) =y1 [ i ] ;

}

}
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