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ABSTRACT 

 

 This study presents the development and Monte Carlo validation of a continuous 

Galerkin finite element reactor analysis framework. In its current state, the framework 

acts as an interface between the mesh preparation software GMSH and the sparse linear 

solvers in MATLAB, for the discretization and approximation of 1-D, 2-D, and 3-D 

linear partial differential equations. Validity of the framework is assessed from the 

following two benchmarking activities: the 2-D IAEA PWR benchmark; and the 2-D 

Missouri Science and Technology Reactor benchmark proposed within this study. The   

2-D IAEA PWR multi-group diffusion benchmark is conducted with the following 

discretization schemes: linear, quadratic, and cubic triangular elements; linear and 

quadratic rectangular elements of mesh sizes 10, 5, 2, 1, 0.5 cm. Convergence to the 

reference criticality eigenvalue of 1.02985 is observed for all cases.  

 The proposed 2-D MSTR benchmark is prepared through translation of an 

experimentally validated 120w core configuration MCNP model into Serpent 2. 

Validation of the Serpent 2 model is attained from the comparison of criticality 

eigenvalues, flux traverses, and two 70-group energy spectrums within fuel elements D5 

and D9. Then, a two-group 2-D MSTR benchmark of the 120w core configuration is 

prepared with the spatial homogenization methodology implemented within Serpent 2. 

Final validation of the framework is assessed from the comparison of criticality 

eigenvalues and spatial flux solutions of the diffusion and simplified spherical harmonics 

𝑆𝑆𝑆𝑆3 models. The diffusion model resulted in a difference in reactivity of ∆𝜌𝜌 = −1673.93 

pcm and the 𝑆𝑆𝑆𝑆3 model resulted in a difference of ∆𝜌𝜌 = −777.60 pcm with respect to the 

Serpent 2 criticality eigenvalues. 
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1. INTRODUCTION 

 The design and safe operation of a nuclear reactor requires an extensive 

characterization of its neutronic properties; thereby, allowing the precise manipulation of 

reactivity configurations and the determination of safe operating limits wherein the 

delicate balance of criticality is maintained. The most fundamental physical equation 

which provides a means to characterize the free motion of neutrons in a nuclear reactor is 

the linear neutron Boltzmann equation in which each physical process neutrons are 

gained or lost from a seven-dimensional (three in space, two in angle, energy, and time) 

phase space volume element forms the balance equation describing the expected neutron 

population. Furthermore, the probability of an interaction per path length (macroscopic 

cross section) that governs each individual reaction mode (parasitic absorption, 

scattering, and fission) is subject to change with the evolution of thermal-hydraulic, burn-

up, and thermo-mechanical conditions. Consequently, nuclear reactors are multi-physical 

and multi-scale by nature; therefore, inclusion of all physical models is required for an 

accurate characterization of a nuclear reactor system [1], [2].  

  Ultimately, inclusion and simulation of all the governing physical models is non-

trivial and a computationally expensive task when one considers full core modelling. In 

fact, acquisition of high-order, full core, steady-state approximations to the various forms 

of the neutron Boltzmann equation is computationally prohibitive and typically reserved 

for: (1) small scale simulations; (2) the preparation of benchmarks and multi-group 

constants for low-order approximation schemes (spatial homogenization); (3) the 

academic setting; and (4) final reactor design analysis. However, the foregoing high-

order calculations are not used in practical circumstances such as fuel reload design 
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analysis and core relicensing because of the frequency in which they are performed and 

the high computational cost of these methods. Nevertheless, the high-order solution 

methods are the bases for the low-order approximation schemes and can be divided into 

two distinct mathematical solution classes: (1) the Monte Carlo method; and (2) 

deterministic methods.  

 The fundamental idea behind the Monte Carlo method is acquisition of expected 

value of a random variable through the numerical simulation of randomly sampled 

events. Monte Carlo methods are amenable to neutron transport since the physical 

processes which govern neutron interactions is inherently stochastic. For neutron 

transport, the outcome of each individual neutron is randomly sampled and tracked 

throughout the defined geometry. Tallies are scored in the regions of interest such that 

various integral estimators provide point, surface, and cell fluxes. Criticality is also 

estimated by storing the neutrons generated from fission during the current cycle which 

are subsequently used as the source for the next cycle; therefore, changes of the source 

sizes over subsequent batches yield the criticality estimate.   

 The advantage of the Monte Carlo method is the capability to simulate exact 

physical processes in an arbitrary level of spatial detail. However, it is critical to note that 

with the expected value comes statistical uncertainty. Therefore, it is imperative to ensure 

that the conditions of the central limit theorem are met for the results to have significant 

meaning. When considering large reactor systems, the foregoing condition requires a 

considerable sample population size and batches which result in increased computational 

effort. The Monte Carlo method exacerbates the aforesaid computational burden when 

considering reactor burn-up analyses for large reactor systems because of the additional 
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time component. Nevertheless, implementation of variance reduction techniques 

improves the precision of integral estimators which results in decreased computational 

effort such as the case for radiation shielding and general particle transport. The most 

notable Monte Carlo codes in use today are: (1) MCNP (Los Alamos National 

Laboratory); (2) OpenMC (Massachusetts Institute of Technology); (3) Serpent 2 (VTT 

Technical Research Centre of Finland); and (4) TRIPOLI (French Alternatives Energies 

and Atomic Energy Commission).  

 In contrast, deterministic methods rely upon the discretization of the independent 

variables wherein the original differential equation is reduced to a linear system. Further 

classification of the deterministic methods is based upon the treatment of the angular 

dependency in which each solution method takes advantage of distinct mathematical 

properties or numerical methods. The method of characteristics takes a unique approach 

of reformulation of the integrodifferential form of the neutron Boltzmann equation into 

an equivalent characteristic form. In short, the frame of reference shifts from an 

observation of a neutron relative to a fixed point in space as opposed to a reference in 

space. By projecting characteristic lines over the computational domain, the average 

value of the angular flux is computed by integrating over each characteristic track divided 

by the tracks total length.  

 The discrete ordinates method 𝑆𝑆𝑛𝑛 relies upon discretization of the solid angle 

(angular component) into discrete direction cosines where a quadrature rule permits 

integration of the polynomials over the direction cosines. Another method requires 

expansion of the angular terms as an infinite spherical harmonics series. Truncation of 

such infinite series results in a set of partial differential equations known as the spherical 
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harmonics 𝑆𝑆𝑛𝑛 equations. Both the discrete ordinates method and spherical harmonics 

method require the discretization of the spatial component by either the finite difference 

or finite element method. However, the finite element method is more attractive than the 

finite difference method because of the former’s amenability to irregular domains and 

capability to obtain higher order approximations with a fixed mesh. The finite difference 

method requires mesh refinement to improve the order of accuracy and may also produce 

non-invertible matrices when applied to non-cartesian geometries. 

 Limitation of the spherical harmonic series to the order of 𝑛𝑛 = 1, and the 

elimination of the odd order moment in the even order equation, provides low-order 

simplified spherical harmonics equation 𝑆𝑆𝑆𝑆1 analogous to the diffusion equation derived 

from the neutron continuity equation and Fick’s law. The only difference is the inclusion 

of the average cosine scattering angle in the proportionality constant in the 𝑆𝑆𝑆𝑆1 equation. 

Ultimately, this permits the extension of the 𝑆𝑆𝑆𝑆1 equation to reactors that exhibit 

moderate anisotropic scattering. The diffusion/𝑆𝑆𝑆𝑆1 equations are the most widely used 

transport approximations in nodal, full-core analyses. Where, the method relies upon the 

production of multigroup constants by energy condensation and spatial homogenization 

of the cross sections using the infinite assembly lattice spectrum obtained by a high-order 

transport simulation [3]. Then the global homogeneous flux solution is approximated 

from the construction of the homogenized assemblies into the full core domain for nodal 

diffusion codes [4], [5].  

 Typical multi-physics computational paradigms used for production fuel reload 

analyses and core relicensing rely on the operator splitting method where the non-linear 

terms are decoupled [1]. Operator splitting permits the use of existing mono-disciplinary 
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codes such that the output of one code is taken as the initial conditions for the next code 

where solutions are exchanged between the mono-disciplinary codes until the established 

convergence criteria are met. Since the operator splitting method is explicit in time where 

the order of accuracy is 𝑂𝑂(𝐻𝐻1), the method requires time steps on the order of the 

dynamic time scale of the system [6]. Therefore, the operator splitting method is 

inefficient when applied to stiff multi-scale systems. This is the case for nuclear reactor 

systems since the neutronic time scale is on the order of 10−6 seconds when neglecting 

delayed neutrons and the heat transfer time scale is on the order of 100 to 101 seconds 

[1].  

 Recent advances in Jacobian-Free Newton Krylov (JFNK) subspace solvers and 

physics-based preconditioning has led to increased efficiency of implicit time integration 

techniques in the simultaneous solution of coupled non-linear equations [7]. However, 

due to the mathematical rigor and complexity of coupling multiple physics models in a 

unified framework, the research concerning the implementation of such methods is 

primarily left to national laboratories, or large university research groups. Where, the 

main group whose efforts are focused on the application of the JFNK methods to nuclear 

systems is the Multi-Physics Object-Oriented Simulation Environment (MOOSE) team at 

the Idaho National Laboratory [8], [9]. Unfortunately, without the ability to readily 

modify an already established framework, it is virtually impossible to conduct research in 

multi-physics methods development. Therefore, the aim of this research is to establish the 

foundation of a general finite element framework where future research can build upon 

and extend the frameworks capabilities to include non-linear multi-physics modelling. 
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1.1. RESEARCH OBJECTIVES 

 The objective of the thesis is the development and Monte Carlo validation of a 

diffusion and simplified spherical harmonics finite element reactor analysis framework. 

The objective includes the following relevant issues:   

A. perform a preliminary 2-D IAEA PWR benchmark. The initial 2-D IAEA 

PWR benchmark is the most efficient methodology to obtain initial data to 

ascertain whether the proposed finite element framework can be correctly 

implemented to the multi-group neutron diffusion equation; 

B. develop Serpent 2 model of the MSTR. Previous experimental MCNP 

validation of the MSTR model allows the construction of a validation chain 

between physical reality and multiple computer codes;  

C. validate the Serpent 2 MSTR model to the previously validated MCNP model. 

Without validation of the Serpent 2 model, the link between the finite element 

framework and physical experiments cease to exist. The foregoing is true 

because the preparation of the proposed MSTR benchmark relies upon 

Serpent’s global flux solution to preserve the reaction rates in the process of 

spatial homogenization and energy condensation of the cross sections and 

multi-group constants;  

D. preparation of stochastic multi-group parameters using the global flux 

distribution for the proposed 2-D MSTR benchmark. Stochastic generation of 

multi-group parameters permit the spatial homogenization and energy 

condensation using: (1) continuous-energy cross section data: (2) the global 

flux distribution; and (3) incorporation of spatial self-shielding. Pursuant the 
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preparation of the 2-D MSTR benchmark in the foregoing manner results in 

the minimization of the spatial homogenization errors; 

E. validate finite element reactor analysis framework with the 2-D MSTR 

benchmark. Validation of the finite element framework will hopefully 

demonstrate the capabilities of the framework allowing its application to 

reactor analysis. Furthermore, the framework can then serve as a foundation 

for further research concerning multi-physics simulation. 

 

1.2. FINITE ELEMENT METHODS IN REACTOR PHYSICS 

 Application of the finite element method (FEM) to reactor analysis dates to the 

1970’s when diffusion codes were primarily based upon the finite difference method 

(FDM). Since then, a multitude of papers concerning the application and development of 

the FEM in reactor analysis have been published; therefore, it is not possible to cover the 

entirety of the FEMs in reactor analysis in this section. Nevertheless, research and 

development efforts which highlight the success of the FEM method spanning from the 

1970’s till the present day are presented.  

  One of the first papers concerning this matter demonstrated the applicability of 

the FEM method in a 2-D multigroup criticality code FEND [10]. The FEND code was 

utilized to approximate criticality eigenvalues and flux eigenvectors for a two-group in-

homogenous test problem with Lagrangian linear triangular and bilinear rectangular 

discretization schemes [10]. Semenza et al. concluded that accurate eigenvalues and 

eigenvectors were attained with a relatively few nodal points which demonstrates the 

utility of the FEM method; however, computer memory limitations of the time required 
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auxiliary memory devices for large problems that required a significant amount of nodal 

points [10].  

 Demonstration of the finite element methods utility [10] prompted further 

research concerning the efficiency of the method over the low-order finite difference 

method for three rector configurations: (1) two-group two-zone reactor; (2) four-group 

multizone 1000-MW(e) LMFBR mockup; and (3) two-group loosely coupled 

configuration [11]. Results of the study indicate that high-order FEMs were able to 

decrease the computational cost of the LMFBR case by a factor of 20 over the finite 

difference method with a 30% reduction in memory usage [11]. Furthermore, the FEM 

produced accurate results such that any error can be attributed to the diffusion theory 

approximation or approximations in the reactor model [11].  If the desired eigenvalue 

accuracy was to three decimal places, the high-order FEM yielded speed advantages up to 

a 50:1 ratio in the two-group two-zone reactor [11].  

 Instead of specifying the degrees of freedom as nodal values (Lagrangian finite 

elements), Hermitian finite elements specify the degrees of freedom as directional 

derivatives. The study by Kang and Hansen applied Hermite polynomials to space, 

energy, and time dependent neutron diffusion problems on rectangular meshes [12]. 

However, they had issues with the representation of singular points. Hebert solved this 

issue by utilizing Weierstrass-Erdmann type conditions which permits coupling of the 

solution over space regardless of singularities [13]. Hebert also implemented a mixed-

dual variational formulation using Raviart-Thomas-Schneider elements in 3-D hexagonal 

geometry. Where, the Raviart-Thomas basis utilizes tensorial products of Legendre 

polynomials to represent the neutron flux [14]. The formulation was validated with the 
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hexagonal 2-D IAEA benchmark and the 2-D/3-D Monju reactor benchmark [14]. The 

use of modified Dubiner’s polynomials over hexagonal geometry using a fixed triangular 

mesh was also investigated [15]. Each hexagonal lattice was divided into six equilateral 

triangles and the order of accuracy was increased by introducing higher-order modified 

Dubiner’s polynomials in the expansion.  

   More recent efforts have been focused on increasing the computational efficiency 

of the FEM applied to the multigroup diffusion equation through adaptive mesh 

refinement [16]. The proposed adaptive algorithm relies on separate meshes for each 

energy group to take advantage of the smoothness of each energy dependent solution. 

The calculation starts with a coarse mesh where cell errors are calculated to discern 

which regions need refinement or coarsening. Numerical results were obtained for the 

two-group 2-D IAEA PWR benchmark, the two-group 2-D OECD-L-336 fuel assembly 

benchmark, and a 3-D seven-group problem. Wang concluded that the adaptive 

refinement algorithm led to faster solutions times for a given order of accuracy over 

uniform mesh refinement. Wang also concluded that the adaptive mesh refinement led to 

solution accuracy that was previously impossible, or to the desired accuracy for the first 

time [16].  
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2. FINITE ELEMENT METHODS FOR ELLIPTIC PDES 

 

 The finite element methods are a mathematical tool which permits the 

approximation of partial differential equations in variational form over a space V. 

Through the discretization of the computational domain Ω into finite elements and the 

construction of finite dimensional subspaces 𝑉𝑉ℎ of the space V, the approximate discrete 

solution can be obtained through the linear combination of undetermined coefficients and 

piece-wise polynomial basis functions 𝑣𝑣ℎ ∈ 𝑉𝑉ℎ. Typical formulations specify the degrees 

of freedom of as point values (Lagrange finite elements) or directional derivatives 

(Hermite finite elements). However, for the purposes of this thesis, only the continuous 

Galerkin method and Lagrangian type of finite elements are considered. Nevertheless, 

readers should be aware that other finite element formulations exist, i.e., mixed finite 

element methods, discontinuous Galerkin methods. In constructing this chapter, it was 

assumed that the reader has limited exposure to functional analysis, so instead of 

providing lengthy mathematical proofs, only a summary of their implications is 

presented. Interested readers may resort to the citations for a deeper understanding of the 

mathematical proofs.   

 

2.1. HOMOGENOUS DIRICHLET POISSON PROBLEM 

 

 Consider the second order elliptic Poisson problem: 

 
�−∇ ∙ 𝑐𝑐

(𝑟𝑟)∇𝑢𝑢(𝑟𝑟) = 𝑓𝑓(𝑟𝑟) 𝑖𝑖𝑛𝑛 Ω,
𝑢𝑢(𝑟𝑟) = 𝑔𝑔 𝑜𝑜𝑛𝑛 𝑑𝑑Ω.  

 
(2.1) 
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Where, 𝑓𝑓(𝑟𝑟) and 𝑐𝑐(𝑟𝑟) are known functions on Ω, 𝑔𝑔(𝑟𝑟) is a known function on 𝑑𝑑Ω, and 

𝑢𝑢(𝑟𝑟) is the unknown solution. The first step in the finite element formulation is to 

transform the strong problem into an equivalent weak problem. First, multiply both sides 

of the equation by a test function 𝑣𝑣(𝑟𝑟) and integrate over the domain Ω. Note: For clarity, 

the variables spatial dependence has been omitted. 

 
−� ∇ ∙ (𝑐𝑐∇𝑢𝑢)𝑣𝑣 𝑑𝑑Ω

Ω
= � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω

Ω
. 

 
(2.2) 

Applying Green’s theorem (multi-dimensional integration by parts) to the differential 

terms on the LHS. 

 
� ∇ ∙ (𝑐𝑐∇𝑢𝑢)𝑣𝑣 𝑑𝑑Ω
Ω

= � (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑 − � 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

.
𝑑𝑑Ω

 
 

(2.3) 

The Poisson’s equation becomes, 

 
� 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

− � (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω
Ω

. 
 

(2.4) 

 Since the solution 𝑢𝑢 is given on the boundary 𝑑𝑑Ω by 𝑔𝑔, the test function 𝑣𝑣 is 

chosen such that 𝑣𝑣 = 0 on 𝑑𝑑Ω. Thus, the strong formulation of the Poisson problem is 

reformulated into an equivalent weak form (Equation 2.5). Essentially, reformulation of 

the strong problem into the weak form relaxes the derivative requirement. It is no longer 

required that 𝑢𝑢 be twice differentiable. Instead, weaker requirements have been imposed 

such that 𝑢𝑢′ exist and be square integrable.  
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� 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

= � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω
Ω

. 
 

(2.5) 

The next step is to find a space V where the derivatives of the functions in this space are 

square integrable. 

2.1.1. Weak Formulation. A space that satisfies the weak form requirements is  

the Sobolev space 𝐻𝐻𝑚𝑚(Ω): 

 
𝐻𝐻𝑚𝑚(Ω) = �𝑣𝑣 ∈ 𝐿𝐿2(Ω):

𝜕𝜕𝛼𝛼1+𝛼𝛼2𝑣𝑣
𝜕𝜕𝜕𝜕𝛼𝛼1𝜕𝜕𝜕𝜕𝛼𝛼2

∈ 𝐿𝐿2(Ω),∀𝛼𝛼1 + 𝛼𝛼2 = 1, … ,𝑚𝑚�, 
 

(2.6) 

where the Lebesgue 𝐿𝐿𝑝𝑝(Ω) space 

 
𝐿𝐿𝑝𝑝(Ω) = �𝑣𝑣:Ω → 𝑅𝑅:� 𝑉𝑉𝑝𝑝 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕

Ω
< ∞�. 

 
(2.7) 

Therefore, the functions 𝑢𝑢 and 𝑣𝑣 must belong to the Sobolev spaces [17]. Thus, the weak 

formulation: find 𝑢𝑢 ∈ 𝐻𝐻1(Ω) such that ∀𝑣𝑣 ∈ 𝐻𝐻01(Ω), 𝑎𝑎(𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣). Where, the 

continuous V-elliptic bilinear and continuous linear form are defined as:  

 
𝑎𝑎(𝑢𝑢, 𝑣𝑣) = � 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω

Ω
, 

 
(2.8) 

 
(𝑓𝑓, 𝑣𝑣) = � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω

Ω
 

 
(2.9) 

and are assumed to satisfy the Lax-Milgram lemma [18]. Ultimately, the Lax-Milgram 

lemma proves that the variational problem (Eq. 2.5) is well-posed and that its solution 

exists, is unique, and depends continuously on 𝑓𝑓 [18], [19].  
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2.1.2. Galerkin Formulation. Since an infinite number of test functions 𝑣𝑣  

exist in the space V such that 𝑢𝑢 is a weak solution of the PDE, it is necessary to further 

impose restrictions on the vector space. One such approach is the Galerkin method which 

characterizes a finite dimensional space 𝑈𝑈ℎ to permit approximation of the infinite 

dimensional abstract variational problem. Let’s introduce a triangulation 𝑇𝑇 over the set Ω�, 

where Ω is subdivided into finite elements 𝐾𝐾, that satisfy the following properties: (1) 

Ω� =∪𝑘𝑘∈𝑇𝑇 𝐾𝐾; (2) for every element 𝐾𝐾 ∈ 𝑇𝑇 the interior of 𝐾𝐾° is non-empty; (3) the 

intersection of the element interiors is empty; (4) the boundary of 𝜕𝜕𝐾𝐾 is Lipschitz-

continuous; (5) any face of an element 𝐾𝐾 in the triangulation is either a subset of the 

boundary, or a face of another element [17]. Then for each element within the 

triangulation, the polynomial function space is defined as 𝑆𝑆𝑘𝑘 = �𝑣𝑣ℎ|𝐾𝐾;   𝑣𝑣ℎ ∈ 𝑈𝑈ℎ�. Lastly, 

the space 𝑈𝑈ℎ should contain at least one canonical basis where the corresponding basis 

functions have supports that are small as possible; meaning the set of points in the space 

𝑈𝑈ℎ where the basis functions are non-zero is minimized.  

 Assume a finite dimensional subspace 𝑈𝑈ℎ ⊂ 𝐻𝐻1(Ω). Then, the Galerkin formula: 

find 𝑢𝑢ℎ ∈ 𝑈𝑈ℎ such that satisfies the bilinear and linear form 𝑎𝑎(𝑢𝑢ℎ, 𝑣𝑣ℎ) = (𝑓𝑓, 𝑣𝑣ℎ)  ∀𝑣𝑣ℎ ∈

𝑈𝑈ℎ. Where, 

 

 
𝑎𝑎(𝑢𝑢ℎ, 𝑣𝑣ℎ) = � 𝑐𝑐∇𝑢𝑢ℎ∇𝑣𝑣ℎ 𝑑𝑑Ω,

Ω
 

 
(2.10) 

 
(𝑓𝑓, 𝑣𝑣ℎ) = � 𝑓𝑓𝑣𝑣ℎ 𝑑𝑑Ω.

Ω
 

 
(2.11) 
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Let �𝜙𝜙𝑗𝑗�𝑗𝑗=1
𝑁𝑁𝑁𝑁

 be a basis of the continuous piecewise function space 𝑈𝑈ℎ, where 𝑁𝑁𝑁𝑁 is the 

total number of basis functions. Since 𝑢𝑢ℎ ∈ 𝑈𝑈ℎ = 𝑑𝑑𝑠𝑠𝑎𝑎𝑛𝑛�𝜙𝜙𝑗𝑗�𝑗𝑗=1
𝑁𝑁𝑁𝑁

, the finite element 

solution 𝑢𝑢ℎ  is a linear combination of the unknown coefficients 𝑢𝑢𝑗𝑗  and known basis 

functions 𝜙𝜙𝑗𝑗. 

 
𝑢𝑢ℎ = �𝑢𝑢𝑗𝑗𝜙𝜙𝑗𝑗.

𝑁𝑁𝑁𝑁

𝑗𝑗=1

 
 

(2.12) 

 Due to the finite element space restriction in which the subspace 𝑈𝑈ℎ must contain 

at least one canonical basis, the basis functions 𝜙𝜙𝑗𝑗 are only non-zero on the finite 

elements that share the node 𝑋𝑋𝑘𝑘. 

 
𝜙𝜙𝑗𝑗(𝑋𝑋𝑘𝑘) = 𝛿𝛿𝑗𝑗𝑘𝑘 = �0, 𝑖𝑖𝑓𝑓 𝑗𝑗 ≠ 𝑘𝑘,

1, 𝑖𝑖𝑓𝑓 𝑗𝑗 = 𝑘𝑘. 
 

(2.13) 

Then,  

 
𝑢𝑢ℎ(𝑋𝑋𝑘𝑘) = �𝑢𝑢𝑗𝑗𝜙𝜙𝑗𝑗(𝑋𝑋𝑘𝑘) = 𝑢𝑢𝑘𝑘

𝑁𝑁𝑁𝑁

𝑗𝑗=1

. 
 

(2.14) 

 

Thus, the coefficient 𝑢𝑢𝑗𝑗  is the approximate solution at the node 𝑋𝑋𝑗𝑗. Next, choose a test 

function such that 𝑣𝑣ℎ = 𝜙𝜙𝑖𝑖(𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁). Hence the finite element formulation, 

 
� 𝑐𝑐∇��𝑢𝑢𝑗𝑗𝜙𝜙𝑗𝑗

𝑁𝑁𝑁𝑁

𝑗𝑗=1

�
Ω

∙ ∇𝜙𝜙𝑖𝑖 𝑑𝑑Ω = � 𝑓𝑓𝜙𝜙𝑖𝑖
Ω

 𝑑𝑑Ω 
 

(2.15) 

which is equivalent to 
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�𝑢𝑢𝑗𝑗 �� 𝑐𝑐∇𝜙𝜙𝑗𝑗 ∙ ∇𝜙𝜙𝑖𝑖  𝑑𝑑Ω

Ω
� =

𝑁𝑁𝑁𝑁

𝑗𝑗=1

� 𝑓𝑓𝜙𝜙𝑖𝑖
Ω

 𝑑𝑑Ω,   𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁. 
 

(2.16) 

Evaluating the integrals for 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁, forms a linear system for the unknown 

coefficients 𝑢𝑢𝑗𝑗  (finite element solution). In fact, the matrix formed from the inner product 

on the LHS will be sparse (since most of the integrals will be zero, 𝑖𝑖 ≠ 𝑗𝑗) and always 

invertible due to the original assumption of a V-elliptic bilinear form in the Lax-Milgram 

lemma [18].  

2.1.3. Matrix Formulation. Expression of the finite element formulation in  

matrix notation will provide the basis for the finite element framework as the code 

structure will revolve around evaluating and solving for the components of the matrix 

formulation. The inner product on the LHS is the stiffness matrix, where in matrix 

notation 

 
𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑗𝑗�𝑖𝑖𝑗𝑗=1

𝑁𝑁𝑁𝑁
= �� 𝑐𝑐∇𝜙𝜙𝑗𝑗 ∙ ∇𝜙𝜙𝑖𝑖  𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕

Ω
�
𝑖𝑖.𝑗𝑗=1

𝑁𝑁𝑁𝑁

. 
 

(2.17) 

The RHS load vector 

 
𝑁𝑁�⃗ = [𝑁𝑁𝑖𝑖]𝑖𝑖=1𝑁𝑁𝑁𝑁 = �� 𝑓𝑓𝜙𝜙𝑖𝑖

Ω
 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕�

𝑖𝑖=1

𝑁𝑁𝑁𝑁

. 
 

(2.18) 

The unknown vector that contains the finite element solution 

 
�⃗�𝑋 = �𝑢𝑢𝑗𝑗�𝑗𝑗=1

𝑁𝑁𝑁𝑁
. 

 
(2.19) 

Finally, combining all the components results in the linear algebraic system 𝐴𝐴�⃗�𝑋 = 𝑁𝑁�⃗ . 
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2.2. MIXED BOUNDARY CONDITIONS 

 Unlike the pure homogenous Dirichlet case, where the boundary conditions are 

explicitly imposed after the formulation of the linear system. The natural Neumann and 

Robin boundary conditions are handled implicitly during the transformation of the strong 

problem into its equivalent weak form. Consequently, extra boundary integrals will be 

introduced in the formulations where the boundary integrals are surface integrals for 

three-dimensional domains and line integrals for two-dimensional domains. This section 

will only demonstrate the derivation of the Dirichlet/Neumann and Dirichlet/Robin 

formulations for the Poisson problem. However, the same processes are applied to other 

boundary value problems with any combination of mixed boundary conditions.   

2.2.1. Dirichlet/Neumann. Consider the second order Poisson problem from the  

previous section. Instead of imposing the homogenous Dirichlet boundary condition let’s 

define a split boundary with one portion defined by the essential Dirichlet condition and 

the other portion with the natural Neumann condition. 

 
�

−∇ ∙ 𝑐𝑐∇𝑢𝑢 = 𝑓𝑓 𝑖𝑖𝑛𝑛 Ω,
𝑢𝑢 = 𝑔𝑔 𝑜𝑜𝑛𝑛 𝑑𝑑Ω/𝛤𝛤1,

∇𝑢𝑢 ∙ 𝑛𝑛�⃗ = 𝑠𝑠 𝑜𝑜𝑛𝑛 𝛤𝛤1 ⊂ 𝜕𝜕Ω.
 

 
(2.20) 

Recall that the weak formulation for the Poisson equation is 

 
� 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

− � (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω
Ω

. 
 

(2.21) 

Since the solution is given by 𝑢𝑢 = 𝑔𝑔 on 𝜕𝜕Ω/𝛤𝛤1; a test function is chosen such that 𝑣𝑣 = 0 

on 𝜕𝜕Ω/𝛤𝛤1. Therefore, the boundary term in the weak formulation becomes 
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� (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑 = � (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑

𝛤𝛤1
+ � (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑

𝜕𝜕Ω/𝛤𝛤1𝑑𝑑Ω

= � 𝑐𝑐𝑠𝑠𝑣𝑣𝑑𝑑𝑑𝑑.
𝛤𝛤1

 

 
(2.22) 

Substituting the new boundary term back into the problem 

 
� 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

− � 𝑐𝑐𝑠𝑠𝑣𝑣 𝑑𝑑𝑑𝑑
𝛤𝛤1

= � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω
Ω

 
 

(2.23) 

which is equivalent to 

 
� 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

= � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω + � 𝑐𝑐𝑠𝑠𝑣𝑣 𝑑𝑑𝑑𝑑
𝛤𝛤1Ω

. 
 

(2.24) 

Thus, the weak formulation: find 𝑢𝑢 ∈ 𝐻𝐻1(Ω) such that 𝑎𝑎(𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣) ∀𝑣𝑣 ∈ 𝐻𝐻1 (Ω). 

Where, 

 
𝑎𝑎(𝑢𝑢, 𝑣𝑣) = � 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω

Ω
, 

 
(2.25) 

 
(𝑓𝑓, 𝑣𝑣) = � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω + � 𝑐𝑐𝑠𝑠𝑣𝑣 𝑑𝑑𝑑𝑑

𝛤𝛤1Ω
. 

 
(2.26) 

 Without going through the full Galerkin and matrix formulation presented in the 

homogenous Dirichlet Poisson section (the procedure is the same except for the inclusion 

of the new boundary term) it is evident that the matrix formulation will include the 

addition of a new vector to the linear form on the RHS. Assume 𝑈𝑈ℎ ⊂ 𝐻𝐻1(Ω) then the 

Galerkin formulation: find 𝑢𝑢ℎ ∈ 𝑈𝑈ℎ such that 𝑎𝑎(𝑢𝑢ℎ, 𝑣𝑣ℎ) = (𝑓𝑓, 𝑣𝑣ℎ)  ∀𝑣𝑣ℎ ∈ 𝑈𝑈ℎ. Where, 
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𝑎𝑎(𝑢𝑢ℎ, 𝑣𝑣ℎ) = � 𝑐𝑐∇𝑢𝑢ℎ∇𝑣𝑣ℎ 𝑑𝑑Ω,

Ω
 

 
(2.27) 

 
(𝑓𝑓, 𝑣𝑣ℎ) = � 𝑓𝑓𝑣𝑣ℎ  𝑑𝑑Ω + � 𝑐𝑐𝑠𝑠𝑣𝑣ℎ 𝑑𝑑𝑑𝑑.

𝛤𝛤1Ω
 

 
(2.28) 

A test function is chosen such that 𝑣𝑣ℎ = 𝜙𝜙𝑖𝑖(𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁). Hence, the additional term in 

the matrix formulation which results from the Neumann boundary integral 

 
v�⃗ = [v𝑖𝑖]𝑖𝑖=1𝑁𝑁𝑁𝑁 = �� 𝑐𝑐𝑠𝑠𝜙𝜙𝑖𝑖 𝑑𝑑𝑑𝑑

𝛤𝛤1
�
𝑖𝑖=1

𝑁𝑁𝑁𝑁

. 
 

(2.29) 

Modification of the vector results in  𝑁𝑁�⃗� = 𝑁𝑁�⃗ + �⃗�𝑣 and the linear system of algebraic 

equations becomes 𝐴𝐴�⃗�𝑋 = 𝑁𝑁�⃗�. 

2.2.2. Dirichlet/Robin. Consider the following second order Poisson problem  

with Dirichlet and Robin boundary conditions: 

 
�

−∇ ∙ 𝑐𝑐∇𝑢𝑢 = 𝑓𝑓 𝑖𝑖𝑛𝑛 Ω,
𝑢𝑢 = 𝑔𝑔 𝑜𝑜𝑛𝑛 𝑑𝑑Ω/𝛤𝛤2,

∇𝑢𝑢 ∙ 𝑛𝑛�⃗ + 𝑟𝑟𝑢𝑢 = 𝑞𝑞 𝑜𝑜𝑛𝑛 𝛤𝛤2 ⊆ 𝜕𝜕Ω.
 

 
(2.30) 

Recall the weak formulation for the Poisson problem: 

 
� 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

− � (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω.
Ω

 
 

(2.31) 

Since the solution is given by 𝑢𝑢 = 𝑔𝑔 on 𝜕𝜕Ω/𝛤𝛤2, a test function is chosen such that 𝑣𝑣 = 0 

on 𝜕𝜕Ω/𝛤𝛤2; therefore, the boundary term in the weak formulation with ∇𝑢𝑢 ∙ 𝑛𝑛�⃗ = 𝑞𝑞 − 𝑟𝑟𝑢𝑢 
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� (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑 = � (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑

𝛤𝛤2
+ � (𝑐𝑐∇𝑢𝑢 ∙ 𝑛𝑛�⃗ )𝑣𝑣 𝑑𝑑𝑑𝑑

𝜕𝜕Ω/𝛤𝛤2𝑑𝑑Ω

= � 𝑐𝑐(𝑞𝑞 − 𝑟𝑟𝑢𝑢)𝑣𝑣𝑑𝑑𝑑𝑑 = � 𝑐𝑐𝑞𝑞𝑣𝑣𝑑𝑑𝑑𝑑 − � 𝑐𝑐𝑟𝑟𝑢𝑢𝑣𝑣𝑑𝑑𝑑𝑑
𝛤𝛤2𝛤𝛤2

.
𝛤𝛤2

 

 
(2.32) 

Substituting the new boundary term back into the weak formulation gives 

 
� 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

− �� 𝑐𝑐𝑞𝑞𝑣𝑣𝑑𝑑𝑑𝑑 − � 𝑐𝑐𝑟𝑟𝑢𝑢𝑣𝑣𝑑𝑑𝑑𝑑
𝛤𝛤2𝛤𝛤2

� = � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω
Ω

, 
 

(2.33) 

which is equivalent to 

 
� 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω
Ω

+ � 𝑐𝑐𝑟𝑟𝑢𝑢𝑣𝑣𝑑𝑑𝑑𝑑
𝛤𝛤2

= � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω + � 𝑐𝑐𝑞𝑞𝑣𝑣𝑑𝑑𝑑𝑑
𝛤𝛤2Ω

. 
 

(2.34) 

Thus, the weak formulation: find 𝑢𝑢 ∈ 𝐻𝐻1(Ω) such that 𝑎𝑎(𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣) ∀𝑣𝑣 ∈ 𝐻𝐻1 (Ω). 

Where, 

 
𝑎𝑎(𝑢𝑢, 𝑣𝑣) = � 𝑐𝑐∇𝑢𝑢∇𝑣𝑣 𝑑𝑑Ω

Ω
+ � 𝑐𝑐𝑟𝑟𝑢𝑢𝑣𝑣 𝑑𝑑𝑑𝑑,

𝛤𝛤2
 

 
(2.35) 

 
(𝑓𝑓, 𝑣𝑣) = � 𝑓𝑓𝑣𝑣 𝑑𝑑Ω + � 𝑐𝑐𝑞𝑞𝑣𝑣 𝑑𝑑𝑑𝑑.

𝛤𝛤2Ω
 

 
(2.36) 

Assume 𝑈𝑈ℎ ⊂ 𝐻𝐻1(Ω). Then the Galerkin formulation: find 𝑢𝑢ℎ ∈ 𝑈𝑈ℎ such that 

𝑎𝑎(𝑢𝑢ℎ, 𝑣𝑣ℎ) = (𝑓𝑓, 𝑣𝑣ℎ)  ∀𝑣𝑣ℎ ∈ 𝑈𝑈ℎ. Where, 

 
𝑎𝑎(𝑢𝑢ℎ, 𝑣𝑣ℎ) = � 𝑐𝑐∇𝑢𝑢ℎ∇𝑣𝑣ℎ 𝑑𝑑Ω

Ω
+ � 𝑐𝑐𝑟𝑟𝑢𝑢ℎ𝑣𝑣ℎ 𝑑𝑑𝑑𝑑,

𝛤𝛤2
 

 
(2.37) 
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(𝑓𝑓, 𝑣𝑣ℎ) = � 𝑓𝑓𝑣𝑣ℎ  𝑑𝑑Ω + � 𝑐𝑐𝑞𝑞𝑣𝑣ℎ 𝑑𝑑𝑑𝑑.

𝛤𝛤2Ω
 

 
(2.38) 

A test function is chosen such that 𝑣𝑣ℎ = 𝜙𝜙𝑖𝑖(𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁). As a result of the imposition 

of the Robin boundary condition, two new integrals have arisen. Hence, the additional 

terms in the matrix formulation:  

 
w���⃗ = [w𝑖𝑖]𝑖𝑖=1𝑁𝑁𝑁𝑁 = �� 𝑐𝑐𝑠𝑠𝜙𝜙𝑖𝑖  𝑑𝑑𝑑𝑑

𝛤𝛤1
�
𝑖𝑖=1

𝑁𝑁𝑁𝑁

; 
 

(2.39) 

 
𝑅𝑅 = �𝑟𝑟𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1

𝑁𝑁𝑁𝑁
= �� 𝑐𝑐𝑟𝑟𝜙𝜙𝑗𝑗𝜙𝜙𝑖𝑖  𝑑𝑑𝑑𝑑

𝛤𝛤2
�
𝑖𝑖,𝑗𝑗=1

𝑁𝑁𝑁𝑁

. 
 

(2.40) 

The modified matrix and vector are defined as:  �̃�𝐴 = 𝐴𝐴 + 𝑅𝑅, and 𝑁𝑁�⃗� = 𝑁𝑁�⃗ + 𝑤𝑤��⃗ . Thus, the 

resulting linear algebraic system is �̃�𝐴�⃗�𝑋 = 𝑁𝑁�⃗�. 

 

2.3. BASIS FUNCTIONS 

 Recall from section 2.1 that the unknown solution 𝑢𝑢 to the original Poisson 

equation can be approximated by a function 𝑢𝑢ℎ through the linear combination of 

undetermined coefficients 𝑢𝑢𝑗𝑗  and basis functions 𝜙𝜙𝑗𝑗. By partitioning the computational 

domain into nodal finite elements (Lagrangian elements) 𝐾𝐾 and defining a polynomial 

basis with small supports over the elements, the basis functions are only non-zero when 

they are evaluated on elements adjacent to the node. Thus, 𝑢𝑢𝑗𝑗  is the approximate nodal 

solution at the node 𝑋𝑋𝑗𝑗. For this to be true, the basis functions must be constructed from 

the elements nodal values. Since the partitioning of the domain into finite elements is 

completely arbitrary an inverse affine map is utilized to construct and evaluate the local 
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basis functions on an arbitrary element. To demonstrate this idea, the derivation of the 

linear triangular element will be presented. Since the process is the same for other 

elements, the higher-order triangular elements, quadrangle elements, and tetrahedral 

elements are included in Appendix A. 

2.3.1. Linear Triangular Element. Figure 2.1 depicts the characterization of  

the reference linear triangular element by its three vertexes. Before specifying the nodal 

order let’s introduce the following notation to distinguish between the vertexes of the 

reference element and the local element. The vertexes and coordinates associated with the 

reference element are denoted by �̂�𝐴𝑖𝑖(𝜕𝜕�,𝜕𝜕�) and the arbitrary local element by 𝐴𝐴𝑖𝑖(𝜕𝜕,𝜕𝜕). 

Where, 𝑖𝑖 is the node number. Ordering the element vertexes are done in a counter 

clockwise fashion starting from �̂�𝐴1(0, 0) since the surface normal vector is chosen to be 

positive when the vector points out of this page. The next step is to construct the linear 

Lagrangian reference basis functions 𝜓𝜓�𝑗𝑗(�̂�𝐴𝑖𝑖) over the reference element. 

 The linear Lagrangian interpolation polynomial in two-dimension is defined as: 

 𝜓𝜓�𝑗𝑗(𝜕𝜕�,𝜕𝜕�) = 𝑎𝑎𝑗𝑗𝜕𝜕� + 𝑁𝑁𝑗𝑗𝜕𝜕� + 𝑐𝑐𝑗𝑗    (2.41) 

such that 

 𝜓𝜓�𝑗𝑗��̂�𝐴𝑖𝑖� = 𝛿𝛿𝑖𝑖𝑗𝑗 = �0, 𝑖𝑖𝑓𝑓 𝑗𝑗 ≠ 𝑖𝑖,
1, 𝑖𝑖𝑓𝑓 𝑗𝑗 = 𝑖𝑖,  𝑓𝑓𝑜𝑜𝑟𝑟 𝑖𝑖, 𝑗𝑗 = 1, 2, 3. (2.42) 

By the previous definition of the reference basis function, the following system of 

equations is obtained for the coefficients of the first reference basis function when 𝑗𝑗 = 1 

and 𝑖𝑖 = 1, 2, 3. 
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Figure 2.1 Linear triangular reference element 

 

 
�

0 0 1
1 0 1
0 1 1

� ∙ �
𝑎𝑎1
𝑁𝑁1
𝑐𝑐1
� = �

1
0
0
�. (2.43) 

Solving for the coefficients results in 𝑎𝑎1 = −1, 𝑁𝑁1 = −1, and 𝑐𝑐1 = 1. Thus, the first 

reference basis function is 

 𝜓𝜓�1(𝜕𝜕�,𝜕𝜕�) = −𝜕𝜕� − 𝜕𝜕� + 1. (2.44) 

Repeating the process to obtain the coefficients for the two remaining basis functions 

results yields: 

 𝜓𝜓�2(𝜕𝜕�,𝜕𝜕�) = 𝜕𝜕�, (2.45) 
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 𝜓𝜓�3(𝜕𝜕�,𝜕𝜕�) = 𝜕𝜕�. (2.46) 

2.3.2. Affine Mapping. Establishing an invertible affine mapping 𝐹𝐹𝑘𝑘 permits the  

construction of the local basis functions over an arbitrary element from the previously 

derived reference basis functions 

 𝐹𝐹𝑘𝑘: �
𝜕𝜕
𝜕𝜕� ∈ 𝑅𝑅

2 → 𝐹𝐹𝑘𝑘 �
𝜕𝜕
𝜕𝜕� = 𝑀𝑀𝑘𝑘 ∙ �

𝜕𝜕�
𝜕𝜕�� + 𝑁𝑁𝑘𝑘. (2.47) 

Where, 𝑀𝑀𝑘𝑘(𝜕𝜕�,𝜕𝜕�) is an invertible matrix and 𝑁𝑁𝑘𝑘 is a vector in 𝑅𝑅2. Essentially, the affine 

mapping preserves the geometric definition of the element when mapping to and from the 

reference and arbitrary local element. Let’s consider the following affine map 

 𝐹𝐹𝑘𝑘 �
𝜕𝜕𝑖𝑖
𝜕𝜕𝑖𝑖� = �𝑀𝑀11 𝑀𝑀12

𝑀𝑀21 𝑀𝑀22
� ∙ �𝜕𝜕�𝑖𝑖𝜕𝜕�𝑖𝑖

� + �
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦
�. (2.48) 

The transformation maps the vertexes of the reference element to the local element 

 �̂�𝐴1 = � 0 
 0 � → �

 𝜕𝜕1 
 𝜕𝜕1 � = 𝐴𝐴1, (2.49) 

 �̂�𝐴2 = � 1 
 0 � → �

 𝜕𝜕2 
 𝜕𝜕2 � = 𝐴𝐴2, (2.50) 

and 

 �̂�𝐴3 = � 0 
 1 � → �

 𝜕𝜕3 
 𝜕𝜕3 � = 𝐴𝐴3. (2.51) 

 To obtain the complete matrix 𝑀𝑀𝑘𝑘 the map is evaluated for the three cases 

mentioned above. For the first case when 𝑖𝑖 = 1 the mapping of Equation 2.49 yields 

 �
𝜕𝜕1
𝜕𝜕1� = �𝑀𝑀11 𝑀𝑀12

𝑀𝑀21 𝑀𝑀22
� ∙ �0

0� + �
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦
�. (2.52) 

Thus, the vector 𝑁𝑁𝑘𝑘 becomes 
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 �
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦
� = �

𝜕𝜕1
𝜕𝜕1�. (2.53) 

Evaluation of the other two mappings �̂�𝐴2 → 𝐴𝐴2 and �̂�𝐴3 → 𝐴𝐴3 yields the complete affine 

mapping  

 𝐹𝐹𝑘𝑘 �
𝜕𝜕
𝜕𝜕� = �

𝜕𝜕2 − 𝜕𝜕1 𝜕𝜕3 − 𝜕𝜕1
𝜕𝜕2 − 𝜕𝜕1 𝜕𝜕3 − 𝜕𝜕1� ∙ �

𝜕𝜕�
𝜕𝜕�� + �

𝜕𝜕1
𝜕𝜕1�. (2.54) 

Inverting the affine map yields the transformation of a point inside the interior of a local 

element (𝜕𝜕,𝜕𝜕) to the reference element (𝜕𝜕�, 𝜕𝜕�).  

 �𝜕𝜕�𝜕𝜕��

=
1

(𝜕𝜕2 − 𝜕𝜕1)(𝜕𝜕3 − 𝜕𝜕1) − (𝜕𝜕3 − 𝜕𝜕1)(𝜕𝜕2 − 𝜕𝜕1)
�
𝜕𝜕3 − 𝜕𝜕1 𝜕𝜕1 − 𝜕𝜕3
𝜕𝜕1 − 𝜕𝜕2 𝜕𝜕2 − 𝜕𝜕1�

∙ �
𝜕𝜕 − 𝜕𝜕1
𝜕𝜕 − 𝜕𝜕1� 

(2.55) 

Thus, the reference element coordinates in terms of the local element vertexes and 

interior point coordinates 

 
𝜕𝜕� =

(𝜕𝜕3 − 𝜕𝜕1)(𝜕𝜕 − 𝜕𝜕1) + (𝜕𝜕1 − 𝜕𝜕3)(𝜕𝜕 − 𝜕𝜕1)
(𝜕𝜕2 − 𝜕𝜕1)(𝜕𝜕3 − 𝜕𝜕1) − (𝜕𝜕3 − 𝜕𝜕1)(𝜕𝜕2 − 𝜕𝜕1)

, (2.56) 

 
𝜕𝜕� =

(𝜕𝜕1 − 𝜕𝜕2)(𝜕𝜕 − 𝜕𝜕1) + (𝜕𝜕2 − 𝜕𝜕1)(𝜕𝜕 − 𝜕𝜕1)
(𝜕𝜕2 − 𝜕𝜕1)(𝜕𝜕3 − 𝜕𝜕1) − (𝜕𝜕3 − 𝜕𝜕1)(𝜕𝜕2 − 𝜕𝜕1)

. (2.57) 

It is now permissible to define the local basis functions from the preceding definitions of 

the inverse affine mapping.  
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2.3.3. Local Basis Functions. The local basis functions defined over an arbitrary  

element can be derived from the previously established reference basis functions through 

the affine map and chain rule. Let’s consider the 𝑛𝑛𝑡𝑡ℎ element of the set of elements 

∑ 𝐾𝐾𝑛𝑛𝑁𝑁
𝑛𝑛=1  where the vertexes of the 𝑛𝑛𝑡𝑡ℎ element are 𝐴𝐴𝑛𝑛1, 𝐴𝐴𝑛𝑛2, and 𝐴𝐴𝑛𝑛3. The coordinates of 

the three vertexes are 𝐴𝐴𝑛𝑛𝑖𝑖 = �
𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖� for 𝑖𝑖 = 1, 2, 3. Then the three local basis functions 

over the 𝑛𝑛𝑡𝑡ℎ element are 𝜓𝜓𝑛𝑛𝑖𝑖(𝜕𝜕𝑛𝑛𝑖𝑖 ,𝜕𝜕𝑛𝑛𝑖𝑖) = 𝜓𝜓�𝑖𝑖(𝜕𝜕�,𝜕𝜕�) for 𝑖𝑖 = 1, 2, 3. Utilizing the chain rule 

yields the partial derivatives of the local basis functions of the 𝑛𝑛𝑡𝑡ℎ element in terms of the 

reference basis functions and the inverse affine map. Recall from the weak formulation of 

the Poisson equation that the inner product of the first order derivatives must be 

evaluated; therefore, the first order partial derivatives of the local basis functions on the 

𝑛𝑛𝑡𝑡ℎ element are 

 𝜕𝜕𝜓𝜓𝑛𝑛𝑖𝑖
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜓𝜓�𝑖𝑖
𝜕𝜕𝜕𝜕�

𝜕𝜕𝜕𝜕�
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜓𝜓�𝑖𝑖
𝜕𝜕𝜕𝜕�

𝜕𝜕𝜕𝜕�
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜓𝜓�𝑖𝑖
𝜕𝜕𝜕𝜕�

𝜕𝜕𝑛𝑛3 − 𝜕𝜕𝑛𝑛1
𝐽𝐽

+
𝜕𝜕𝜓𝜓�𝑖𝑖
𝜕𝜕𝜕𝜕�

𝜕𝜕𝑛𝑛1 − 𝜕𝜕𝑛𝑛2
𝐽𝐽

, (2.58) 

and 

 𝜕𝜕𝜓𝜓𝑛𝑛𝑖𝑖
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜓𝜓�𝑖𝑖
𝜕𝜕𝜕𝜕�

𝜕𝜕𝜕𝜕�
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜓𝜓�𝑖𝑖
𝜕𝜕𝜕𝜕�

𝜕𝜕𝜕𝜕�
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜓𝜓�𝑖𝑖
𝜕𝜕𝜕𝜕�

𝜕𝜕𝑛𝑛1 − 𝜕𝜕𝑛𝑛3
𝐽𝐽

+
𝜕𝜕𝜓𝜓�𝑖𝑖
𝜕𝜕𝜕𝜕�

𝜕𝜕𝑛𝑛2 − 𝜕𝜕𝑛𝑛1
𝐽𝐽

. (2.59) 

Where, 𝐽𝐽 = (𝜕𝜕𝑛𝑛2 − 𝜕𝜕𝑛𝑛1)(𝜕𝜕𝑛𝑛3 − 𝜕𝜕𝑛𝑛1) − (𝜕𝜕𝑛𝑛3 − 𝜕𝜕𝑛𝑛1)(𝜕𝜕𝑛𝑛2 − 𝜕𝜕𝑛𝑛1). The second order partial 

derivatives of the local basis functions are derived when considering quadratic 

interpolation polynomials. Such derivations are included in Appendix along with the 

rectangular and tetrahedral elements.  
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3. FINITE ELEMENT FRAMEWORK 

 

 The objective concerning implementation of the finite element method in 

computers is to form the linear system of algebraic equations through numerical 

evaluation of the integrals set forth by the matrix formulation to solve for the unknown 

coefficients (nodal values). Thus, the framework is broken into five main sub routines: 

(1) stiffness matrix assembly; (2) load vector assembly; (3) application of Dirichlet 

boundary conditions; (4) Neumann boundary condition vector assembly; and (5) Robin 

boundary condition matrix and vector assembly. Application of the foregoing modular 

approach allows the user to call only the necessary functions required to form the 

stiffness matrices and load vectors arising from the matrix formulation of a partial 

differential equation. Modularity also allows the ease of development of new 

functionalities under the framework. For instance, if a desired problem requires a specific 

formulation, or new functionality, the framework can be extended without modification 

of prior developments.   

 Implementation of the FEM framework pursuant the use of MATLAB results in: 

(1) simplicity; (2) access to sparse linear solvers; and (3) rapid development time. 

However, the downside of the decision to use MATLAB is reduced efficiency and 

scalability. Nevertheless, implementation of the framework in MATLAB demonstrates 

the framework’s capabilities and potential for further development in a compiled 

computer language. In terms of future development, the MATLAB code provides a solid 

foundation upon which future algorithms and framework extensions can be tested before 

the investment of development time required for their implementation in traditional 

compiled languages (FORTAN, C++, etc.). Finally, for persons that wish to further the 
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development of the FEM framework, the MATLAB code presents the current state of the 

framework in the highest possible level thereby minimizing the time required to 

understand the inner workings of the framework.  

 The flowchart in Figure 3.1 illustrates the logical flow of the FEM framework 

where each general constituent represents a collection of functions required to carry out 

the underlying task. The first step is to prepare the computational domain in the open 

source GMSH: a 2D/3D meshing software [20]. A parsing function reads the data output 

from GMSH in ASCII format and processes the data into the correct format required by 

the FEM framework [20]. Then, the nuclear data is read in from the Serpent 2 output or 

by manual specification of the nuclear data. The solver that is developed for a specific 

partial differential equation (based on the matrix formulation) calls the stiffness matrix 

and load vector assembly routines based upon the number of integrals in the matrix 

formulation. After the stiffness matrix and load vector assembly, the framework checks 

each individual boundary condition type to discern which boundary condition functions 

to call. Lastly, the linear algebraic system is solved for the undetermined coefficients 𝑢𝑢𝑗𝑗 . 

Presentation of the algorithms initially require that the user of the framework fully 

understand the data structure upon which the algorithms are built. 

3.1.1. Data Structure. Consideration of a simple 2-D square domain (Figure 3.2) 

with a side length of 𝑙𝑙 = 1 that is centered about the point (0.5, 0.5) allows 

demonstration of the data structure. If the computational domain is discretized into 

structured triangular elements with ∆𝑥𝑥,𝑦𝑦= 0.5 whose nodal points are represented by 

linear interpolation polynomials. For this demonstration the nodes are ordered starting 

from node #1 at the point (0, 0). The node #2 would correspond to the point at (0, 0.5)  
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Figure 3.1 Finite element framework flowchart for time 
independent problems 
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and would continue until all nodes are ordered in a column wise fashion. Although this 

structured node ordering is chosen for demonstration purposes, the framework does not 

impose any strict requirements on the node ordering. For instance, node #1 may be the 

center node at (0.5, 0.5). 

 

Figure 3.2 Example square mesh with triangular elements 

 Define two matrices to store the coordinates of all mesh nodes and the global 

basis function indices of all the mesh elements: (1) node_coordinates; (2) global_indices. 

The 𝑛𝑛𝑡𝑡ℎ column index of the node_coordinates matrix stores the coordinates of the 𝑛𝑛𝑡𝑡ℎ 

mesh node such that the first row stores the x-coordinate and the second row stores the y-

coordinate. The  𝑗𝑗𝑡𝑡ℎ column of the global_indices matrix stores the global basis function 

indices of the 𝑗𝑗𝑡𝑡ℎ mesh element. Recall that the node ordering of the reference triangle is 
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done in a counter-clockwise fashion (see Figure 2.1).; thus, the 𝑘𝑘𝑡𝑡ℎ row of the 

global_indices stores the global node index of 𝐴𝐴𝑘𝑘(𝜕𝜕,𝜕𝜕) of the 𝑗𝑗𝑡𝑡ℎ mesh element. The two 

information matrices for the mesh in Figure 3.2: 

𝑛𝑛𝑜𝑜𝑑𝑑𝑛𝑛_𝑐𝑐𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑𝑖𝑖𝑛𝑛𝑎𝑎𝑐𝑐𝑛𝑛𝑑𝑑 = �
𝜕𝜕
𝜕𝜕� =  �0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
� ; 

𝑔𝑔𝑙𝑙𝑜𝑜𝑁𝑁𝑎𝑎𝑙𝑙_𝑖𝑖𝑛𝑛𝑑𝑑𝑖𝑖𝑐𝑐𝑛𝑛𝑑𝑑 =  �
1 2 2 3 4 5 5 6
4 4 5 5 7 7 8 8
2 5 3 6 5 8 6 9

�. 

For instance, the 7𝑡𝑡ℎ mesh element (column 7 in 𝑔𝑔𝑙𝑙𝑜𝑜𝑁𝑁𝑎𝑎𝑙𝑙_𝑖𝑖𝑛𝑛𝑑𝑑𝑖𝑖𝑐𝑐𝑛𝑛𝑑𝑑) would have the node 

coordinates 𝐴𝐴1(0.5, 0.5), 𝐴𝐴2(1.0, 0.5), and 𝐴𝐴3(0.5, 1.0). 

 The information regarding the boundary conditions is stored in a vector and 

matrix: (1) boundary_nodes; (2) boundary_edges. For the boundary edges that are 

specified with the Dirichlet boundary conditions, the global boundary node index along 

those edges are stored in the boundary_nodes vector. If all the boundary edges in the 

mesh in Figure 3.2 are specified as Dirichlet, the boundary_nodes matrix is    

𝑁𝑁𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑𝑎𝑎𝑟𝑟𝜕𝜕_𝑛𝑛𝑜𝑜𝑑𝑑𝑛𝑛𝑑𝑑 = (1 4 7 8 9 6 3 2). 

Again, the framework does not require any specific order for which the global node index 

of the Dirichlet nodes must be stored. 

 Depending on the dimensionality of a problem, the Neumann and Robin boundary 

integrals are surface integral for 3-D and line integrals for 2-D; therefore, the information 

needed to evaluate these integrals are stored differently. For the 3-D case, the information 

is stored in a matrix boundary_surface whose structure is identical to that of the 

global_indices matrix of the 2-D problem. If the mesh in Figure 3.2 was a boundary 
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surface of a cube the boundary_surface matrix would be identical to the information in 

the matrix 𝑔𝑔𝑙𝑙𝑜𝑜𝑁𝑁𝑎𝑎𝑙𝑙_𝑖𝑖𝑛𝑛𝑑𝑑𝑖𝑖𝑐𝑐𝑛𝑛𝑑𝑑.  

 For the 2-D case where the boundary is an edge, the information is stored in a 

matrix boundary_edges. Thus, the matrix for the mesh in Figure 3.2 where all the 

boundary edges are Dirichlet except the right-side boundary edge which is specified as 

Neumann boundary 

𝑁𝑁𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑𝑎𝑎𝑟𝑟𝜕𝜕_𝑛𝑛𝑑𝑑𝑔𝑔𝑛𝑛𝑑𝑑 = �
1002 1002

6 8
7
8

8
9

�. 

The first row stores the boundary condition identifier (1002 for Neumann and 1003 for 

Robin), the second-row stores the mesh element number, and rows three and four store 

the beginning and ending global node index of the edge. Note: the start and end nodes of 

a boundary edge are ordered in a counter-clock wise fashion. 

 To handle interface problems that require material dependent constants or 

functions; a physical group vector stores the numerical identifier which is used to call the 

correct mesh element data when evaluating the matrix formulation integrals. For 

demonstration purposes let’s consider the mesh in Figure 3.2 where the mesh is divided 

into two regions such that the interface is the line 𝜕𝜕 = 0.5. The region to the left of the 

interface will be region #10 and the region to the right will be region #20. Thus, the 

physical-group matrix for this problem is 

𝑠𝑠ℎ𝜕𝜕𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑙𝑙_𝑔𝑔𝑟𝑟𝑜𝑜𝑢𝑢𝑠𝑠 = (10 10 10 10 20 20 20 20). 
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Here, the 𝑗𝑗𝑡𝑡ℎ column of the 𝑠𝑠ℎ𝜕𝜕𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑙𝑙_𝑔𝑔𝑟𝑟𝑜𝑜𝑢𝑢𝑠𝑠 vector corresponds to the global basis 

indexing of the 𝑗𝑗𝑡𝑡ℎ column of the global_indices matrix. 

3.1.2. Stiffness Matrix and Load Vector Assembly. Recall the stiffness matrix  

formulation from the Poisson equation in section 2.1.3. Since most of the integrals will be 

non-zero, only the integrals for the basis functions that correspond to the local element 

need to be numerically evaluated; therefore, the central idea behind the matrix assembler 

is to only evaluate the non-zero integrals and assemble them into their corresponding 

locations in the stiffness matrix (algorithm 1). For the 𝑗𝑗𝑡𝑡ℎ element 𝐾𝐾𝑗𝑗, there are only 𝑁𝑁𝑙𝑙𝑁𝑁2  

non-zero integrals. Where, 𝑁𝑁𝑙𝑙𝑁𝑁 denotes the number of local basis functions that 

characterize an element. From the reference linear triangle, recall that a unique basis 

function characterizes the three vertexes of the element. Thus, for the linear triangular 

element there will be 9 non-zero local integrals to evaluate and assemble into the matrix. 

All the information needed to evaluate the integrals and assemble the result into the 

correct matrix location is contained within the node_coordinates and global_indices 

information matrices. 

 Algorithm 1 is a general 2D matrix assembler that can evaluate and assemble the 

integrals of the basis functions for any combination of partial derivatives and non-

derivatives. To construct the stiffness matrix of the Poisson equation the matrix 

assembler would be called twice: (1) to assemble the partial derivatives with respect to x 

(𝑟𝑟 = 𝑠𝑠 = 1 and 𝑑𝑑 = 𝑞𝑞 = 0); (2) to assemble the partial derivatives with respect to y    

(𝑟𝑟 = 𝑠𝑠 = 0 and 𝑑𝑑 = 𝑞𝑞 = 1). Assembling the resulting values and matrix indices in vector 

form reduces the computational complexity of having to reshuffle an already formed 

sparse matrix after each result is computed; therefore, the sparse command is only called 
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once to construct the complete matrix. Assembly of the load vector (algorithm 2) follows 

the same process as the matrix assembler minus the terms for the trial function. 

 

Algorithm 1: General 2D Matrix Assembler 

counter = 1 
row = zeros(1,𝑁𝑁𝑙𝑙𝑁𝑁2 × 𝑛𝑛𝑢𝑢𝑚𝑚𝑁𝑁𝑛𝑛𝑟𝑟_𝑚𝑚𝑛𝑛𝑑𝑑ℎ_𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑐𝑐𝑑𝑑); % matrix row index  
col = zeros(1,𝑁𝑁𝑙𝑙𝑁𝑁2 × 𝑛𝑛𝑢𝑢𝑚𝑚𝑁𝑁𝑛𝑛𝑟𝑟_𝑚𝑚𝑛𝑛𝑑𝑑ℎ_𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑐𝑐𝑑𝑑); % matrix column index 
val = zeros(1,𝑁𝑁𝑙𝑙𝑁𝑁2 × 𝑛𝑛𝑢𝑢𝑚𝑚𝑁𝑁𝑛𝑛𝑟𝑟_𝑚𝑚𝑛𝑛𝑑𝑑ℎ_𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑐𝑐𝑑𝑑); % integral result 
 
for n = 1: number_mesh_elements 
       vertices = node_coordinates( : , global_indices ( : , n ) ); 
 
      for 𝛼𝛼 = 1: 𝑁𝑁𝑙𝑙𝑁𝑁 
            for 𝛽𝛽 = 1: 𝑁𝑁𝑙𝑙𝑁𝑁 

       val(counter) = ∫ 𝑐𝑐 𝜕𝜕
𝑟𝑟+𝑠𝑠𝜓𝜓𝑛𝑛𝑛𝑛
𝜕𝜕𝑥𝑥𝑟𝑟𝜕𝜕𝑦𝑦𝑠𝑠

𝜕𝜕𝑝𝑝+𝑞𝑞𝜓𝜓𝑛𝑛𝑛𝑛

𝜕𝜕𝑥𝑥𝑝𝑝𝜕𝜕𝑦𝑦𝑞𝑞
 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝐾𝐾𝑛𝑛

  

       row(counter) = global_indices(𝛽𝛽,𝑛𝑛); 
       col(counter) = global_indices(𝛼𝛼,𝑛𝑛); 
       counter=counter+1; 
 
             end for 
      end for 
end for 
end function 
 

Algorithm 2: General 2D Vector Assembler 

b = zeros(number_mesh_nodes,1); 
 
for n = 1: number_mesh_elements 
       vertices = node_coordinates( : , global_indices ( : , n ) ); 
 
            for 𝛽𝛽 = 1: 𝑁𝑁𝑙𝑙𝑁𝑁 

       result = ∫ 𝑓𝑓 𝜕𝜕𝑝𝑝+𝑞𝑞𝜓𝜓𝑛𝑛𝑛𝑛

𝜕𝜕𝑥𝑥𝑝𝑝𝜕𝜕𝑦𝑦𝑞𝑞
 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝐾𝐾𝑛𝑛

  

       b(global_indices(𝛽𝛽,n) , 1) = b(global_indices(𝛽𝛽,n ) , 1) + result\ 
 
             end for 
end for 
end function 
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4. NEUTRON TRANSPORT THEORY 

 

The primary objective concerning reactor analysis is to ensure the safe, 

continuous operation of nuclear reactors subjected to a wide range of operating 

conditions. By invoking certain assumptions, the simplification of the Boltzmann 

transport equation (initially derived to characterize the transport of microscopic 

molecules in a medium) permits its application to the study of neutron transport 

processes. Ultimately, the mathematical analysis regarding the free motion of a collection 

of neutrons in a medium, provide reactor physicists a means to characterize neutron 

distributions and reaction rates. Equipped with this information, reactor physicists can 

manipulate reactor designs, and reactivity configurations that result in operating limits 

which maximize efficiency and safety under current licensing regulations. The discussion 

presented in this chapter is not meant to be exhaustive by any means, but rather serve as 

an introduction to the fundamentals of neutron transport theory and the necessary 

approximation methods which result in practical mathematical tools for this work.  

 

4.1. NEUTRON BOLTZMANN EQUATION 

  In the derivation of the neutron transport equation from the Boltzmann equation, 

it is necessary to make the following assumptions: (1) neutrons are treated as classical 

neutral particles; (2) neutrons travel in straight lines between collisions; (3) compared to 

the density of nuclei in a medium, the neutron density is sufficiently small enough to 

disregard neutron-neutron interaction, resulting in a linearized scattering term; (4) 
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material properties are isotropic; (5) only the neutron density (collection of particles) are 

considered [21]. A phase space volume element 𝑆𝑆�⃗ = �𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐� (Figure 4.1) which 

permits the acquisition of the expected number of neutrons in an infinitesimal volume 

consists of seven independent variables, 𝑟𝑟 = spatial position, Ω� = angular direction of 

motion, E = energy, and t = time.  

 

 

Figure 4.1 Volume and directional element 

 

4.1.1. Angular Neutron Density, Flux, and Current. The expected number of 

neutrons at a time 𝑐𝑐 + ∆𝑐𝑐 in the volume dr about r, within the energy range dE whose 

direction of motion lie in the differential solid angle dΩ about Ω is the most general 

description of the angular neutron density function, 
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𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐� 𝑑𝑑𝑟𝑟 𝑑𝑑Ω� 𝑑𝑑𝐸𝐸 𝑑𝑑𝑐𝑐. (4.1) 

Integration of the angular neutron density over all directions yields the neutron density,  

 
𝑛𝑛(𝑟𝑟,𝐸𝐸, 𝑐𝑐) = � 𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�

4𝜋𝜋

 𝑑𝑑Ω. (4.2) 

The neutron density is the expected number of neutrons at 𝑟𝑟, with energy 𝐸𝐸 at time t, per 

unit volume per unit energy. Multiplying the angular density function by the velocity v 

that corresponds to their energy E results in the angular neutron flux 

 𝛷𝛷�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐� = 𝑣𝑣𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�. (4.3) 

Integration of the angular neutron flux over all directions yields the total neutron flux, 

 
𝜑𝜑(𝑟𝑟,𝐸𝐸, 𝑐𝑐) = � 𝛷𝛷�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�

4𝜋𝜋

 𝑑𝑑Ω = 𝑣𝑣𝑛𝑛(𝑟𝑟,𝐸𝐸, 𝑐𝑐). (4.4) 

  One can think of the angular neutron flux as the total track length traveled by the 

neutrons in the phase space volume element per unit time that relates the reaction rate R, 

as neutrons stream through the infinitesimal phase space volume element, to the 

macroscopic cross section 𝛴𝛴𝑖𝑖 (probability of interaction i per path length) of the medium. 

 𝑅𝑅𝑖𝑖�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐� = 𝛴𝛴𝑖𝑖(𝑟𝑟,𝐸𝐸)𝜓𝜓�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�. (4.5) 

It is also necessary to account for the scattering reactions in which neutrons scatter from 

energy E to E′ and direction Ω� to Ω�′ through the differential reaction rate. 

 𝑅𝑅𝑠𝑠�𝑟𝑟,Ω� → Ω�′,𝐸𝐸 → 𝐸𝐸′, 𝑐𝑐� = 𝛴𝛴𝑠𝑠�𝑟𝑟,Ω� → Ω�′,𝐸𝐸 → 𝐸𝐸′�𝜓𝜓�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐� (4.6) 
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where 𝛴𝛴𝑠𝑠�𝑟𝑟,Ω� → Ω�′,𝐸𝐸 → 𝐸𝐸′� is the macroscopic double-differential scattering cross 

section. 

 Up to this point, only the means to obtain an expected number of neutrons in a 

volume element is presented; however, it is also necessary to describe the net flow of 

neutrons streaming into and out of the volume element. The angular neutron current 

density is the rate that neutrons with energy E and direction Ω� pass through a surface and 

can be related to the angular flux by 

 𝑗𝑗(𝑟𝑟,𝐸𝐸, 𝑐𝑐) = Ω� 𝛷𝛷�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�. (4.7) 

Integrating the angular neutron current density over all directions yields the neutron 

current density. This is the net number of neutrons of energy 𝐸𝐸 at position 𝑟𝑟 and time t 

crossing a unit area per unit energy and time. 

 
𝐽𝐽(𝑟𝑟,𝐸𝐸, 𝑐𝑐) = � 𝑗𝑗(𝑟𝑟,𝐸𝐸, 𝑐𝑐)

4𝜋𝜋
 𝑑𝑑Ω. (4.8) 

4.1.2. Balance Equation. With the foregoing quantities, it is possible to establish   

a balance equation which governs the rate of change of the neutron density in an 

infinitesimal phase space volume element. Let’s consider a neutron density whose energy 

lies in 𝑑𝑑𝐸𝐸 about 𝐸𝐸 contained inside the volume element 𝑉𝑉, about 𝑟𝑟, at times 𝑐𝑐 and 𝑐𝑐 + ∆𝑐𝑐 

whose velocity vectors are within 𝑑𝑑Ω about Ω. The neutron density balance equation in 

this phase space volume element 𝑆𝑆�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐� is then 

 𝜕𝜕
𝜕𝜕𝑐𝑐
�� 𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�𝑑𝑑3𝑟𝑟
𝑉𝑉

� 𝑑𝑑𝐸𝐸 𝑑𝑑Ω� = 𝑔𝑔𝑎𝑎𝑖𝑖𝑛𝑛 𝑖𝑖𝑛𝑛 𝑉𝑉 − 𝑙𝑙𝑜𝑜𝑑𝑑𝑑𝑑 𝑓𝑓𝑟𝑟𝑜𝑜𝑚𝑚 𝑉𝑉.  (4.9) 
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The mechanisms that permit the gain of neutrons (1) and loss of neutrons (2) in the phase 

space volume element are: (1.a) neutron sources inside the volume (fission); (1.b) 

neutrons streaming into the volume element through a surface; (1.c) neutrons scattering 

from 𝐸𝐸′,Ω′� into 𝐸𝐸,Ω�; (2.a) neutrons leaking out of the volume element through a surface; 

(2.b) neutrons that are absorbed by the medium inside the volume element (includes 

parasitic capture and fission); (2.c) neutrons scattering out of 𝐸𝐸,Ω�. 

 If the only neutron source inside the volume 𝑉𝑉 are fission neutrons, the source 

term (1.a) becomes 

 

𝑆𝑆�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�

=
1

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒(𝐸𝐸)

4𝜋𝜋
� 𝑑𝑑Ω′�� 𝑑𝑑𝐸𝐸′𝜈𝜈′(𝐸𝐸′)

∞

0
𝛴𝛴𝑒𝑒(𝐸𝐸′)𝑣𝑣𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�

4𝜋𝜋
, 

(4.10) 

where 𝜒𝜒(𝐸𝐸) is the fraction of fission neutrons born with energy E and 𝜈𝜈′(𝐸𝐸′) is the 

number of neutrons emitted from neutron induced fission with energy 𝐸𝐸′. Combining the 

neutron streaming gain (1.b) and loss (2.a) terms result in the net leakage over the entire 

surface: 

 
� 𝑑𝑑𝑑𝑑 ∙ 𝑣𝑣Ω�
𝑆𝑆

𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�𝑑𝑑𝐸𝐸 𝑑𝑑Ω� . (4.11) 

Recall the gradient operator, 

 
∇𝐹𝐹 =

𝜕𝜕𝐹𝐹
𝜕𝜕𝜕𝜕

𝑖𝑖 +
𝜕𝜕𝐹𝐹
𝑑𝑑𝜕𝜕

𝑗𝑗 +
𝜕𝜕𝐹𝐹
𝑑𝑑𝑑𝑑

𝑘𝑘 (4.12) 

and Gauss’s theorem, 
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� (𝐹𝐹 ∙ 𝑛𝑛) 𝑑𝑑𝑆𝑆 = � (∇ ∙ 𝐹𝐹) 𝑑𝑑𝑉𝑉

𝑉𝑉𝑆𝑆
. (4.13) 

Applying Gauss’s theorem to leakage term (Eq. 4.11) recasts the surface integral into a 

volume integral of the divergence inside of the surface. 

 
� 𝑑𝑑𝑑𝑑 ∙ 𝑣𝑣Ω�
𝑆𝑆

𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐)𝑑𝑑𝐸𝐸 𝑑𝑑Ω� = � 𝑑𝑑3r ∇ ∙ 𝑣𝑣Ω�𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐)
𝑉𝑉

 𝑑𝑑𝐸𝐸 𝑑𝑑Ω� . (4.14) 

The gain of neutrons in the volume element resulting from scattering reactions (1.c) from 

𝐸𝐸′,Ω′� into 𝐸𝐸,Ω�: 

 ∫ 𝑑𝑑3𝑟𝑟 ∫ 𝑑𝑑Ω′�4𝜋𝜋 ∫ 𝑑𝑑𝐸𝐸′𝑣𝑣′𝛴𝛴𝑠𝑠(𝐸𝐸′ → 𝐸𝐸,∞
0𝑉𝑉 Ω′� → Ω�)𝑁𝑁�𝑟𝑟,Ω�′,𝐸𝐸′, 𝑐𝑐) 𝑑𝑑𝐸𝐸 𝑑𝑑Ω.�   (4.15) 

The loss of neutrons from the volume element due to out scattering (2.b) and absorption 

(2.c) reactions: 

 
� 𝑑𝑑3𝑟𝑟 𝑣𝑣𝑁𝑁�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�𝛴𝛴𝑡𝑡(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝐸𝐸 𝑑𝑑Ω� 
𝑉𝑉

. (4.16) 

   

4.1.3. Integral-Differential Linear Neutron Boltzmann Equation. Since the   

volume element is arbitrary, the expression must hold true for any expression inside the 

integral. Therefore, assembling all the gain and loss terms result in the linearized neutron 

Boltzmann equation where each term governs a physical process in the system.  
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 1
𝑣𝑣
𝜕𝜕𝛷𝛷
𝜕𝜕𝑐𝑐

+ Ω� ∙ ∇𝛷𝛷�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐� + 𝛷𝛷�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�𝛴𝛴𝑡𝑡(𝑟𝑟,𝐸𝐸)

= � 𝑑𝑑Ω′�
4𝜋𝜋

� 𝑑𝑑𝐸𝐸′𝛷𝛷�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�𝛴𝛴𝑠𝑠�𝑟𝑟,𝐸𝐸′ → 𝐸𝐸,Ω′� → Ω��
∞

0

+
𝜒𝜒(𝐸𝐸)

4𝜋𝜋
� 𝑑𝑑Ω′�� 𝑑𝑑𝐸𝐸′𝜈𝜈(𝐸𝐸′)

∞

0
𝛷𝛷�𝑟𝑟,Ω� ,𝐸𝐸, 𝑐𝑐�𝛴𝛴𝑒𝑒(𝑟𝑟,𝐸𝐸′)

4𝜋𝜋
. 

(4.17) 

Readers should be aware that the integral-differential form is only one of the many forms 

of the linear neutron Boltzmann equation. Where, other forms allow the use of different 

numerical approximation schemes and mathematical properties.   

 

4.2. SPHERICAL HARMONICS 

 Expanding the angular flux and scattering terms as a series of basic spherical 

harmonic functions reduces the form of the neutron Boltzmann equation to a set of 

differential equations. For the most general cases; a spherical harmonic series represents 

the angular dependence expansion. However, when considering plane and spherical 

geometries, the spherical harmonic functions reduce to Legendre polynomials [21]. For 

the sake of simplicity let’s consider the one-speed (where the cross sections are 

independent of energy), time-independent, Integro-differential neutron Boltzmann 

equation for a non-multiplying medium in plane geometry.   

 Ω� ∙ ∇𝛷𝛷�𝜕𝜕,Ω�� + 𝛷𝛷�𝜕𝜕,Ω��𝛴𝛴𝑡𝑡(𝜕𝜕)

= � 𝛷𝛷�𝜕𝜕,Ω��𝛴𝛴𝑠𝑠�𝜕𝜕,Ω′� → Ω�� 𝑑𝑑Ω′�
4𝜋𝜋

+ 𝑆𝑆�𝜕𝜕,Ω��. 
(4.18) 
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 Upon examination of the neutron motion in the plane geometry, it is evident that 

the angular neutron density is only a function of 𝜕𝜕 and 𝜃𝜃, where 𝜇𝜇 = cos (𝜃𝜃). Simplifying 

the streaming term based on the physics of neutron motion in plane geometry: 

 
Ω ∙ ∇𝛷𝛷 =

𝑑𝑑𝛷𝛷
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝛷𝛷
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

=
𝜕𝜕𝛷𝛷
𝜕𝜕𝜕𝜕

cos 𝜃𝜃 = 𝜇𝜇
𝜕𝜕𝛷𝛷
𝜕𝜕𝜕𝜕

. (4.19) 

Since the neutron distribution exhibits azimuthal symmetry in plane geometry, 

integration of the neutron density over all directions Ω leads the following definition: 

 
� 𝑁𝑁(𝑟𝑟,Ω)𝑑𝑑Ω = 2𝜋𝜋� 𝑁𝑁(𝜕𝜕, 𝜇𝜇)𝑑𝑑𝜇𝜇.

1

−1Ω
 (4.20) 

The double-differential scattering cross section is also a function of 𝜇𝜇 

 𝛴𝛴𝑠𝑠�𝜕𝜕,Ω′� → Ω�� = 𝛴𝛴𝑠𝑠(𝜕𝜕, 𝜇𝜇0), (4.21) 

where 𝜇𝜇0 = cos�Ω� ∙ Ω�′� = 𝑐𝑐𝑜𝑜𝑑𝑑𝜃𝜃0 and Ω� ,Ω�′ are the incident and emitted direction vectors. 

 Applying the redefined terms into equation yields: 

 
𝜇𝜇
𝜕𝜕𝛷𝛷
𝜕𝜕𝜕𝜕

+ 𝛷𝛷(𝜕𝜕, 𝜇𝜇)𝛴𝛴𝑡𝑡(𝜕𝜕)

=
1

2𝜋𝜋
� 𝑑𝑑𝜑𝜑′ � 𝛷𝛷(𝜕𝜕, 𝜇𝜇′)𝛴𝛴𝑠𝑠(𝜕𝜕, 𝜇𝜇0)

1

−1
 𝑑𝑑𝜇𝜇′

2𝜋𝜋

0
+ 𝑆𝑆(𝜕𝜕, 𝜇𝜇). 

(4.22) 

Then expand the terms with angular dependence as a series of Legendre polynomials: 

 
𝛴𝛴𝑠𝑠(𝜕𝜕, 𝜇𝜇0) = �

2𝑙𝑙 + 1
2

∞

𝑙𝑙=0

𝛴𝛴𝑠𝑠,𝑙𝑙(𝜕𝜕)𝑆𝑆𝑙𝑙(𝜇𝜇0); (4.23) 

 
𝛷𝛷(𝜕𝜕, 𝜇𝜇) = �

2𝑛𝑛 + 1
2

∞

𝑛𝑛=0

𝛷𝛷𝑛𝑛(𝜕𝜕)𝑆𝑆𝑛𝑛(𝜇𝜇); (4.24) 
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𝑆𝑆(𝜕𝜕, 𝜇𝜇) = �

2𝑛𝑛 + 1
2

∞

𝑛𝑛=0

𝑆𝑆𝑛𝑛(𝜕𝜕)𝑆𝑆𝑛𝑛(𝜇𝜇). (4.25) 

From the orthogonality relation of the Legendre polynomials on the interval −1 ≤ 𝜕𝜕 ≤ 1, 

 
� 𝑆𝑆𝑚𝑚(𝜇𝜇)𝑆𝑆𝑛𝑛(
1

−1
𝜇𝜇) 𝑑𝑑𝜇𝜇 = �

0, 𝑛𝑛 ≠ 𝑚𝑚
2

2𝑛𝑛 + 1
, 𝑛𝑛 = 𝑚𝑚. (4.26) 

Using the addition theorem of the Legendre polynomials allows the Legendre 

polynomials to be recast in terms of 𝜇𝜇 and 𝜇𝜇′. 

 𝑆𝑆𝑙𝑙(𝜇𝜇0) = 𝑆𝑆𝑙𝑙(𝜇𝜇)𝑆𝑆𝑙𝑙(𝜇𝜇′)

+ 2 �
(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!

𝑆𝑆𝑙𝑙𝑚𝑚(𝜇𝜇)
𝑙𝑙

𝑚𝑚=1

𝑆𝑆𝑙𝑙𝑚𝑚(𝜇𝜇′)𝑐𝑐𝑜𝑜𝑑𝑑 𝑚𝑚(𝜑𝜑 − 𝜑𝜑′). 
(4.27) 

Substituting Equation 4.27 into the expansion of the double-differential scattering term 

yields:  

 
𝛴𝛴𝑠𝑠(𝜕𝜕, 𝜇𝜇0) = �

2𝑙𝑙 + 1
2

∞

𝑙𝑙=0

𝛴𝛴𝑠𝑠,𝑙𝑙(𝜕𝜕) �𝑆𝑆𝑙𝑙(𝜇𝜇)𝑆𝑆𝑙𝑙(𝜇𝜇′)

+ 2 �
(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!

𝑆𝑆𝑙𝑙𝑚𝑚(𝜇𝜇)
𝑙𝑙

𝑚𝑚=1

𝑆𝑆𝑙𝑙𝑚𝑚(𝜇𝜇′)𝑐𝑐𝑜𝑜𝑑𝑑 𝑚𝑚(𝜑𝜑 − 𝜑𝜑′)�. 

(4.28) 

Plugging the expanded double-differential scattering cross section into the original one-

speed neutron Boltzmann equation while integrating over 𝜇𝜇′ results in 
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𝜇𝜇
𝜕𝜕𝛷𝛷
𝜕𝜕𝜕𝜕

+ 𝛷𝛷(𝜕𝜕, 𝜇𝜇)𝛴𝛴𝑡𝑡(𝜕𝜕)

= �
2𝑙𝑙 + 1

2

∞

𝑙𝑙=0

𝛴𝛴𝑠𝑠,𝑙𝑙(𝜕𝜕)𝑆𝑆𝑙𝑙(𝜇𝜇)� 𝛷𝛷(𝜕𝜕, 𝜇𝜇′)𝑆𝑆𝑙𝑙(𝜇𝜇′)𝑑𝑑𝜇𝜇′
1

−1

+ 𝑆𝑆(𝜕𝜕, 𝜇𝜇). 

(4.29) 

Note: ∫ 𝑐𝑐𝑜𝑜𝑑𝑑 𝑚𝑚(𝜑𝜑 − 𝜑𝜑′)2𝜋𝜋
0 𝑑𝑑𝜑𝜑′ = 0. Next, insert the angular flux and source expansion 

terms. 

 
𝜇𝜇
𝜕𝜕𝛷𝛷
𝜕𝜕𝜕𝜕

+ �
2𝑛𝑛 + 1

2

∞

𝑛𝑛=0

𝛷𝛷𝑛𝑛(𝜕𝜕)𝑆𝑆𝑛𝑛(𝜇𝜇)𝛴𝛴𝑡𝑡(𝜕𝜕)

= �
2𝑙𝑙 + 1

2

∞

𝑙𝑙=0

𝛴𝛴𝑠𝑠,𝑙𝑙(𝜕𝜕)𝑆𝑆𝑙𝑙(𝜇𝜇)𝜙𝜙𝑙𝑙(𝜕𝜕)

+ �
2𝑛𝑛 + 1

2

∞

𝑛𝑛=0

𝑆𝑆𝑛𝑛(𝜕𝜕)𝑆𝑆𝑛𝑛(𝜇𝜇). 

(4.30) 

Derivation of the streaming term 𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 requires the recursion relation 

 (2𝑛𝑛 + 1)𝜇𝜇𝑆𝑆𝑛𝑛(𝜇𝜇) = (𝑛𝑛 + 1)𝑆𝑆𝑛𝑛+1(𝜇𝜇) + 𝑛𝑛𝑆𝑆𝑛𝑛−1(𝜇𝜇). (4.31) 

Therefore,  
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�

𝜕𝜕𝜙𝜙𝑛𝑛(𝜕𝜕)
𝜕𝜕𝜕𝜕

[(𝑛𝑛 + 1)𝑆𝑆𝑛𝑛+1(𝜇𝜇) + 𝑛𝑛𝑆𝑆𝑛𝑛−1(𝜇𝜇)]
∞

𝑛𝑛=0

+ �(2𝑛𝑛 + 1
∞

𝑛𝑛=0

)𝜙𝜙𝑛𝑛(𝜕𝜕)𝑆𝑆𝑛𝑛(𝜇𝜇)𝛴𝛴𝑡𝑡(𝜕𝜕)

= �(2𝑙𝑙 + 1)
∞

𝑙𝑙=0

𝛴𝛴𝑠𝑠,𝑙𝑙(𝜕𝜕)𝑆𝑆𝑙𝑙(𝜇𝜇)𝜙𝜙𝑙𝑙(𝜕𝜕)

+ �(2𝑛𝑛 + 1)
∞

𝑛𝑛=0

𝑆𝑆𝑛𝑛(𝜕𝜕)𝑆𝑆𝑛𝑛(𝜇𝜇). 

(4.32) 

Multiply both sides by 𝑆𝑆𝑛𝑛(𝜇𝜇) and integrating 𝜇𝜇 from -1 to 1 results in the infinite set of 𝑆𝑆𝑛𝑛 

equations [21]: 

 
(𝑛𝑛 + 1)

𝑑𝑑𝜙𝜙𝑛𝑛+1(𝜕𝜕)
𝑑𝑑𝜕𝜕

+ 𝑛𝑛
𝑑𝑑𝜙𝜙𝑛𝑛−1(𝜕𝜕)

𝑑𝑑𝜕𝜕
+ 𝜙𝜙𝑛𝑛(𝜕𝜕)�𝛴𝛴𝑡𝑡(𝜕𝜕) − 𝛴𝛴𝑠𝑠,𝑙𝑙(𝜕𝜕)�

= 𝑆𝑆𝑛𝑛(𝜕𝜕), 𝑛𝑛 = 0,1,2, … ,𝑁𝑁. 
(4.33) 

Since there are only N+1 equations with N+2 unknowns, closure of the set requires 

setting 𝑑𝑑𝜙𝜙𝑁𝑁+1(𝜕𝜕) 𝑑𝑑𝜕𝜕 = 0⁄  in the 𝑛𝑛 = 𝑁𝑁 equation.  

4.2.1. 𝑷𝑷𝟏𝟏 Equations and the Diffusion Approximation. Considering only   

the first two spherical harmonic equations by choosing n = 1 and setting 𝑑𝑑𝜙𝜙2(𝜕𝜕) 𝑑𝑑𝜕𝜕 = 0⁄  

in the second equation yields the following system of 𝑆𝑆1 equations: 

 𝑑𝑑𝜙𝜙1(𝜕𝜕)
𝑑𝑑𝜕𝜕

+ �𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠,0�𝜙𝜙0 = 𝑆𝑆0, (4.34) 

 1
3
𝑑𝑑𝜙𝜙0(𝜕𝜕)
𝑑𝑑𝜕𝜕

+ �𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠,1�𝜙𝜙1 = 𝑆𝑆1. (4.35) 
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Here the zeroth scattering moment 𝛴𝛴𝑠𝑠,0 is equivalent to the total scattering cross section 

𝛴𝛴𝑠𝑠 and the first scattering moment 𝛴𝛴𝑠𝑠,1 is equivalent to the total scattering cross section 

multiplied by the average cosine of the scattering angle �̅�𝜇0. Under the assumption of an 

isotropic source the first order source term becomes zero.   

 𝑑𝑑𝜙𝜙1(𝜕𝜕)
𝑑𝑑𝜕𝜕

+ (𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠)𝜙𝜙0 = 𝑆𝑆0, (4.36) 

 1
3
𝑑𝑑𝜙𝜙0(𝜕𝜕)
𝑑𝑑𝜕𝜕

+ (𝛴𝛴𝑡𝑡 − �̅�𝜇0𝛴𝛴𝑠𝑠)𝜙𝜙1 = 0. (4.37) 

 Recall that the first two Legendre polynomials [21] are 𝑆𝑆0 = 1 and 𝑆𝑆1 = 𝜇𝜇; 

therefore, by the orthogonality of the Legendre polynomials 

 
𝜙𝜙0 =

2𝑛𝑛 + 1
2

� 𝛷𝛷(𝜕𝜕, 𝜇𝜇) 𝑑𝑑𝜇𝜇 = 𝜑𝜑(𝜕𝜕)
1

−1
, (4.38) 

 
𝜙𝜙1 =

2𝑛𝑛 + 1
2

� 𝛷𝛷(𝜕𝜕, 𝜇𝜇)𝜇𝜇 𝑑𝑑𝜇𝜇 = 𝐽𝐽(𝜕𝜕)
1

−1
 (4.39) 

where 𝜑𝜑(𝜕𝜕) is the scalar flux and 𝐽𝐽(𝜕𝜕) is the neutron current density. With the preceding 

definitions for 𝜙𝜙0 and 𝜙𝜙1 the 𝑆𝑆1 equations become 

 𝑑𝑑𝐽𝐽(𝜕𝜕)
𝑑𝑑𝜕𝜕

+ (𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠)𝜑𝜑(𝜕𝜕) = 𝑆𝑆0, (4.40) 

 1
3
𝑑𝑑𝜑𝜑(𝜕𝜕)
𝑑𝑑𝜕𝜕

+ (𝛴𝛴𝑡𝑡 − �̅�𝜇0𝛴𝛴𝑠𝑠)𝐽𝐽(𝜕𝜕) = 0 (4.41) 

Re-arranging the second equation in terms of the current 𝐽𝐽(𝜕𝜕) yields 

 
𝐽𝐽(𝜕𝜕) = −

1
3(𝛴𝛴𝑡𝑡 − �̅�𝜇0𝛴𝛴𝑠𝑠)

𝑑𝑑𝜑𝜑(𝜕𝜕)
𝑑𝑑𝜕𝜕

. (4.42) 
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Since the total macroscopic cross section 𝛴𝛴𝑡𝑡 is equivalent to the sum of the macroscopic 

absorption and total scattering cross sections the current term in an equivalent form  

 
𝐽𝐽(𝜕𝜕) = −

1
3(𝛴𝛴𝑎𝑎 + 𝛴𝛴𝑠𝑠(1 − �̅�𝜇0))

𝑑𝑑𝜑𝜑(𝜕𝜕)
𝑑𝑑𝜕𝜕

 (4.43) 

where 𝛴𝛴𝑠𝑠(1 − �̅�𝜇0) is the macroscopic transport cross section 𝛴𝛴𝑡𝑡𝑡𝑡. If the medium is more 

conducive to scattering than absorption (𝛴𝛴𝑎𝑎 ≪ 𝛴𝛴𝑠𝑠) the macroscopic absorption cross 

section can be neglected; therefore, the neutron current simplifies to 

 
𝐽𝐽(𝜕𝜕) = −

1
3𝛴𝛴𝑡𝑡𝑡𝑡

𝑑𝑑𝜑𝜑(𝜕𝜕)
𝑑𝑑𝜕𝜕

. (4.44) 

Substituting the definition for the neutron current 𝐽𝐽(x) into the first 𝑆𝑆1 equation yields 

 
−
𝑑𝑑
𝑑𝑑𝜕𝜕

�
1

3𝛴𝛴𝑡𝑡𝑡𝑡
𝑑𝑑𝜑𝜑(𝜕𝜕)
𝑑𝑑𝜕𝜕

�+ 𝛴𝛴𝑎𝑎𝜑𝜑(𝜕𝜕) = 𝑆𝑆0. (4.45) 

 The preceding steady-state 𝑆𝑆1 equation is nearly identical to the steady-state 

neutron diffusion equation, which is derived from the neutron continuity equation and 

Fick’s law [22].  

 
−
𝑑𝑑
𝑑𝑑𝜕𝜕

�
1

3𝛴𝛴𝑠𝑠
𝑑𝑑𝜑𝜑(𝜕𝜕)
𝑑𝑑𝜕𝜕

� + 𝛴𝛴𝑎𝑎𝜑𝜑(𝜕𝜕) = 𝑆𝑆. (4.46) 

Where 𝐷𝐷 ≡ 1/3𝛴𝛴𝑠𝑠. Differences between the two formulations are attributed to the 

treatment of the angular scattering distribution in the neutron current term. In the 𝑆𝑆1 

equations the angular scattering distribution is accounted for through the macroscopic 

transport cross section, whereas the diffusion approximation assumes isotropic scattering. 

 If the angular scattering distribution is forward peaked (meaning that after a 

scattering event the neutron continues in the general direction it was initially traveling) 
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the average cosine of the scattering angle will be positive. Consequently, the macroscopic 

transport cross section will be reduced from the purely isotropic case (�̅�𝜇0 = 0) which 

results in a larger proportionality constant. Thus, the forward scattering of neutrons is 

somewhat preserved by increasing the proportionality constant in the current to flux 

gradient relationship (increased net leakage). If the opposite is true, backwards 

preferential scattering will result in �̅�𝜇0  < 0. Hence, the proportionality constant will be 

reduced. In the case where the scattering is completely isotropic the average cosine of the 

scattering angle �̅�𝜇0 will be zero which results in the simplification of the current term in 

the 𝑆𝑆1 equations to Fick’s law. 

 
𝐽𝐽(𝜕𝜕) = −

1
3𝛴𝛴𝑠𝑠

𝑑𝑑𝜑𝜑(𝜕𝜕)
𝑑𝑑𝜕𝜕

. (4.47) 

 Ultimately, accounting for the angular scattering distribution from the 𝑆𝑆1 

proportionality constant in the definition of the diffusion coefficient permits the extension 

of the diffusion approximation to systems that exhibit moderate anisotropic scattering; 

however, one must be mindful of the overall assumptions made in the derivation of the 𝑆𝑆1 

and diffusion approximations and where these approximations fail. Recall the following 

assumptions under which Fick’s law was derived: (1) the medium is infinite; (2) the 

medium is uniform (uniform cross sections); (3) no local source or absorbing medium; 

(4) scattering is isotropic in the laboratory frame; (5) the neutron flux is a slowly varying 

function of space; (6) the neutron flux is not a function of time [22].  

 Although these assumptions are quite restrictive and perhaps non-physical; these 

restrictions under certain cases can be relaxed provided that the relaxation does not result 

in violation of other assumptions [22]. Despite the assumption of an infinite medium it is 
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possible for Fick’s law to be valid in a finite medium such that the region of interest is 

sufficiently insulated from the boundary. This permitted since neutron densities further 

than a few mean free paths from the point of calculation will not affect the current 

density. The assumption of a uniform medium is not a strict requirement so long as the 

absorption << scattering, or if the ration 𝛴𝛴𝑠𝑠/𝛴𝛴𝑡𝑡 remains constant over space; however, 

concentrated regions of high absorption may result in large local flux perturbations which 

violates the slowly varying spatial flux assumption.  

 As previously discussed, it is also possible to account for mediums that exhibit 

moderate anisotropic scattering by using the macroscopic transport correction cross 

section from the proportionality constant of the 𝑆𝑆1 equations. Time dependence is also 

permitted in cases where the fractional change is sufficiently small enough during the 

time required for a neutron to travel 3 mean free paths �1
𝜑𝜑
𝑑𝑑𝜑𝜑
𝑑𝑑𝑡𝑡
� ≪ 105

3𝜆𝜆𝑠𝑠
𝑑𝑑𝑛𝑛𝑐𝑐−1 [22]. The issue 

surrounding local sources and absorbing mediums is circumvented by partitioning a 

heterogeneous region into a set of smaller homogenous regions (spatial homogenization). 

Essentially, the energy and spatial dependent macroscopic cross sections are averaged 

over the energy dependent, spatial neutron flux such that the interaction rates are 

preserved. Thus, removing large deviations in the spatial dependence of the macroscopic 

cross sections and effectively maintaining the relation 𝛴𝛴𝑎𝑎 ≪ 𝛴𝛴𝑠𝑠 over space. 

 With the previous assumptions in mind, the discussion turns to the application of 

the diffusion/𝑆𝑆1 equations to reactor analysis. Typically, diffusion/𝑆𝑆1 equations with 

transport correction for hydrogen will provide relatively good global flux approximations 

to the neutron transport phenomena for large, symmetric, low heterogeneous light water 

power reactors. For reactors of the light water type, the predominant interaction mode is 
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elastic scattering. Hence, the assumption of 𝛴𝛴𝑎𝑎 ≪ 𝛴𝛴𝑠𝑠 made in the derivation of Fick’s law 

holds true. Since the fuel pins in light water reactors are distributed in fuel assemblies 

over the entire domain, spatial homogenization of the assemblies will yield a mostly 

uniform spatial dependence of the macroscopic cross sections; however, slight 

heterogeneity may exist from fuel assembly burn-up and varying fuel enrichments.  

4.2.2. Simplified Spherical Harmonics Equations (SPn). The simplified  

spherical harmonics equations, initially discovered by Gelbard, are an ad hoc extension of 

the higher order planar spherical harmonics equations to the multi-dimensional case [23]. 

The central idea was to eliminate the odd order moments (in the same manner as the 

derivation of the diffusion equation from the 𝑆𝑆1 equations) from the even order equations, 

followed by the replacement of the one-dimensional operator by the Laplacian. Since the 

method lacked mathematical support, the simplified spherical harmonics equations were 

neglected. In more recent years, several studies by Larsen have been published that 

indicate the method is in fact an asymptotic correction to the diffusion equation [24], 

[25]. Brantley and Larsen also derived the simplified 𝑆𝑆𝑆𝑆3 equations by variational 

analysis and concluded that the 𝑆𝑆𝑆𝑆3 equations improved the criticality eigenvalues in 

MOX assemblies [26]. However, as 𝑛𝑛 → ∞, the simplified spherical harmonics does not 

approach the transport solution of the spherical harmonics equations. Furthermore, the 

largest increase in accuracy is attained by the 𝑆𝑆𝑆𝑆3 equations while the solutions 

deteriorate after the 𝑆𝑆𝑆𝑆7 equations.  

The advantage of the simplified spherical harmonics equations (mainly the 𝑆𝑆𝑆𝑆3 

equations) is the preservation of transport effects and its rather inexpensive 

approximation when compared to the traditional spherical harmonics equations and other 
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neutron transport approximation schemes. Since the equations are in a form that is 

analogous to the multi-group diffusion equation, the method allows the use of existing 

spatial discretization schemes used for the neutron diffusion equation. As a result, the 

simplified spherical harmonics equations have been implemented in the existing codes 

DYN3D [27], and PARCS [5]. Furthermore, the use of the FEM method has also 

provided successful approximations to the simplified spherical harmonics equations in 

consideration of a small fast reactor in general geometries [28]. 

Recall the infinite set of 1-D planar spherical harmonics equations from section 

4.2, Equation 4.33. Setting 𝑛𝑛 = 3 and the assumption of an isotropic source results in the 

following coupled system of partial differential equations: 

 𝑑𝑑𝜑𝜑1
𝑑𝑑𝜕𝜕

+ 𝛴𝛴𝑎𝑎𝜑𝜑0 =
1
𝑘𝑘
ν𝛴𝛴𝑒𝑒𝜑𝜑0, (4.48) 

 𝑑𝑑𝜑𝜑0
𝑑𝑑𝜕𝜕

+ 2
𝑑𝑑𝜑𝜑2
𝑑𝑑𝜕𝜕

+ 3(𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠,1)𝜑𝜑1 = 0, (4.49) 

 
2
𝑑𝑑𝜑𝜑1
𝑑𝑑𝜕𝜕

+ 3
𝑑𝑑𝜑𝜑3
𝑑𝑑𝜕𝜕

+ 5(𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠,2)𝜑𝜑2 = 0, (4.50) 

 
3
𝑑𝑑𝜑𝜑2
𝑑𝑑𝜕𝜕

+ 7(𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠,3)𝜑𝜑3 = 0. (4.51) 

Re-arranging the even-order equations (Equations 4.49 and 4.51) in terms of the odd-

order flux moments and introduce the pseudo zeroth moment flux 𝛷𝛷0 = 𝜑𝜑0 + 2𝜑𝜑2 yields: 

 
𝜑𝜑1 = −

1
3�𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠,1�

𝑑𝑑
𝑑𝑑𝜕𝜕

(𝜑𝜑0 + 2𝜑𝜑2) = −𝐷𝐷0
𝑑𝑑𝛷𝛷0

𝑑𝑑𝜕𝜕
, (4.52) 

 
𝜑𝜑3 = −

3
7�𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠,3�

𝑑𝑑𝜑𝜑2
𝑑𝑑𝜕𝜕

= −𝐷𝐷3
𝑑𝑑𝜑𝜑2
𝑑𝑑𝜕𝜕

. (4.53) 
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Then, eliminate the odd-order moments from the even-order equations by substitution of 

Equations 4.52 and 4.53 into Equations 4.48 and 4.50. Also, the first order flux moment 

derivative is eliminated in Equation 4.50 by re-arranging and substitution of Equation 

4.48.  

 − 𝑑𝑑
𝑑𝑑𝑥𝑥
�𝐷𝐷0

𝑑𝑑𝜕𝜕0
𝑑𝑑𝑥𝑥
�+ 𝛴𝛴𝑎𝑎(𝛷𝛷0 − 2𝜑𝜑2) = 1

𝑘𝑘
ν𝛴𝛴𝑒𝑒 (𝛷𝛷0 − 2𝜑𝜑2). (4.54) 

 −2𝛴𝛴𝑎𝑎𝛷𝛷0 − 3 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝐷𝐷3
𝑑𝑑𝜑𝜑2
𝑑𝑑𝑥𝑥

) + (4𝛴𝛴𝑎𝑎 + 5(𝛴𝛴𝑡𝑡 − 𝛴𝛴𝑠𝑠,2))𝜑𝜑2 = 

1
𝑘𝑘
𝜈𝜈𝛴𝛴𝑒𝑒(−2𝛷𝛷0 + 4𝜑𝜑2). 

(4.55) 

Replacing the 1-D operator by the Laplacian yields the simplified spherical harmonics 

equations in Equations 4.54 and 4.55: 

 −𝛻𝛻(𝐷𝐷0𝛻𝛻𝛷𝛷0) + 𝛴𝛴𝑎𝑎(𝛷𝛷0 − 2𝜑𝜑2) = 1
𝑘𝑘
ν𝛴𝛴𝑒𝑒 (𝛷𝛷0 − 2𝜑𝜑2), (4.56) 

 −3𝛻𝛻 (𝐷𝐷3𝛻𝛻𝜑𝜑2) + (4𝛴𝛴𝑎𝑎 + 5(Σ𝑡𝑡 − 𝛴𝛴𝑠𝑠,2))𝜑𝜑2 − 2𝛴𝛴𝑎𝑎𝛷𝛷0 = 

1
𝑘𝑘
ν𝛴𝛴𝑒𝑒(−2𝛷𝛷0 + 4𝜑𝜑2). 

(4.57) 

Where, the pseudo zeroth order flux moment 𝛷𝛷0 = (𝜑𝜑0 + 2𝜑𝜑2), the scalar flux 𝜑𝜑0, the 

first zeroth order diffusion coefficient 𝐷𝐷0 = 1
3�𝛴𝛴𝑡𝑡−𝛴𝛴𝑠𝑠,1�

, and the third-order diffusion 

coefficient 𝐷𝐷3 = 3
7�𝛴𝛴𝑡𝑡−𝛴𝛴𝑠𝑠,3�

. 

 The preceding 𝑆𝑆𝑆𝑆3 equations are rewritten in multigroup form for G energy 

groups with Marshak boundary conditions according to [28]: 
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�
−𝐷𝐷0𝑔𝑔𝛻𝛻2 + 𝛴𝛴𝑡𝑡𝑔𝑔 −2𝛴𝛴𝑡𝑡𝑔𝑔

−2𝛴𝛴𝑡𝑡𝑔𝑔 −𝐷𝐷3𝑔𝑔𝛻𝛻2 + 4𝛴𝛴𝑡𝑡𝑔𝑔 + 5𝛴𝛴𝑇𝑇𝑔𝑔
� �
𝛷𝛷0𝑔𝑔(𝑟𝑟)
𝜑𝜑2𝑔𝑔(𝑟𝑟)�

= �
𝑞𝑞0𝑔𝑔(𝑟𝑟)

−2𝑞𝑞0𝑔𝑔(𝑟𝑟)�  𝑖𝑖𝑛𝑛 Ω. 
(4.58) 

Where, the Marshak boundary conditions are 

 
�
𝐽𝐽0𝑔𝑔(𝑟𝑟)
𝐽𝐽2𝑔𝑔(𝑟𝑟)� = �

1
2

− 3
8

− 3
8

21
8

� �
𝛷𝛷0𝑔𝑔(𝑟𝑟)
𝜑𝜑2𝑔𝑔(𝑟𝑟)�, r ∈ 𝜕𝜕Ω. (4.59) 

Here, the isotropic source is 

 𝑞𝑞0𝑔𝑔 = 1
𝑘𝑘
∑ ν𝛴𝛴𝑒𝑒𝑔𝑔′𝜑𝜑𝑔𝑔′ + ∑ 𝛴𝛴𝑠𝑠𝑔𝑔′→𝑔𝑔𝜑𝜑𝑔𝑔𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠1

𝐺𝐺
𝑔𝑔′=1 . (4.60) 

Therefore, when the number of energy groups G = 2; a coupled system of four partial 

differential equations is formed. 

 

 

4.3. MULTI-GROUP DIFFUSION EQUATION  

 

Let’s consider the strong formulation of the coupled multi-group critical equation 

with albedo boundary conditions for G energy groups: 
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 − ∇ ∙ 𝐷𝐷𝑔𝑔(𝑟𝑟)∇𝜑𝜑𝑔𝑔(𝑟𝑟) + 𝛴𝛴𝑡𝑡𝑔𝑔𝜑𝜑𝑔𝑔(𝑟𝑟)

= � 𝛴𝛴𝑠𝑠,𝑔𝑔′→𝑔𝑔(𝑟𝑟)𝜑𝜑𝑔𝑔′(𝑟𝑟)
𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠𝑔𝑔

+
𝜒𝜒𝑔𝑔
𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒

� 𝑣𝑣𝑔𝑔′𝛴𝛴𝑒𝑒,𝑔𝑔′(𝑟𝑟)𝜑𝜑𝑔𝑔(𝑟𝑟)  𝑖𝑖𝑛𝑛  Ω,
𝐺𝐺

𝑔𝑔′=1

 

(4.61) 

  

𝐷𝐷𝑔𝑔(𝑟𝑟)∇𝜑𝜑𝑔𝑔(𝑟𝑟) ∙ 𝑛𝑛�⃗ (𝑟𝑟) +
1
2

1 − 𝛽𝛽𝑔𝑔(𝑟𝑟)
1 + 𝛽𝛽𝑔𝑔(𝑟𝑟)𝜑𝜑𝑔𝑔

(𝑟𝑟) = 0  𝑜𝑜𝑛𝑛  𝜕𝜕Ω. 

 

(4.62) 

Where, Ω ⊂ ℝ𝑛𝑛 is a bounded domain, 𝐷𝐷𝑔𝑔 is the diffusion coefficient, 𝛴𝛴𝑖𝑖 is the 

macroscopic cross section of the 𝑖𝑖𝑡𝑡ℎ reaction type, 𝛽𝛽𝑔𝑔 is the albedo, 𝜒𝜒𝑔𝑔 is the fraction of 

the neutrons produced from fission appearing in the 𝑔𝑔𝑡𝑡ℎ energy group, 𝑣𝑣𝑔𝑔′ is the number 

of neutrons emitted per fission, 𝛴𝛴𝑎𝑎,𝑔𝑔 + ∑ 𝛴𝛴𝑠𝑠,𝑔𝑔→𝑔𝑔′
𝐺𝐺
𝑔𝑔′=1
𝑔𝑔′≠𝑔𝑔

 is the macroscopic group removal 

cross section and 𝜑𝜑𝑔𝑔 = [𝜑𝜑1, … ,𝜑𝜑𝐺𝐺]𝑇𝑇 are the unknown multi-group neutron fluxes. 

Multiply eq. 4.49 by a test function 𝑣𝑣 = [𝑣𝑣1, … , 𝑣𝑣𝐺𝐺]𝑇𝑇 and integrate over the domain Ω. 

 
−��∇ ∙ 𝐷𝐷𝑔𝑔∇𝜑𝜑𝑔𝑔�

𝛺𝛺

𝑣𝑣 𝑑𝑑Ω + � 𝛴𝛴𝑡𝑡𝑔𝑔𝜑𝜑𝑔𝑔𝑣𝑣
𝛺𝛺

𝑑𝑑Ω

= � � 𝛴𝛴𝑠𝑠,𝑔𝑔′→𝑔𝑔𝜑𝜑𝑔𝑔′𝑣𝑣 𝑑𝑑Ω
Ω

𝐺𝐺

𝑔𝑔′=1

+
𝜒𝜒𝑔𝑔
𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒

� � 𝜈𝜈𝑔𝑔′𝛴𝛴𝑒𝑒,𝑔𝑔′𝜑𝜑𝑔𝑔𝑣𝑣
Ω

𝑑𝑑Ω  𝑖𝑖𝑛𝑛  Ω.
𝐺𝐺

𝑔𝑔′=1

 

(4.63) 
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Applying Greens formula (multi-dimensional integration by parts) to the differential 

leakage term in eq. 4.51,  

 
−��∇ ∙ 𝐷𝐷𝑔𝑔∇𝜑𝜑𝑔𝑔�

𝛺𝛺

𝑣𝑣 𝑑𝑑Ω = 𝐷𝐷𝑔𝑔 �� ∇𝜑𝜑𝑔𝑔 ∙ ∇𝑣𝑣 𝑑𝑑Ω
Ω

− � ∇ ∙ �∇𝜑𝜑𝑔𝑔𝑣𝑣� 𝑑𝑑Ω
Ω

�

= 𝐷𝐷𝑔𝑔 �� ∇𝜑𝜑𝑔𝑔 ∙ ∇𝑣𝑣 𝑑𝑑Ω
Ω

− � ∇𝜑𝜑𝑔𝑔𝑣𝑣 ∙ 𝑑𝑑𝑑𝑑����⃗
𝜕𝜕Ω

�

= 𝐷𝐷𝑔𝑔 �� ∇𝜑𝜑𝑔𝑔 ∙ ∇𝑣𝑣 𝑑𝑑Ω
Ω

− ��∇𝜑𝜑𝑔𝑔 ∙ 𝑛𝑛�⃗ �𝑣𝑣 𝑑𝑑𝑑𝑑
𝜕𝜕Ω

�. 

(4.64) 

Substituting the albedo boundary condition into the boundary integral term in eq. 4.52,  

 
��∇𝜑𝜑𝑔𝑔 ∙ 𝑛𝑛�⃗ �𝑣𝑣 𝑑𝑑𝑑𝑑
𝜕𝜕Ω

= �(0)
𝜕𝜕Ω

𝑣𝑣 𝑑𝑑𝑑𝑑 − �
1

2𝐷𝐷𝑔𝑔
1 − 𝛽𝛽𝑔𝑔
1 + 𝛽𝛽𝑔𝑔

𝜑𝜑𝑔𝑔𝑣𝑣 𝑑𝑑𝑑𝑑
Ω

. (4.65) 

Hence the general weak formulation of the multi-group critical problem: find  

𝜑𝜑𝑔𝑔 = [𝜑𝜑1, … ,𝜑𝜑𝐺𝐺]𝑇𝑇 ∈ [𝐻𝐻1(Ω)] 𝐺𝐺 such that 

 
𝐷𝐷𝑔𝑔�∇𝜑𝜑𝑔𝑔,∇𝑣𝑣� +

1
2

1 − 𝛽𝛽𝑔𝑔
1 + 𝛽𝛽𝑔𝑔

〈𝜑𝜑𝑔𝑔, 𝑣𝑣〉 + 𝛴𝛴𝑡𝑡,𝑔𝑔�𝜑𝜑𝑔𝑔,𝑣𝑣�

= � 𝛴𝛴𝑠𝑠,𝑔𝑔′→𝑔𝑔�𝜑𝜑𝑔𝑔′ ,𝑣𝑣� +
𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠1

�
𝜒𝜒𝑔𝑔𝜈𝜈𝑔𝑔′𝛴𝛴𝑒𝑒,𝑔𝑔′

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒
�𝜑𝜑𝑔𝑔′ , 𝑣𝑣�,

𝐺𝐺

𝑔𝑔′=1

   
(4.66) 

∀𝑣𝑣 ∈ [𝐻𝐻1(Ω)]𝐺𝐺 . Here, (∙, ∙) = inner product and 〈∙, ∙〉 = surface/line integral (3D/2D).   

4.3.1. Finite Element Formulation. Now, let’s consider the formulation for two 

energy groups (𝐺𝐺 = 2). The following process is the same for an arbitrary G energy 

groups, albeit with more finite element spaces. Assume there is a finite dimensional 
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subspace 𝑈𝑈ℎ × 𝑉𝑉ℎ ⊂ [𝐻𝐻1(Ω)2]. Then the Galerkin formulation: find the approximate flux 

solution 𝜑𝜑𝑔𝑔,ℎ = [𝜑𝜑1ℎ,𝜑𝜑2ℎ]𝑇𝑇 ∈  𝑈𝑈ℎ × 𝑉𝑉ℎ such that 

 
𝐷𝐷𝑔𝑔�∇𝜑𝜑𝑔𝑔,ℎ,∇𝑣𝑣ℎ� +

1
2

1 − 𝛽𝛽𝑔𝑔
1 + 𝛽𝛽𝑔𝑔

〈𝜑𝜑𝑔𝑔,ℎ, 𝑣𝑣ℎ〉 + 𝛴𝛴𝑡𝑡,𝑔𝑔�𝜑𝜑𝑔𝑔,ℎ, 𝑣𝑣ℎ�

= � 𝛴𝛴𝑠𝑠,𝑔𝑔′→𝑔𝑔�𝜑𝜑𝑔𝑔′,ℎ, 𝑣𝑣ℎ�
2

𝑔𝑔′=1
𝑔𝑔′≠1

+ �
𝜒𝜒𝑔𝑔𝜈𝜈𝑔𝑔′𝛴𝛴𝑒𝑒,𝑔𝑔′

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒
�𝜑𝜑𝑔𝑔′,ℎ, 𝑣𝑣ℎ�

2

𝑔𝑔′=1

     

(4.67) 

∀𝑣𝑣ℎ ∈  𝑈𝑈ℎ × 𝑉𝑉ℎ. Assume 𝜑𝜑1ℎ ∈  𝑈𝑈ℎ = 𝑑𝑑𝑠𝑠𝑎𝑎𝑛𝑛�𝜑𝜑𝑗𝑗�𝑗𝑗=1
𝑁𝑁𝑁𝑁

 and 𝜑𝜑2ℎ ∈  𝑉𝑉ℎ = 𝑑𝑑𝑠𝑠𝑎𝑎𝑛𝑛�𝜓𝜓𝑗𝑗�𝑗𝑗=1
𝑁𝑁𝑁𝑁

. 

Then, 𝜑𝜑1ℎ = ∑ 𝑢𝑢𝑗𝑗
(1)𝜑𝜑𝑗𝑗𝑁𝑁𝑁𝑁

𝑗𝑗=1  and 𝜑𝜑2ℎ = ∑ 𝑢𝑢𝑗𝑗
(2)𝜓𝜓𝑗𝑗𝑁𝑁𝑁𝑁

𝑗𝑗=1 . For the first energy group when     

𝑔𝑔 = 1, set 𝑣𝑣ℎ = (𝜑𝜑𝑖𝑖, 0)𝑇𝑇. Hence 

 
�𝑢𝑢𝑗𝑗

(1)
𝑁𝑁𝑁𝑁

𝑗𝑗=1

�𝐷𝐷1�∇𝜑𝜑𝑗𝑗 ,∇𝜑𝜑𝑖𝑖� +
1
2

1 − 𝛽𝛽1
1 + 𝛽𝛽1

〈𝜑𝜑𝑗𝑗,𝜑𝜑𝑖𝑖〉 + 𝛴𝛴𝑡𝑡,1�𝜑𝜑𝑗𝑗,𝜑𝜑𝑖𝑖��

= �𝑢𝑢𝑗𝑗
(2)

𝑁𝑁𝑁𝑁

𝑗𝑗=1

𝛴𝛴𝑠𝑠,2→1�𝜓𝜓𝑗𝑗 ,𝜑𝜑𝑖𝑖� + 

1
𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒

��𝑢𝑢𝑗𝑗
(1)

𝑁𝑁𝑁𝑁

𝑗𝑗=1

�𝜒𝜒1𝜈𝜈1𝛴𝛴𝑒𝑒,1�𝜑𝜑𝑗𝑗,𝜑𝜑𝑖𝑖�� +   �𝑢𝑢𝑗𝑗
(2)

𝑁𝑁𝑁𝑁

𝑗𝑗=1

�𝜒𝜒1𝜈𝜈2𝛴𝛴𝑒𝑒,2�𝜓𝜓𝑗𝑗 ,𝜑𝜑𝑖𝑖�� �. 

(4.68) 

 

For the second energy group when 𝑔𝑔 = 2, set 𝑣𝑣ℎ = (0,𝜓𝜓𝑖𝑖)𝑇𝑇. Thus, 
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�𝑢𝑢𝑗𝑗

(2)
𝑁𝑁𝑁𝑁

𝑗𝑗=1

�𝐷𝐷2�∇𝜓𝜓𝑗𝑗,∇𝜓𝜓𝑖𝑖� +
1
2

1 − 𝛽𝛽2
1 + 𝛽𝛽2

〈𝜓𝜓𝑗𝑗 ,𝜓𝜓𝑖𝑖〉 + 𝛴𝛴𝑡𝑡,2�𝜓𝜓𝑗𝑗 ,𝜓𝜓𝑖𝑖��

= �𝑢𝑢𝑗𝑗
(1)

𝑁𝑁𝑁𝑁

𝑗𝑗=1

𝛴𝛴𝑠𝑠,1→2�𝜑𝜑𝑗𝑗,𝜓𝜓𝑖𝑖� + 

1
𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒

��𝑢𝑢𝑗𝑗
(1)

𝑁𝑁𝑁𝑁

𝑗𝑗=1

�𝜒𝜒2𝜈𝜈1𝛴𝛴𝑒𝑒,1�𝜑𝜑𝑗𝑗,𝜓𝜓𝑖𝑖�� +   �𝑢𝑢𝑗𝑗
(2)

𝑁𝑁𝑁𝑁

𝑗𝑗=1

�𝜒𝜒2𝜈𝜈1𝛴𝛴𝑒𝑒,2�𝜓𝜓𝑗𝑗 ,𝜓𝜓𝑖𝑖�� �. 

(4.69) 

 

The loss matrix components:  

 
𝐿𝐿1 = 𝐷𝐷1�∇𝜑𝜑𝑗𝑗 ,∇𝜑𝜑𝑖𝑖� +

1
2

1 − 𝛽𝛽1
1 + 𝛽𝛽1

〈𝜑𝜑𝑗𝑗,𝜑𝜑𝑖𝑖〉 + 𝛴𝛴𝑡𝑡,1�𝜑𝜑𝑗𝑗,𝜑𝜑𝑖𝑖�, (4.70) 

 
𝐿𝐿2 = 𝐷𝐷2�∇𝜓𝜓𝑗𝑗,∇𝜓𝜓𝑖𝑖� +

1
2

1 − 𝛽𝛽2
1 + 𝛽𝛽2

〈𝜓𝜓𝑗𝑗 ,𝜓𝜓𝑖𝑖〉 + 𝛴𝛴𝑡𝑡,2�𝜓𝜓𝑗𝑗 ,𝜓𝜓𝑖𝑖�. (4.71) 

Thus, the loss matrix: 

 𝐿𝐿 = �𝐿𝐿1 0
0 𝐿𝐿2�. (4.72) 

The scattering source matrix: 

 
𝑆𝑆 = �

0 𝛴𝛴𝑠𝑠,2→1�𝜓𝜓𝑗𝑗 ,𝜑𝜑𝑖𝑖�
𝛴𝛴𝑠𝑠,1→2�𝜑𝜑𝑗𝑗,𝜓𝜓𝑖𝑖� 0

�. (4.73) 

The fission source matrix: 

 
𝐹𝐹 = �

𝜒𝜒1𝜈𝜈1𝛴𝛴𝑒𝑒,1�𝜑𝜑𝑗𝑗,𝜑𝜑𝑖𝑖� 𝜒𝜒1𝜈𝜈2𝛴𝛴𝑒𝑒,2�𝜓𝜓𝑗𝑗,𝜑𝜑𝑖𝑖�
𝜒𝜒2𝜈𝜈1𝛴𝛴𝑒𝑒,1�𝜑𝜑𝑗𝑗,𝜓𝜓𝑖𝑖� 𝜒𝜒2𝜈𝜈1𝛴𝛴𝑒𝑒,1�𝜓𝜓𝑗𝑗 ,𝜓𝜓𝑖𝑖�

�. (4.74) 

The finite element flux solution: 
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�⃗�𝑋 = �

𝑢𝑢𝑗𝑗
(1)

𝑢𝑢𝑗𝑗
(2)�. (4.75) 

Thus, the two-group critical problem in matrix notation 

 
𝐿𝐿�⃗�𝑋 = �⃗�𝑋 �

1
𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒

𝐹𝐹 + 𝑆𝑆�. (4.76) 

From the preceding matrix formulation, it is evident that coefficient matrices exist on 

both sides of the equation; therefore, the preceding problem is an eigenvalue problem. 

 The criticality eigenvalue problem of equation always has the trivial solution 

where 𝑋𝑋���⃗ = 0; however, the objective is to find the largest value of 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 such that solution 

�⃗�𝑋 is non-zero. It just so happens to be that the only physical solution �⃗�𝑋 to the criticality 

problem corresponds to the largest eigenvalue 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒. In terms of the criticality problem, 

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 defines the balance between the neutron fission source and loss terms. If the 

production of neutrons through the fission source term is greater than the loss terms, the 

system is supercritical (𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 > 1). Thus, the neutron population will evolve until there 

are no more fissile atoms. If the fission source term is in balance with the loss terms, the 

system is at steady-state (𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 = 1). When the fission source term is less than loss terms, 

the system is sub-critical (𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 < 1). Thus, increases to the fission term are required for 

the system to achieve steady-state.  

4.3.2. Power Iteration. If the largest positive eigenvalue, 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 > 0, that is real,  

unique, and has a non-negative fission distribution, an iterative power iteration scheme 

can be employed; however, the algorithm may be slow to converge when the dominance 

ration (𝐾𝐾2/𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒) is close to one. The idea is to provide an initial guess for the 
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eigenvalue 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒, and the eigenvector �⃗�𝑋, to solve a fixed source diffusion problem for an 

updated eigenvector �⃗�𝑋. Next, the fission source is updated, and a new eigenvalue is 

calculated. This process is repeated until specified convergence criteria are met. For the 

simulations presented in this thesis, the following convergence criteria were used: (1) 

relative eigenvalue error ≤ 10−8; and (2) maximum relative flux error ≤ 10−4.  
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Algorithm 3: Standard PI  
 
Input: 𝜑𝜑�⃗ 𝑛𝑛, 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 , 𝑐𝑐𝑜𝑜𝑙𝑙𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 ,  𝑐𝑐𝑜𝑜𝑙𝑙𝜑𝜑 

Result: 𝜑𝜑�⃗ , 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 

while 𝜀𝜀𝜑𝜑 > 𝑐𝑐𝑜𝑜𝑙𝑙𝜑𝜑 || 𝜀𝜀𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 > 𝑐𝑐𝑜𝑜𝑙𝑙𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒    

1. Solve fixed source problem: 

 

𝜑𝜑�⃗ 𝑛𝑛+1 =
� 1
𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

𝐹𝐹 + 𝑆𝑆�𝜑𝜑�⃗ 𝑛𝑛

𝐿𝐿
. 

(4.77) 

 
2. Update eigenvalue: 

 
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛+1 = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝐹𝐹𝜑𝜑�⃗ 𝑛𝑛+1

𝐹𝐹𝜑𝜑�⃗ 𝑛𝑛
. (4.78) 

 
3. Compute max relative flux error: (element wise division) 

 
𝜀𝜀𝜑𝜑 = max�

|𝜑𝜑�⃗ 𝑛𝑛+1 − 𝜑𝜑�⃗ 𝑛𝑛|
𝜑𝜑�⃗ 𝑛𝑛+1

�.  (4.79) 

 
4. Compute relative eigenvalue error: 

 
𝜀𝜀𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 =

�𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛+1 − 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 �
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛+1 . (4.80) 

 

end while 
5. Normalize flux solution: (element wise division) 

 
𝜑𝜑�⃗ = �

1
𝑉𝑉
𝑑𝑑𝑢𝑢𝑚𝑚(𝐹𝐹𝜑𝜑�⃗ )�

−1

𝜑𝜑�⃗ . (4.81) 

end function 
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5. SERPENT 2: A CONTINUOS-ENERGY MONTE CARLO CODE  

 Serpent: A Continuous-energy Monte Carlo Reactor Physics Burnup Calculation 

Code [29] originated from the Ph.D. research conducted by Jaakko Leppanen at the VTT 

Research Centre of Finland in 2004 [30]. The central idea behind Jaakko’s research was 

to leverage the inherent advantages of stochastic Monte Carlo neutron transport solvers in 

the development of a novel lattice physics code “Probabilistic Scattering Game”, or PSG. 

Ultimately, PSG would undergo a name change with its public release in 2009, and 

subsequent development version Serpent 2. Although the expansion of Serpents 

capabilities in the development version Serpent 2 now include general neutron/photon 

transport, and multi-physics simulations, the remainder of this chapter presents the spatial 

homogenization methodologies implemented for the use of multi-group constant 

generation [31]. 

 

5.1. SPATIAL HOMOGENIZATION METHODOLOGY 

 

5.1.1. Reaction Rates.  Spatial homogenization is a process that is used to  

 produce multi-group macroscopic cross sections of heterogeneous regions to permit 

reconstruction of the global homogenous flux solution in full core simulators. Volume 

averaging the continuous energy macroscopic cross sections over the energy dependent 

spatial flux results in the homogenous multi-group macroscopic cross section.  

 
𝛴𝛴𝑖𝑖,𝑔𝑔 =

∫ ∫ 𝛴𝛴𝑖𝑖(𝑟𝑟,𝐸𝐸)𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸𝑉𝑉
𝑔𝑔−1
𝑔𝑔

∫ ∫ 𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸𝑉𝑉
𝑔𝑔−1
𝑔𝑔

. (5.1) 
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Where, 𝛴𝛴𝑖𝑖,𝑔𝑔 is the macroscopic cross section of the 𝑖𝑖𝑡𝑡ℎ reaction type of the 𝑔𝑔𝑡𝑡ℎ energy 

group, and 𝜑𝜑 is the scalar neutron flux. Essentially, this process preserves the reaction 

rates observed in the heterogeneous transport problem when collapsing the spatial 

dependence of the macroscopic cross sections.  

 Instead of utilizing equation 5.1, Serpent takes a different approach by assembling 

reaction rate estimates into an intermediate energy structure (h that is either pre-defined 

or user supplied) before generating the few-group cross sections. The Monte Carlo tallies, 

and analog estimates assembled within each intermediate energy group structure are 

collapsed into the few-group structure (g) after each criticality source batch [31]. The 

collection of the group constant estimates at the end of the criticality source simulation 

form the relative statistical and mean errors. The first steps in the calculation chain are to 

obtain the scalar flux 𝛷𝛷ℎ, and macroscopic cross sections 𝛴𝛴𝑖𝑖,ℎ belonging to the 

intermediate energy group structure. 

 
𝛷𝛷ℎ = � � 𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸.

𝑉𝑉

ℎ−1

ℎ

 (5.2) 

 
𝛴𝛴𝑖𝑖,ℎ =

∫ ∫ 𝛴𝛴𝑖𝑖(𝑟𝑟,𝐸𝐸)𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸𝑉𝑉
ℎ−1
ℎ

∫ ∫ 𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸𝑉𝑉
ℎ−1
ℎ

. (5.3) 

Then collapsing of the intermediate energy group estimates 𝛴𝛴𝑖𝑖,ℎ into the final few-group 

structure 𝛴𝛴𝑖𝑖,𝑔𝑔 via flux weighting (equation 5.4). 

 
𝛴𝛴𝑖𝑖,𝑔𝑔 =

∑ 𝛴𝛴𝑖𝑖,ℎ𝛷𝛷ℎℎ∈𝑔𝑔

∑ 𝛷𝛷ℎℎ∈𝑔𝑔
. (5.4) 
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Serpent follows this routine to produce the fission, absorption, and total scattering 

macroscopic cross sections for the selected regions to be homogenized. 

5.1.2. Scattering Matrices.  Deterministic approximations of the Boltzmann 

transport equation relies on the discretization of the energy, spatial, and angular 

dependence of the neutron flux, where the fission, and group to group scattering source 

terms are responsible for the coupling of the system. A scattering matrix containing the 

macroscopic group to group scattering cross sections characterizes the transfer of 

neutrons with energy E to E′. Ideally, one would obtain the macroscopic group transfer 

cross sections by averaging the differential scattering cross section over incident, and 

emission energy over the energy dependent spatial flux: 

 
𝛴𝛴𝑠𝑠,𝑔𝑔→𝑔𝑔′ =

∫ ∫ ∫ 𝛴𝛴𝑠𝑠 �𝑟𝑟,𝐸𝐸 → 𝐸𝐸 ′� 𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸𝑑𝑑𝐸𝐸′𝑉𝑉
𝐸𝐸𝑔𝑔−1
𝐸𝐸𝑔𝑔

𝐸𝐸′𝑔𝑔−1
𝐸𝐸′𝑔𝑔

∫ ∫ 𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸𝑉𝑉
𝐸𝐸𝑔𝑔−1
𝐸𝐸𝑔𝑔

. (5.5) 

 Since Serpent reads cross section data in ACE format, it is the total scattering 

cross section, and energy-dependent angular distribution probabilities that are available; 

therefore, Serpent cannot directly evaluate equation 5.5 [31]. Nevertheless, analog 

estimates of all sampled scattering reactions from group h to h′ during the transport 

simulation form the group transfer probabilities: 

 
𝑆𝑆ℎ→ℎ′ =

∫ ∫ ∫ 𝛴𝛴𝑠𝑠 �𝑟𝑟,𝐸𝐸 → 𝐸𝐸 ′� 𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸𝑑𝑑𝐸𝐸′𝑉𝑉
𝐸𝐸ℎ−1
𝐸𝐸ℎ

𝐸𝐸′ℎ−1
ℎ

∫ ∫ 𝛴𝛴𝑠𝑠(𝑟𝑟,𝐸𝐸)𝜑𝜑(𝑟𝑟,𝐸𝐸) 𝑑𝑑𝑉𝑉𝑑𝑑𝐸𝐸𝑉𝑉
𝐸𝐸ℎ−1
𝐸𝐸ℎ

. (5.6) 

Multiplying the total macroscopic scattering cross section (equation 5.3) by the group 

transfer probabilities generates the 𝑆𝑆0 macroscopic group transfer scattering cross 

sections: 
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 𝛴𝛴𝑠𝑠0,ℎ→ℎ′ = 𝑆𝑆ℎ→ℎ′𝛴𝛴𝑠𝑠,ℎ. (5.7) 

After each criticality source batch Equation 5.8 collapses the intermediate energy group 

scattering matrix into the few-group structure by flux weighting  

 
𝛴𝛴𝑠𝑠0,𝑔𝑔→𝑔𝑔′ =

∑ ∑ 𝛴𝛴𝑠𝑠0,ℎ→ℎ′𝜑𝜑ℎℎ′∈𝑔𝑔′ℎ∈𝑔𝑔

∑ 𝜑𝜑ℎℎ∈𝑔𝑔
. (5.8) 

 The final form of the 𝑆𝑆0 scattering matrix: 

 
� � 𝛴𝛴𝑠𝑠0,𝑔𝑔→𝑔𝑔′

𝐺𝐺

𝑔𝑔′=1

= �𝛴𝛴𝑠𝑠0,𝑔𝑔→𝑔𝑔′�
𝑔𝑔,𝑔𝑔′=1

𝑔𝑔,𝑔𝑔′=𝐺𝐺
𝐺𝐺

𝑔𝑔=1

. (5.9) 

Where, results from the criticality source iterations form the associated statistical errors. 

Weighting the multi-group 𝑆𝑆0 group transfer scattering cross sections by the scattering 

cosine μ forms the 𝑆𝑆1 matrix where the scalar product of the incident and emitted neutron 

vectors provides the scattering angle μ. Note: Although Serpent can obtain the 𝑆𝑆𝑛𝑛 

scattering matrices up to the 7𝑡𝑡ℎ order, Jaakko states “the higher order terms have not 

been tested” [31]. 

5.1.3. Diffusion Coefficients.  Preparing diffusion coefficients from Monte Carlo 

transport solvers require the use of various approximations as the diffusion coefficient 

has no continuous-energy equivalent in transport theory. The approach taken by Serpent 

relies on the derivation of the diffusion coefficient from the multi-group 𝑆𝑆1 equations: 

 𝑑𝑑𝐽𝐽ℎ
𝑑𝑑𝜕𝜕

+ 𝛴𝛴𝑡𝑡,ℎ𝛷𝛷ℎ = �𝛴𝛴𝑠𝑠0,ℎ′→ℎ𝛷𝛷ℎ′ +
𝜒𝜒ℎ
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

�𝜈𝜈𝛴𝛴𝑒𝑒,ℎ′𝛷𝛷ℎ′

ℎ′ℎ′
 (5.10) 

 1
3
𝑑𝑑𝛷𝛷ℎ

𝑑𝑑𝜕𝜕
+ 𝛴𝛴𝑡𝑡,ℎ𝐽𝐽ℎ = �𝛴𝛴

𝑠𝑠1,ℎ
′��
ℎ
𝐽𝐽ℎ′

ℎ′
. (5.11) 

Rearranging the first order angular moment in equation 5.11 for the current 𝐽𝐽ℎ 
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𝐽𝐽ℎ = −

1
3
�𝛴𝛴𝑡𝑡,ℎ −

∑ 𝛴𝛴
𝑠𝑠1,ℎ

′��
ℎ
𝐽𝐽ℎ′ℎ′

𝐽𝐽ℎ
�
−1
𝑑𝑑𝛷𝛷ℎ

𝑑𝑑𝜕𝜕
. (5.12) 

Notice that equation 5.12 is equivalent to Fick’s law [22]: 

 𝐽𝐽ℎ(𝑟𝑟) = −𝐷𝐷ℎ∇𝛷𝛷ℎ(𝑟𝑟), (5.13) 

 where the diffusion coefficient is defined as 

 
𝐷𝐷ℎ =

1
3
�𝛴𝛴𝑡𝑡,ℎ −

∑ 𝛴𝛴𝑠𝑠1,ℎ′→ℎ𝐽𝐽ℎ′ℎ′

𝐽𝐽ℎ
�
−1

, (5.14) 

and the transport corrected total cross section, 

 
𝛴𝛴𝑡𝑡𝑡𝑡,ℎ = 𝛴𝛴𝑡𝑡,ℎ −

∑ 𝛴𝛴𝑠𝑠1,ℎ′→ℎ𝐽𝐽ℎ′ℎ′

𝐽𝐽ℎ
. (5.15) 

 The application of the 𝑆𝑆1 transport correction can be achieved by either the in-

scatter (equation 5.15), or the out-scatter approximation (equation 5.16). Unfortunately, 

the in-scatter method has limited applicability in Monte Carlo transport solvers due to the 

current weighting of the 𝑆𝑆1 scattering matrix [31]. The work around to this limitation is to 

replace the neutron current in equation 5.15 with the scalar flux. This is possible under 

the out-scatter assumption which states “the in-scatter from all groups h′ into group h 

equals the out-scatter from group h to all other groups h′” [31].  

 �𝛴𝛴𝑠𝑠1,ℎ′→ℎ𝐽𝐽ℎ′
ℎ′

≈�𝛴𝛴𝑠𝑠1,ℎ→ℎ′𝐽𝐽ℎ
ℎ′

. (5.16) 

Substituting equation 5.16 into equation 5.15 yields the following out-scatter transport 

cross section, and diffusion coefficient: 
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𝛴𝛴𝑡𝑡𝑡𝑡,ℎ ≈ 𝛴𝛴𝑡𝑡,ℎ −
∑ 𝛴𝛴𝑠𝑠1,ℎ→ℎ′𝐽𝐽ℎℎ′

𝐽𝐽ℎ
= 𝛴𝛴𝑡𝑡,ℎ − 𝛴𝛴𝑠𝑠1,ℎ  (5.17) 

 

𝐷𝐷ℎ =
1
3
�𝛴𝛴𝑡𝑡,ℎ − 𝛴𝛴𝑠𝑠1,ℎ.�

−1
. (5.18) 

 Recall that the 𝑆𝑆1 scattering matrix is obtained by weighting the 𝑆𝑆0 scattering 

matrix by cosine µ both of which are analog estimates. Therefore, only the sampled 

interactions during the transport simulation will contribute to the calculation of the 

diffusion coefficients. It is imperative that users ensure that the number of particle 

histories produce scattering matrices with acceptable statistical errors. Typically, 

condensing the diffusion coefficients into the few-group structure requires the weighting 

of the diffusion coefficient by the flux gradient 

 

𝐷𝐷𝑔𝑔 =
∑ 1

3𝛴𝛴𝑡𝑡𝑡𝑡,ℎ

𝑑𝑑𝛷𝛷ℎ
𝑑𝑑𝜕𝜕𝑔𝑔∈ℎ

∑ 𝑑𝑑𝛷𝛷ℎ
𝑑𝑑𝜕𝜕𝑔𝑔∈ℎ

. (5.19) 

Assuming separable spatial, and spectral flux for all 𝛷𝛷ℎ with ℎ ∈ 𝑔𝑔 simplifies equation 

5.19, allowing flux weighting of the diffusion coefficient during the energy group 

condensation.  

 

𝐷𝐷𝑔𝑔 =
∑ 1

3𝛴𝛴𝑡𝑡𝑡𝑡,ℎ
𝑔𝑔∈ℎ 𝛷𝛷ℎ

∑ 𝛷𝛷ℎ𝑔𝑔∈ℎ
. (5.20) 

 

5.2. HYDROGEN TRANSPORT CORRECTION 

Although the out-scatter method is a fundamental approximation to the 𝑆𝑆1 

equations that effectively removes the current weighting of the transport cross section 
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limitation in Monte Carlo generated diffusion coefficients, recent studies indicate that the 

out-scatter approximation produces poor macroscopic transport cross sections in lattices 

containing anisotropic scattering mediums. Proposed solutions include applying an in-

scatter equivalent transport correction curve to the transport cross section contributions 

made by anisotropic scattering mediums, or by relating the diffusion coefficient to the 

neutron migration area (Cumulative Migration Method). The developers of Serpent were 

aware of this pitfall and have since included both proposed methods in its current release. 

Regarding the applicability of each method, the CMM method is only applicable to 

geometries where the homogenized region represents the entire modeled geometry, 

whereas the transport correction curve can be utilized for any number of homogenized 

regions within the model. 

5.2.1. Numerical Hydrogen Transport Correction Curve.  Herman et al.  

investigated the methods of diffusion coefficient homogenization in Monte Carlo 

transport codes, and the out-scatter approximation to the 𝑆𝑆1 equations. Herman reported 

that weighting the fine group transport cross section before the calculation of diffusion 

coefficients while neglecting a diffusion correction to the out-scatter approximation 

resulted in tilting of reconstructed pin powers in simple LWR test lattices with a 𝐿𝐿2 norm 

error of 3.6%. The proposed solution relies on the application of a correction curve to the 

contributions made by 𝐻𝐻1 to the transport cross section to account for energy regions 

dominated by anisotropic scattering. 

 The proposed NLC correction method preserves the leakage, and spatial flux 

distribution from the 𝐵𝐵1 equations in the diffusion coefficients. Execution of a 70-energy 

group, 100cm one-dimensional fixed source Hydrogen slab problem in MC21 with a 
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buckled cosine spatial distribution provided the net leakage rate (𝐽𝐽𝑡𝑡𝑖𝑖𝑔𝑔ℎ𝑡𝑡 − 𝐽𝐽𝑒𝑒𝑒𝑒𝑡𝑡) tallies for 

a sufficiently insulated sub region of the slab. Substituting the net leakage rate from the 

transport tallies into equation 5.21 leads to the calculation of the diffusion coefficients, D:  

 𝐽𝐽𝑡𝑡𝑖𝑖𝑔𝑔ℎ𝑡𝑡 − 𝐽𝐽𝑒𝑒𝑒𝑒𝑡𝑡 = 𝐷𝐷𝐵𝐵2𝜑𝜑𝜑𝜑. (5.21) 

Where, W is the slab width.  

 Conversion of the fine group diffusion coefficients into the macroscopic 

transport-corrected cross sections permits the acquisition of an energy dependent 

transport correction curve defined as the ratio of macroscopic transport-corrected to total 

cross section. Herman concluded that weighting the fine group diffusion coefficients by 

the flux rather than the fine group transport cross sections reduced the 𝐿𝐿2 norm error to 

.4222%, and the application of the Hydrogen correction curve further reduced the 𝐿𝐿2 

norm error to .2734% [32]. 

5.2.2. Analytical Hydrogen Transport Correction Curve. This study  

presented an analytical method for calculating the NLC 𝐵𝐵1 diffusion coefficients in [32]. 

The method relies on reformulating the energy, and angular dependence of the transport 

equation with a buckled spatial shape in terms of inverse infinite medium transport 

operators. Taylor expanding these terms with respect to buckling simplifies the results, 

providing flexibility in the diffusion coefficients order of accuracy. This led to the 

following definition of the diffusion coefficient with accuracy 𝑂𝑂(𝐵𝐵2): 

 
𝐷𝐷(𝐸𝐸) =

1
3
ℒ1−1ℒ0−1𝜒𝜒(𝐸𝐸)
ℒ0−1𝜒𝜒(𝐸𝐸) + 𝑂𝑂(𝐵𝐵2). (5.22) 

 Where, the infinite medium operator  
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ℒ𝑚𝑚ℎ(𝐸𝐸) = 𝛴𝛴𝑡𝑡(𝐸𝐸)ℎ(𝐸𝐸) −� 𝛴𝛴𝑠𝑠𝑚𝑚(𝐸𝐸′ → 𝐸𝐸)

∞

0
ℎ(𝐸𝐸′)𝑑𝑑𝐸𝐸′ (5.23) 

and the fission spectrum 

 𝜒𝜒(𝐸𝐸) = 0.453𝑛𝑛−1.036𝐸𝐸𝑑𝑑𝑖𝑖𝑛𝑛ℎ√2.29𝐸𝐸. (5.24) 

Results of the study show that the analytical diffusion coefficients are equivalent to the 

in-scatter method when equation 5.15 utilizes the infinite current spectra, and the 

buckling 𝐵𝐵2 = 0. These analytical diffusion coefficients are also identical to those 

obtained by the NLC method [32] if all the independent variables remain the same 

between the methods, and a sufficient order of accuracy in the expansion in 𝐵𝐵2 [33]. 

5.2.3. Cumulative Migration Method. A novel homogenized transport cross  

section, and diffusion coefficient calculation method based on the diffusion migration 

area (cumulative migration method) is proposed [34]. From diffusion theory, the 

definition of migration area 𝑀𝑀2 is one-sixth of the square of the average distance between 

the birth of a fast neutron, and its subsequent absorption as a thermal neutron. 

 𝑀𝑀2 = 𝐿𝐿2 + 𝜏𝜏𝑡𝑡ℎ, (5.25) 

where 𝐿𝐿2 = D/𝛴𝛴𝑎𝑎 is the diffusion area, and 𝜏𝜏𝑡𝑡ℎis the neutron age. The idea is to break up 

the migration area into cumulative groups where a fast neutron is born and removed from 

the specified energy ranges. 

 
�𝑀𝑀𝑔𝑔

𝑐𝑐�
2(𝐸𝐸 > 𝐸𝐸0) =

𝐷𝐷𝑔𝑔𝑐𝑐(𝐸𝐸 > 𝐸𝐸0)
𝛴𝛴𝑡𝑡𝑐𝑐(𝐸𝐸 > 𝐸𝐸0). (5.26) 

 Utilizing the one-sixth of the average square of a neutron’s slowing down distance 

relationship from E to 𝐸𝐸0 (equation 5.27) permits the acquisition of the cumulative 
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migration area 𝑀𝑀2(𝐸𝐸 > 𝐸𝐸0) using a Monte Carlo tally for the average square of the 

slowing down distance of sampled particles 𝑟𝑟𝑔𝑔2���. 

 
𝑀𝑀2(𝐸𝐸 > 𝐸𝐸0)  =

1
6
𝑟𝑟𝑔𝑔2���(𝐸𝐸 > 𝐸𝐸0). (5.27) 

Unfolding the cumulative diffusion coefficients 𝐷𝐷𝑔𝑔𝑐𝑐 from equation 5.26 via flux weighting 

results in the desired multi-group diffusion coefficients 𝐷𝐷𝑔𝑔′.  

 
𝐷𝐷𝑔𝑔𝑐𝑐 =

∑ 𝐷𝐷𝑔𝑔′𝜑𝜑𝑔𝑔′
𝑔𝑔
𝑔𝑔′=1

∑ 𝜑𝜑𝑔𝑔′
𝑔𝑔
𝑔𝑔′=1

. (5.28) 

Validation of the CMM method implemented in the Monte Carlo OpenMC code via a 

pure Hydrogen infinite medium, and an assembly of the BEAVRS benchmark problem 

suggests that the CMM method generates transport cross sections, and diffusion 

coefficients that are equivalent to the in-scatter method [34].   
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6. REACTOR PHYSICS BENCHMARKS 

 

 Benchmarking newly developed numerical methods and simulation codes 

involves the acquisition of an approximate solution to problems with known results 

(obtained analytically, experimentally, or by validated simulations) to provide a measure 

of accuracy, precision, and efficiency. Essentially, these performance measures provide 

the user a basis to gauge the validity of results to problems with unknown solutions. 

Although the IAEA 2D PWR benchmark [35] serves as a preliminary benchmark due to 

its stature and frequent use in the reactor physics community, it ultimately lacks a 

physical counterpart. However, the proposed MSTR benchmark; with a physical 

counterpart, will provide a more effective validation of the finite element framework. 

 The proposed MSTR benchmark relies on the MSTR MCNP model developed by 

Dr. Jeffery King and its validation to experiments performed at the MSTR by Brad 

Richardson to provide a basis of validation [36], [37], [38]. Replication of the MSTR 

geometry and material definitions from the MCNP model in the creation of a new Serpent 

2 MSTR model allows the stochastic generation of multi-group diffusion constants using 

the full-core global flux solution. Use of the stochastic full-core spatial homogenization 

methodology in Serpent 2 over traditional deterministic infinite lattice methods results in 

the minimization of spatial homogenization errors. Thereby, use of the foregoing 

methodology allows creation of a benchmark in which the errors are predominantly 

attributed to the simplified physics of the diffusion approximation and the approximation 

capability of the finite element method.      
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6.1. IAEA 2-D PWR  

The IAEA 2-D PWR benchmark is a variation of the classical two-group IAEA 3-

D PWR benchmark problem, proposed by B. Micheelsen to the IAEA Panel on Reactor-

Burnup Physics in 1971, and later included in the Argonne Code Center: Benchmark 

Problem Book [35]. Figure 6.1 illustrates the multi-region IAEA 2-D PWR benchmark 

core configuration utilizing quarter symmetry.   

 

 
Figure 6.1 IAEA 2-D PWR Benchmark Configuration [35] 

 

 The core configuration consists of 20 cm pitched square lattices that are defined 

by regions containing a smeared fuel/absorber rod assembly (material #3), two varying 

fuel composition assemblies (material #1-2), and a water reflector at the core periphery 



72 
 

(material #4). The pre-computed homogenized parameters associated with each material 

region are presented in Table 6.1. Upon examination of the multi-group constants 

presented in Table 6.1, one should expect strong local thermal (group 2) flux 

perturbations at the absorber rod, and water reflector material interfaces due to the large 

spatial discontinuities in the multi-group constants. 

 

Table 6.1 IAEA 2D PWR Benchmark Homogenized Multi-Group Constants [35] 

 

  

 The objective concerning the IAEA 2-D PWR benchmark [35] is to obtain the 

largest eigenvalue 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒, and global flux distributions of a coupled two-group critical 

problem (equation 6.1, where group one represents the high energy fast neutrons, and 

group two represents the lesser energetic thermal neutrons) bounded by the assumptions 

of no incoming neutron current at the outer boundary, and no net current at the symmetry 

boundary. Accounting for the axial leakage in the 2-D problem requires the addition of a 

constant to the group removal cross sections defined as the product of the group buckling 

factor, 𝐵𝐵𝑧𝑧,1,2
2 = 8 × 10−5, and diffusion coefficient, 𝐷𝐷𝑔𝑔. 

Region Material

1 1.5 0.4 0.02 0.01 0.080 0.135 Fuel 1
2 1.5 0.4 0.02 0.01 0.085 0.135 Fuel 2
3 1.5 0.4 0.02 0.01 0.130 0.135 Fuel 2 + Rod
4 2.0 0.3 0.04 0.00 0.010 0.000 Reflector

𝐷𝐷1
(cm)

𝐷𝐷2
(cm)

Σ1⟶2
(cm-1)

Σ𝑎𝑎2
(cm-1)

Σ𝑎𝑎1
(cm-1)

νΣ𝑒𝑒2
(cm-1)
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⎩
⎪⎪
⎨

⎪⎪
⎧−𝐷𝐷1∇2𝜑𝜑1 + �𝛴𝛴𝑎𝑎1 + 𝛴𝛴1→2 + 𝐷𝐷1𝐵𝐵𝑧𝑧2�𝜑𝜑1 =

1
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝜈𝜈𝛴𝛴𝑒𝑒2𝜑𝜑2  𝑖𝑖𝑛𝑛 Ω,

−𝐷𝐷2∇2𝜑𝜑2 + (𝛴𝛴𝑎𝑎2 + 𝐷𝐷2𝐵𝐵𝑧𝑧2)𝜑𝜑2 = 𝛴𝛴1→2𝜑𝜑1  𝑖𝑖𝑛𝑛 Ω,

∇𝜑𝜑𝑔𝑔 ∙ 𝑛𝑛�⃗ = 0  𝑜𝑜𝑛𝑛 𝛤𝛤1 ⊂ 𝑑𝑑Ω,

∇𝜑𝜑𝑔𝑔 ∙ 𝑛𝑛�⃗ +
1

2𝐷𝐷𝑔𝑔
𝜑𝜑𝑔𝑔 = 0  𝑜𝑜𝑛𝑛 𝛤𝛤2 ⊂ 𝑑𝑑Ω,

 (6.1) 

 

Since the reactor is permissible to operate at any arbitrary power rating, the global flux 

distributions are normalized such that the neutron generation rate over the active fuel 

volume is one. 

 1
𝑉𝑉𝑐𝑐𝑐𝑐𝑡𝑡𝑒𝑒

� �𝜈𝜈𝛴𝛴𝑒𝑒𝑔𝑔𝜑𝜑𝑔𝑔𝑑𝑑𝑣𝑣
𝑔𝑔

= 1.
𝑉𝑉𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒

 

 

(6.2) 

6.1.1. Reference Solutions.  Table 6.2 contains the reference eigenvalues, and  

maximum inner core thermal flux obtained by the finite difference, finite element, and 

nodal expansion methods published by the Argonne National Laboratory Benchmark 

Committee [35].  

 

Table 6.2 IAEA 2-D reference eigenvalues and inner core maximum thermal flux [35] 

 
 

Method Grid Eigenvalue 

Mesh centered finite 
difference

272 x 272 meshes 1.02958 -

Quadratic quadrillateral 
finite element

36 x 36 meshes 1.0296 11.18 (30,30)

Nodal expansion h = 3.5 cm 1.029585 11.206 (31,31)

𝜑𝜑2,𝑚𝑚𝑎𝑎𝑥𝑥(𝜕𝜕,𝜕𝜕)
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Despite the differences in the mathematical basis of each numerical method, the 

reference results indicate that the converged maximum eigenvalue is approximately 

1.02958. The magnitude, and location of the maximum inner core thermal flux suggests 

that minimal deviations in the spatial solutions exist. The agreement of results obtained 

from varying numerical methods indicates that the approximate solutions have 

converged. Figure 6.2 presents the reference global radial flux traverses obtained by the 

nodal expansion method with a mesh size of h = 3.5 cm along the x-axis, and the 

diagonal y = x. 

 

 

Figure 6.2 IAEA 2-D reference radial flux traverses [35] 

 

 It is evident from Figure 6.2 that strong flux perturbations exist at the absorber 

rod/fuel interface due to the increased parasitic neutron absorption and in the 
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fuel/reflector due to the increased thermalization of fast neutrons. Figure 6.3 (pg. 57) 

contains the reference normalized assembly average fast flux obtained by the finite 

element and nodal expansion methods. Note: the FEM results are based on quarter core 

symmetry, while the NEM results are based on an eighth core symmetry. The assembly 

with the greatest normalized average fast flux (highlighted in yellow) from the FEM is 

46.6185, whereas the NEM resulted in 46.7020. Figure 6.4 (pg. 58) contains the reference 

normalized assembly average thermal fluxes. The assembly with the greatest average 

thermal flux corresponds with the same assembly of the greatest average fast flux. For the 

FEM, the greatest average thermal flux was 10.9427 and for the NEM it was 10.9620.  

6.1.2. Benchmark Results. The IAEA 2-D PWR benchmark [35] was carried out  

for both structured triangular and rectangular elements with mesh sizes ∆𝑥𝑥,𝑦𝑦 of 10, 5, 2, 1, 

and 0.5 cm. For the triangular element cases, the element order was also varied using 

linear, quadratic, and cubic interpolation polynomials. Likewise, the element order was 

also varied for the rectangular cases; however, only linear, and quadratic interpolation 

polynomials are used. Table 6.3 (pg. 78) contains the general results of the benchmark 

that includes: (1) the largest eigenvalue and the change in reactivity from the NEM 

reference value published in the ANL benchmark book [35]; (2) the maximum 

normalized thermal flux in the inner core with its corresponding location coordinates 

(initial spatial convergence check); and (3) the total number of unknowns for each 

benchmark case. Numerical convergence to the IAEA 2-D PWR eigenvalue is observed 

(see Table 6.3) for all element shapes and orders of polynomials. The distinguishing 

factor between the element shapes, polynomial orders, and mesh sizes are their individual 

rates of convergence and efficiency. 
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Figure 6.3 IAEA 2-D reference assembly average group 1 flux [35] 
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Figure 6.4 IAEA 2-D reference assembly average group 2 flux [35] 
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 For a given element shape and polynomial order, refining the mesh size (h-

refinement) led to decreased total reactivity change against the reference NEM 

eigenvalue until the solutions converged; however, convergence was not attained for the 

linear triangle and bilinear rectangle elements until the final mesh size of 0.5 × 0.5 cm. 

This is an indication that there are not enough basis functions to efficiently capture the 

large gradients of the intra element solution unless prohibitively small mesh sizes are 

utilized. Nevertheless, increased polynomial orders led to faster h-refinement 

convergence with a lesser number of unknowns when compared to the linear triangular 

and bilinear rectangular cases, which is consistent with the FEM error convergence 

proofs. 

 Figure 6.5 contains two plots of the linear triangle thermal and fast x-axis radial 

flux traverse h-refinement results. It is evident that h-refinement leads to the overall 

improvement of the spatial solution. However, as previously discussed, the linear triangle 

and bilinear rectangle are inefficient as a greater number of unknowns are required to 

attain numerical convergence. Consequently, h-refinement leads to an increase in 

computational complexity of sparse operations. By introducing more global basis 

functions (𝑁𝑁𝑁𝑁) with mesh refinement, the size of matrix 𝐴𝐴 = 𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁 increases along 

with the number of non-zero elements. From MATLAB’s documentation on sparse 

operations, which relies on Tim Davis’s sparse Cholesky factorization routine from 

SuiteSparse (highly optimized LAPACK and level 3 BLAS routines), computational 

complexity is proportional the number of non-zero elements and linearly dependent on 

the column size of the sparse matrix [39]. Thus, a better approach would be either p-

refinement, or the combination of both h-refinement and p-refinement. 
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Table 6.3 IAEA 2-D benchmark eigenvalue results 

 

Element shape Order Total unknowns

Triangular Linear 10 x 10 1.031233 -155.2 9.60 (40, 30) 552
- - 5 x 5 1.029841 -24.1 10.80 (30, 30) 2,066
- - 2 x 2 1.029618 -3.1 11.14 (32, 30) 12,392
- - 1 x 1 1.029593 -0.7 11.19 (31, 31) 48,882
- - .5 x .5 1.029587 -0.2 11.20 (31, 31) 194,162
- Quadratic 10 x 10 1.029716 -12.3 11.04 (30, 30) 2,066
- - 5 x 5 1.029593 -0.8 11.18 (30, 30) 7,986
- - 2 x 2 1.029585 0.0 11.21 (31, 31) 48,882
- - 1 x 1 1.029585 0.0 11.21 (31, 31) 194,162
- - .5 x .5 1.029585 0.0 11.21 (31, 30.8) 773,922
- Cubic 10 x 10 1.029591 -0.5 11.20 (30, 30) 4,544
- - 5 x 5 1.029585 0.0 11.20 (31.7, 30) 17,762
- - 2 x 2 1.029585 0.0 11.21 (30.7, 30.7 109,472
- - 1 x 1 1.029585 0.0 11.21 (31, 31) 435,842

Rectangular Bilinear 10 x 10 1.031086 -141.4 9.70 (30, 30) 552
- - 5 x 5 1.029845 -24.5 10.83 (30, 30) 2,066
- - 2 x 2 1.029620 -3.3 11.14 (32, 30) 12,392
- - 1 x 1 1.029594 -0.8 11.19 (31, 31) 48,882
- - .5 x .5 1.029587 -0.2 11.20 (31, 31) 194,162
- Biquadratic 10 x 10 1.029601 -1.5 11.33 (35, 30) 2,066
- - 5 x 5 1.029585 0.0 11.25 (32.5, 30) 7,986
- - 2 x 2 1.029585 0.0 11.21 (31, 30) 48,882
- - 1 x 1 1.029585 0.0 11.21 (31, 30.5) 194,162
- - .5 x .5 1.029585 0.0 11.21 (31, 30.8) 773,922

        aReference value 1.029585 NEM (ANL, 1977)

keff ∆ρ pcm a φ2,max x, y
Fuel region

∆𝑥𝑥,𝑦𝑦(cm)
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Figure 6.5 Linear triangle h-refinement (top) thermal, (bottom) fast flux traverse [35] 
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 From Figure 6.6, the p-refinement with a 10cm mesh yields similar result as the h-

refinement, albeit with a less number of unknowns. Changing only the interpolation 

polynomial order to quadratic from linear almost attains the converged spatial solution. 

From Table 6.3 and Figure 6.6, the 10cm mesh cubic triangle case is on the edge of 

convergence with a ref. reactivity difference of -0.5 pcm. Comparing the 10cm cubic 

triangle with the 0.5cm linear triangle, it is evident that the former leads to a reduction of 

the number of unknowns by a factor of 42. Nevertheless, numerical convergence to the 

published IAEA 2D eigenvalue and spatial flux solution can be obtained with any 

combination of interpolation polynomials and h-refinement or vice versa. Other h-

refinement radial flux traverse plots can be found in Appendix B.  

 To further the support of spatial convergence, Figure 6.7 contains the assembly 

average thermal flux for the quadratic triangle with a mesh size of 2 cm. The average 

RPE over all assemblies regarding the ANL published FEM average assembly fluxes was 

0.336%, while the maximum RPE of 1.0824% was in the water reflector [35]. Minute 

differences between the obtained FEM and reference solutions can be attributed to the 

reference case using quadratic rectangular elements. The average thermal assembly 

fluxes can also be compared to the NEM reference values in Figure 6.4. Figure 6.8 is an 

interpolated normalized thermal flux map using the solution from the cubic triangular 

mesh of size 1cm. The largest normalized thermal neutron flux of approximately 18.70 

(arbitrary units) is in the water reflector, which is adjacent to three fuel assemblies. The 

largest inner core thermal flux is approximately 11.21 along the radial traverse 𝜕𝜕 = 𝜕𝜕.  
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Figure 6.6 Linear triangle 10cm mesh p-refinement (top) thermal (bottom) fast flux [35] 
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Figure 6.7 Quadratic triangle 2cm mesh assembly averaged thermal flux [35] 
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Figure 6.8 Triangle Cubic 1cm mesh: thermal flux map results 

 

 Figure 6.9 is the interpolated fast flux map counterpart. The largest fast flux is 

approximately 47 (arbitrary units) along the radial traverse 𝜕𝜕 = 𝜕𝜕. The solution gradient 

for the fast flux is smoother when compared to the thermal flux map, as the absorption 

cross section for the fast group is approximately smaller by a factor of 8. Nevertheless, 

fast flux perturbations still exist in the fuel/absorber rod regions and the fast flux rapidly 

approaches zero in the water reflector. Overall, the IAEA 2D benchmark presents some 

challenges from the inclusion of the fuel/absorber rods and the water reflector, where the 

capture of the steep thermal flux gradients requires either a combination of h/p-

refinement, or major refinement in one category. Another approach would be to use 

unstructured meshes, which allows the specification of varying mesh sizes in regions 

with steep solution gradients.  
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Figure 6.9 Triangle Cubic 1cm mesh: fast flux map results 

 

6.2. MISSOURI S&T REACTOR  

The Missouri S&T Reactor (Figure 6.10), formerly known as the University of 

Missouri-Rolla Reactor, is a light water, open pool reactor designed after the Bulk 

Shielding Reactor at Oak Ridge National Laboratory. December 9, 1961, marked the 

reactors first sustained criticality event on an initially licensed maximum core power of 

10 kW [40]. In 1966, the MSTR would receive a licensed power uprate to 200 kW [40]. 

Conversion of the initial highly enriched to low enriched (19.9% 𝑈𝑈92
235 ) uranium fuel 

would take place in 1992 [40], [41]. Ultimately, the MSTR serves as a supplemental 

educational tool for enrolled students and provides researchers a means to carry out 

reactor physics and irradiation experiments.  
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Figure 6.10 MSTR core in operation [42] 

 

A grid plate comprised of 54 lattice locations (indexed by columns 1 through 9 

and rows A through F) allow the placement of fuel/control elements, source holder, and 

experimental apparatuses. Each fuel element (of dimension 3 in. by 3 in. by 3 ft. see 

Figure 6.11) contains eighteen 0.06-inch-thick curved fuel plates each containing 12.5 

grams of low enriched uranium silicide clad in aluminum that extends 24 inches in length 

[42]. Coolant channels exist in-between each fuel plate, where natural convection 

removes energy from the fuel plate to the ultimate heat sink. At the top of the fuel 

element a handle allows the use of hooked tools to assist in the movement of the fuel 

element, while at the bottom of the fuel element, a hollow cylindrical nose piece allows 

the secured placement of the fuel element into the grid plate opening.  
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Figure 6.11 Fuel Element Schematic [38] 

 

The control elements are dimensionally identical to the fuel elements, however, 

the removal of eight middle fuel plates accommodate a control rod guide tube. Of the 

four control rods, three are comprised of boronated stainless steel 304 used for shutdown, 

SCRAM, and coarse reactivity manipulation, while the final regulating rod is a hollow 

stainless steel 304 tube used for fine reactivity manipulation. Two pneumatic rabbit tubes 

provide small irradiation samples in core access to either the entire reactors neutron 

energy spectrum, or the epithermal and fast neutrons only, where the later requires use of 

a cadmium lined rabbit tube to filter out thermal neutrons. Researchers can also irradiate 

large specimens using hollow aluminum void tubes inserted into empty lattice positions 
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at the core periphery. A source holder along with a removeable plutonium-beryllium 

neutron source provides signal to the startup instrumentation [42].   

 The grid plate suspends from a moveable bridge that places the core in a 9 ft. 

wide by 19 ft. long by 27 ft. deep pool containing 32,000 gallons demineralized water. 

Movement of the bridge allows repositioning of the core with respect to irradiation 

instruments located in the pool. The thermal column is a 3.5 ft. by 3.5 ft. by 5 ft. graphite 

block located behind the core that provides irradiation specimens with a source of 

thermal neutrons, where the two locations of the core with respect to the thermal column 

are the W and T configurations [42]. A 6 in. diameter aluminum tube with a lead shield 

(to shield gammas) positioned on the side of the pool behind the reactor extends to the 

right side of the grid plate also provides a beam of neutrons for irradiation experiments 

[42]. 

6.2.1. MCNP Model Description. Dr. Jeffery King began developing a high-  

fidelity MSTR MCNP model in 2007 that includes the reactor pool, spent fuel storage pit, 

thermal-column, beam port, two rabbit tubes, grid plate, and fuel/control elements [36]. 

Geometrical and material definitions were supplied from the reactors design schematics, 

material shipping papers, and physical measurements. When selecting fuel elements for a 

configuration, users have the option of choosing the as-specified fuel element material 

composition, or the element specific compositions specified by the manufacturer. The 

model is modular in the sense that the core configuration can be rapidly changed, and the 

control rods can be individually manipulated through universe fills and transformations. 

Figure 6.12 is the YZ plane view of the MSTR MCNP model.  
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Figure 6.12 MCNP YZ plane (left) entire geometry (right) exploded view of the core  

  

 Concerning the continuous-energy neutron data specifications, the cross sections 

have been updated to 293.6 K ENDF/B-VII.0 .70c and 293.6 K ENDF/B-VII.0 thermal 

scattering 𝑆𝑆(𝛼𝛼,𝛽𝛽) for light water (lwtr.10t) and graphite (grah.10t) to be consistent with 

the Serpent 2 cross section specifications [43]. Material definitions (see Table 6.4 for 

isotopic compositions) for the nitrogen inside the rabbit tubes and air inside the beam port 

at normal temperature and pressure have also been added to the MCNP model to 

eliminate singularities for spatial homogenization in Serpent 2. Table 6.4 lists the 

individual isotopic compositions and densities defined within the material card of the 

MCNP and Serpent 2 models. The current geometric layout of the core corresponds to the 

approach to criticality experiment for the 120W core configuration which will be used to 

prepare the proposed MSTR benchmark. 
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Table 6.4 MCNP and Serpent material isotopic compositions [36] 

 

 

Material
Density 

(atom/b-cm)

U-235:  3.2287 Si-28:  9.9366 Si-30:  0.3326 Al-27:  73.0443
U-238:  12.9533 Si-29:  0.5046

Al-27:  97.8233 Mg-0:  1.0536 Fe-58:  0.0006 Cr-54:  0.0026
Si-28:  0.6140 Fe-54:  0.0133 Cr-50:  0.0049 Cu-63:  0.0811
Si-29:  0.0312 Fe-56:  0.2093 Cr-52:  0.0939 Cu-65:  0.0362
Si-30:  0.0206 Fe-57:  0.0048 Cr-53:  0.0106

Al-27:  92.8066 Mg-0:  0.3567 Fe-57:  0.0011 Cu-63:  0.0029
Si-28:  6.1640 Ti-0:  0.0736 Fe-58:  0.0002 Cu-65:  0.0013
Si-29:  0.3130 Fe-54:  0.0031 Zn-0:  0.0124
Si-30:  0.2063 Fe-56:  0.0490 Mn-55:  0.0099

Al-27:  99.9469 Cu-65:  0.0164 Cu-63:  0.0367

H-1:  16.8018 Si-28:  18.7429 Na-23:  2.1365 Fe-57:  0.0090
H-2:  0.0019 Si-29:  0.9518 Ca-0:  1.8596 Fe-58:  0.0012
O-16:  56.0969 Si-30:  0.6274 Fe-54:  0.0248
O-17:  0.0214 Al-27:  2.1343 Fe-56:  0.3896

Fe-54:  3.6869 Cr-50:  0.8237 Ni-58: 5.7165 Ni-64:  0.0777
Fe-56:  57.8772 Cr-52:  15.8843 Ni-60:  2.2020 Mn-55:  1.8887
Fe-57:  1.3366 Cr-53:  1.8011 Ni-61:  0.0957 B-10:  1.5279
Fe-58:  0.1779 Cr-54:  0.4483 Ni-62:  0.3052 B-11:  6.1501

Fe-54:  4.0229 Cr-50:  0.8781 Ni-58: 6.0938 Ni-64:  0.0829
Fe-56:  63.1511 Cr-52:  16.9327 Ni-60:  2.3473 Mn-55:  2.0133
Fe-57:  1.4584 Cr-53:  1.9200 Ni-61:  0.1020
Fe-58:  0.1941 Cr-54:  0.4779 Ni-62:  0.3253

Lead Pb-206: 24.4422 Pb-207:   22.4138 Pb-208:  53.1440

Cd-106:  1.2500 Cd-110:  12.4900 Cd-112:  24.1300 Cd-114:   28.7300
Cd-108:  0.8900 Cd-111:  12.8000 Cd-113: 12.2200 Cd-116:  7.4900

Water 0.033427 H-1:  66.6590 H-2:  0.0077 O-16:  33.3206 O-18:  0.0127

Air (NTP) 4.945200E-05 N-14:  78.0840 O-16:  20.9470 Ar-40:  0.9340

Nitrogen (NTP) 5.008700E-05 N-14: 99.6300 N-15:  0.3700

Graphite 9.03E-02 C-0:  100.0

0.081776

0.090540

Regulating Rod
(SS304)

Cadmium

Isotopic composition 
(atom %)

Fuel element handle 
(cast A356-T6 Al alloy)

Keno concrete

Cladding 
(wrought 6061 alloy)

Control rod
(1.6 wt% Borated 

SS304)

Fuel 
(as-specified)

Grid plate 
(1100 series Al)

0.086240

0.046286

0.032958

0.060441

0.0543525

0.060004

0.059363
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6.2.2. Experimental MCNP Model Validation.  Initial validation of the MCNP 

model developed by Dr. Jeffery King included the approach to criticality, and axial flux 

profile experiments for the 120W MSTR core configuration [38], [36]. The prediction of 

the control rod height whereon the core becomes critical (𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 = 1) was determined by 

extrapolating successive points on a 1/M vs control rod height plot to a value of 1/M = 0, 

where 1/M is equal to the neutron counts recorded by a fission chamber at the initial 

control rod height over the counts associated with the current control rod height [22].  

 1
𝑀𝑀

=
𝐶𝐶0
𝐶𝐶

, (6.1) 

where  

 𝑀𝑀 =
1

1 − 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒
. (6.2) 

The process of control rod withdrawal to a height in-between the current, and predicted 

value occurs until the control rod height is within 0.1 inch of the previously predicted 

critical control rod height. Finally, removal of the control rod to a height which sustains 

criticality concludes the experiment. Validation of the MCNP model following the 

preceding experimental procedure at the exact control rod heights resulted in an average 

model vs experimental predicted control rod height error of 0.59 ± 0.08 inches, where the 

experimental critical control rod height was 20.0 inches, and the MCNP critical control 

rod height was 19.3 ± 0.6 inches [38], [36]. 

 MSTR facilities lack instrumentation to directly measure the axial flux profile. 

Nevertheless, an approximate axial flux profile can be determined experimentally. The 

experiment requires irradiating the copper wire for 10 minutes at a power rating of 500 
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Watts. After the initial irradiation, an allocation of time was set aside to allow the short-

lived Copper-64 isotope to decay. Following the cool down period, cutting the copper 

wire into 1-inch segments allows the measurement of gamma activity associated with 

each individual segment. Due to the linear relationship between gamma activity and the 

in-core neutron flux, a graph of the gamma activities will have the same shape as the 

axial flux profile [38], [36]. 

 Reproduction of the experiment in the MCNP model included placing a 50-inch 

copper wire of 0.0225-inch diameter in the same fuel element as the physical experiment, 

where the modification of 50 1-inch cell flux tallies provides the integral neutron 

absorption reaction rates. Three separate simulation cases: a critical core, control rods 

fully withdrawn, and a core divided into top and bottom halves with different 

temperatures, provide an array of integral absorption reaction rates. Inclusion of the core 

temperature profile produced the most accurate axial flux profile in MCNP with an 

average deviation of 10.9% from the experimental values, while the isothermal critical, 

and control rods fully withdrawn cases produced average deviations of 12.4% and 13.6% 

[38], [36].  

 Other MCNP validation efforts included two distinct experiments at the Missouri 

S&T research reactor that provided modeling of (1) temperature effects; and (2) void 

effects on reactivity [38], [37]. The measurement of temperature effects on reactivity 

relied upon the operation of the reactor at the maximum licensed power of 200 kW, so 

the core and pool could gradually heat throughout the day. To sustain criticality, the 

reactor’s control system continually withdrew the regulating rod to counteract the 

temperature feedback effects on reactivity. Utilizing known differential regulating rod 
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reactivity values, together with acquired regulating rod heights and thermocouple 

temperature readings at 15-minute intervals, permitted calculation of total reactivity 

change attributable to the heating of the core [38], [37]. 

 Reproduction of the temperature effects on reactivity experiments for three 

separate temperature profiles validated the MCNP model. The three individual 

temperature profiles included: (a) isothermal at the upper thermocouple reading; (b) 

isothermal at the lower thermocouple reading; and (c) a four-region core consisting of (i) 

linear interpolation of both upper and lower thermocouples readings providing 

temperatures for the two regions within the core; (ii) the upper thermocouple reading for 

the region above the core; and (iii) the lower thermocouple reading for the region below 

the core. Furthermore, each of the three identified temperature profiles included the 

simulation at every regulating rod height obtained at the 15-minute interval. Due to the 

minimal deviation of the thermocouple readings with respect to room temperature 

(293.15 K), it is only necessary to reflect the temperature dependence in the water 

density, and free-gas thermal treatment on elastic scattering cross sections [38], [37]. 

 Richardson concluded that the replicated temperature effects on reactivity 

experiment in MCNP resulted in maximum eigenvalues (𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒) within 0.40% of the 

experimental values; however, in all cases, the model overpredicted criticality such that 

the core is slightly super-critical when theoretically the values should be one. Richardson 

further noted that the deviation from unity remained relatively constant throughout the 

simulations and thereby indicated that the source of error to be likely the result of 

unaccounted fuel burnup, and limited detail concerning temperature distributions [38], 

[37]. 
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 The criticality simulation regarding previously mentioned temperature profile 1 

(an isothermal core at the upper core thermocouple) resulted in eigenvalues that ranged 

between 1.00234 and 1.00248 with a standard deviation of .00018. For temperature 

profile 2 (an isothermal core at the lower core thermocouple) resulted in eigenvalues that 

ranged between 1.00296 and 1.00383 with a standard deviation of .00018. Lastly, the 

temperature profile 3 (a four-region core) resulted in eigenvalues that ranged between 

1.00218 and 1.00302 with a standard deviation of .00018 [38], [37].   

 Part two of the MCNP validation concerned the placement of a void tube 

containing water, then air, into multiple lattice positions of a critical core. To maintain 

criticality after insertion of the void tube apparatus, the tester withdrew the regulating rod 

to maintain criticality. The experiment compared the difference between the regulating 

rod heights after the introduction of the void tube (1) filled with water; then (2) filled 

with air, to known differential regulating rod worth’s. This comparison resulted in the 

determination of the reactivity change associated only with air [38], [37]. 

 The difference between the void tube experiment, and the modeled experiment 

within MCNP is the elimination of the material properties attributed to the void. 

Ultimately, the model assumed that a vacuum existed in the void tube apparatus. 

Richardson determined two void reactivity worth’s at identified locations associated with 

the recorded regulating rod heights required to maintain criticality for both the water 

filled, and air filled void tube. Richardson stated that he obtained void reactivity worth’s 

at an initial super-critical state. Furthermore, Richardson concluded that his experiment 

validated the model although he expected some differences between the experimental and 

predicted void reactivity worth’s due to: (1) unaccounted fuel burnup; (2) detailed 
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temperature distributions; and (3) assumption of constant differential regulating rod 

worth’s after core re-configuration. Moreover, he advised that it may be desirable to 

obtain recalibrated differential regulating rod worth’s at each location with the void tube 

inserted. Nevertheless, Richardson concluded that the void effects experiment validated 

the MCNP model [38], [37]. Regardless of the foregoing issues concerning the void 

effects on reactivity experiment, the previously discussed approach to criticality, axial 

flux profile measurement, and temperature effects on reactivity experiments provide 

validation of the MSTR MCNP model. 

6.2.3. Serpent 2 Model Development and Validation Results. Although the  

geometric and material definitions (Table 6.3) between the MCNP and Serpent 2 models 

are identical, claiming that the two models will produce similar results is unsubstantiated. 

To prove the validity of the Serpent 2 model, the results of core flux profiles, criticality 

eigenvalues, and flux energy spectrums obtained from both models will be compared 

using the final approach to criticality control rod height for the 120w configuration. 

Ultimately, the validation of the Serpent 2 model to the MCNP model allows the previous 

experimental MCNP validation efforts led by Brad Richardson to be used as support for 

the proposed MSTR benchmark. However, before the Serpent 2 validation results are 

presented, it makes sense to disclose the structure of the Serpent 2 model and although 

minor, the points of deviation with respect to the MCNP model. 

Multi-region homogenization in Serpent 2 requires all the defined universes 

within the model to be contained in a base universe zero and that each specific 

homogenized region be of the highest possible level. The reason for the latter requirement 

stems from the way Serpent 2 handles multi-region homogenization. Any Monte Carlo 
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tally that is made in a nested higher-level universe that is contained within a lower level 

universe will also count towards the homogenization of the lower level universe. 

Therefore, restructuring of the Serpent 2 universes is required to permit multi-region 

homogenization of the geometrically nested MSTR model (see Figure 6.13).  

 

 

 

Figure 6.13 Serpent 2 MSTR model universe structure 
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Figure 6.14 illustrates the universe structure of the MSTR Serpent 2 model. The 

highest-level universes defined within the model correspond to the fuel elements (1000), 

control rods (1002, 1102, and 1202), regulating rod (1004), source holder (1006), and 

rabbit tubes (1007 and 1008) that occupy core lattice positions for a given configuration. 

The universe 1009 specifies any empty lattice position, which consists of only water. To 

generate multi-group constants (through flux weighting) that corresponds to a specific 

lattice position requires each occupied lattice to be defined by its own unique universe 

identifier; therefore, every lattice position that is occupied by either a fuel element, 

control rod, regulating rod, source holder, rabbit tube is defined by filling universes 

starting from 901 through 901 +  (𝑛𝑛 − 1), where 𝑛𝑛 = the number of occupied lattice 

positions. The remaining empty lattice positions are then lumped into a single universe 

900.  

In the axial direction, each lattice extends from the top to the bottom of the reactor 

pool to prepare the 2D benchmark. Likewise, the remainder of the reactor pool and 

experimental instruments are also collapsed. See Figure 6.14 for an illustration of the 

universe structure that provides lattice specific group constants for the 120W core 

configuration, where the bottom number in Figure 6.15 is the universe being filled by the 

top universe. It is imperative that users specify the universes to be homogenized by the 

Serpent 2 “set gcu 900 901 etc.” command in the order that the regions are defined within 

Gmesh (meshing software, which starts from 1), as the FE framework calls the mesh 

information based on the column index. For example, the empty lattice positions 

(universe 900) will be specified in Gmesh by region #1. Hence, all the group constants 

for universe 900 will be in column index 1. Since the stiffness matrix and load vector 
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assemblers loop over all the elements in the mesh, the region in which the element 

belongs to will be passed as input to call the correct multi-group data for the integrals, 

which for this instance will be column index 1.     

 

 

Figure 6.14 MSTR 120W core configuration universe structure 

 

 The remainder of the reactor pool and experimental apparatuses outside of the 

core lattice structure are defined in universes 701 and 702. Where, universe 701 contains 

the beam port and the reactor pool water and universe 702 contains the thermal column. 

The homogenized pool region is divided into universes 200 and 300 that can be filled by 

any combination of universes 701 and 702 depending upon how the user wishes to 

homogenize the core. This implies that users can change the bounding surfaces that 

define the cells of the homogenized universe without changing the reactor pool and 

instrumentation cells for the universes 701 and 702. 
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 Comparison of the eigenvalues, two-group flux mesh tallies along the lattice 

dividers of row E/D and column 5/6 (black lines in Figure 6.14); in addition to the 70-

group neutron energy spectrum within the element D5 and D9, for 375E+6 neutron 

histories provide validation of the MSTR Serpent 2 model. If the spatial flux profile 

solutions between the two models diverge, the mesh size should be small enough to 

capture these differences. Thus, the mesh tally bin increments for the traverse along the 

row divider E/D: 300 bins of ∆𝜕𝜕 = 0.232 cm; one bin of ∆𝜕𝜕 = 0.60 cm; and one bin of 

∆𝑑𝑑 = 1.0 cm. For the traverse along column divider 5/6: one bin of ∆𝜕𝜕 = 0.60 cm; 182 

bins of ∆𝜕𝜕 = 0.26535 cm; and one bin of ∆𝑑𝑑 = 1.0 cm.  

 The eigenvalues obtained for the 120w critical control rod height configuration 

were 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝑀𝑀𝐶𝐶𝑁𝑁𝑆𝑆) = 0.99976 ±  0.00004 and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑛𝑛𝑟𝑟𝑠𝑠𝑛𝑛𝑛𝑛𝑐𝑐 2) = 0.99959 ±

 0.00006. Thus, the difference in reactivity between the two models is ∆𝜌𝜌 = 17.4 ±

 7.54 pcm. Table 6.5 contains the tally error statistics for the flux traverses and element 

energy spectrums where the top values are the thermal group statistics and the bottom 

numbers are the fast group statistics. The tally bin errors obtained from Serpent 2 are 

significantly greater than the bin errors obtained from MCNP which indicates that more 

particle histories are required to produce tally statistics that coincide with MCNP. The 

increase in variance of the fast group statistics when compared to the thermal statistics is 

a result of the tally bins extending well into the water reflector where the probability of a 

fast neutron contributing to those tallies on a consistent basis is low. Thus, the only way 

to improve those statistics is to increase the sample population of each batch.    
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Table 6.5 Serpent 2 validation tally statistics 

 

  

 Figure 6.15 is the Serpent 2 and MCNP flux traverse comparison along the row 

divider E/D at the core mid-plane (0 cm) for two energy groups split at 0.625 eV. The 

flux profile suppressions (accented by the arrows) in the range of -10 cm to 35 cm are the 

result of mesh tallies crossing into the top curved fuel plate of each element. It is also 

evident that strong thermal flux perturbations are present at the fuel/water reflector 

interface (interface is circled in Figure 6.15) due to the increased neutron thermalization. 

The average absolute difference between the Serpent 2 and MCNP bin tallies was 0.0085 

± 0.0079 flux fraction. Regarding the flux group bounded from 0.625 eV to 20 MeV 

(bottom plot in Figure 6.15) the average difference in flux fraction was 0.0092 ± 0.0093. 

This implies that the thermal and fast spatial flux profiles from the two models agree at 

the core mid-plane.  

Tally Position
Avg. Difference

(Serpent - MCNP)
Avg. Serpent 2 

bin error
Avg. MCNP 

bin error

Row D/E mid-plane 0.0085 ± 0.0079
0.0092 ± 0.0093

0.0233 ± 0.0128
0.0391 ± 0.0505

0.0109 ± 0.0080
0.0144 ± 0.0196

Row D/E top-plane 0.0230 ±0.0233
0.0139 ± 0.0137

0.0403 ± 0.0193
0.0678 ± 0.0854

0.0185 ± 0.0123
0.0245 ± 0.0307

Row D/E bottom-plane 0.0378 ± 0.0272
0.0128 ± 0.0133

0.0344 ± 0.0181
0.0610 ± 0.0772

0.0161 ±0.0118
0.0220 ± 0.0284

Column 5/6 mid-plane 0.0151 ± 0.0120
0.0122 ± 0.0117

0.0216 ± 0.0070
0.0247 ± 0.0153

0.0068 ± 0.0022
0.0085 ± 0.0071

Column 5/6 top-plane 0.0242 ± 0.0226
0.0180 ± 0.0182

0.0380 ± 0.0127
0.0447 ± 0.0247

0.0118 ± 0.0035
0.0152 ± 0.0120

Column 5/6 bottom-plane 0.0250 ± 0.0224
0.0150 ± 0.0155

0.0320 ± 0.0096
0.0393 ± 0.0228 

0.0101 ± 0.0034
0.0135 ± 0.0108

D5 Element 5.31E-4 ± 7.13E-4 0.0012 ± 8.63E-4 8.43E-4 ± 5.81E-4

D9 Element 6.77E-4 ± 9.41E-4 0.0015 ± 0.0010 9.94E-4 ± 7.03E-4
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Figure 6.15 Core mid-plane flux traverse along lattice row D/E (top) thermal, (bottom) 
fast 
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 The Serpent 2 results of the thermal spatial flux profile along the column divider 

5/6 at the core mid-plane (Figure 6.16) oscillate between the mesh bins within the active 

region of the core and get larger for the top and bottom planes (see graphs in Appendix 

C). However, these fluctuations are nonexistent, or suppressed in the water reflector. This 

is due to the increased fast flux thermalization in the reflector which provides consistent 

thermal tallies over all the batches. Likewise, these fluctuations are also absent in the 

spatial flux profiles obtained from MCNP. Further comparison of the spatial flux profiles 

along the lattice divider column 5/6 and row D/E indicates that the Serpent 2 flux profiles 

along the row D/E are more consistent with the results from MCNP. This is also realized 

when comparing the average difference between the Serpent 2 and MCNP bin tallies in 

Table 6.5.  

 Neutrons traveling perpendicular to the fuel plates (y-axis) must travel through 

more water and high absorption fuel plates than the direction parallel to the fuel plate (x-

axis direction). Thus, the total mean free paths a neutron with energy E must travel to 

leak from the system in the parallel direction is lesser than the perpendicular direction. 

Consequently, less particles per batch are reaching the bins along the column divider 5/6 

within the active core when compared to the row divider D/E on a consistent basis. 

Therefore, increasing the batch sample population in Serpent 2 will decrease the tally 

variance and provide smooth spatial flux profiles along the column divider 5/6. 

Nevertheless, the spatial flux profiles along the column divider 5/6 for both the thermal 

and fast group follow the general trend of the spatial profile obtained from MCNP.  
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Figure 6.16 Core mid-plane flux traverse along lattice column 5/6 (top) thermal, (bottom) 
fast 
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 Comparison of the thermal spatial flux profile along the row divider D/E for the 

top-core and bottom-core planes is provided in Figure 6.17. The effect of the control rods 

can be seen in thermal spatial flux profile of the top-plane (top plot of Figure 6.17) for the 

positions in between lattice D7 and E7 (15 cm x-axis coordinate). Ultimately, the 

inclusion of control rods results in steep flux gradients in the inner-core region such that 

the flux oscillates from 1.0 to 0.65 flux fraction three times over the span of 30cm. 

Regarding the difference in the spatial solution between the models, the average bin 

difference at the top plane was 0.0230 ± .0233 flux fraction; however, it should be noted 

that two tally bins had differences greater than 0.15 flux fraction. 

 Of all the spatial flux profiles, the traverse along the row D/E at the bottom-core 

plane (bottom plot Figure 6.17) had the largest tally differences between the two models. 

Where, on average the two models differed by 0.0378 ± 0.0272 flux fraction. Ultimately, 

the difference between the two models comes from the magnitude of the spatial profile as 

the overall spatial shape is consistent between the models. It is possible this the error is 

due to an insufficient sample population size, or bad tallies from a non-converged fission 

source; however, further investigation is needed before a concrete reason for this 

discrepancy can be given. To support the validation of the MSTR Serpent 2 model; a 70-

group energy spectrum tally (Figure 6.18) is obtained for fuel elements in lattice locations 

D5 (top plot) and D9 (bottom plot). The element locations were chosen to provide 

spectrums from various locations in the core. Where, element D5 is surrounded by three 

fuel elements and a regulating rod element and element D9 is surrounded by two fuel 

elements and the water reflector. 
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Figure 6.17 Serpent 2 spatial flux profile comparison for the lattice divider along row 
D/E: (top) top-core plane, (bottom) bottom-core plane 
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 The energy bin structure for the tally follows the default 70-group intermediate 

energy structure that Serpent 2 uses to assemble spatial homogenization tallies before 

collapsing them into the few-group structure. Essentially, the energy spectrum, in 

addition to the spatial flux distribution, ensures that the interaction rates between the 

Serpent 2 and MCNP model are consistent. The average difference between the Serpent 2 

and MCNP model for the energy spectrum in lattice D5 across all bins is 5.3084E-04 ± 

7.21275E-04 flux fraction and 6.7746E-04 ± 9.4088E-04 flux fraction for the element in 

lattice location D9. Therefore, the results of the energy spectrum tallies for both the 

Serpent 2 and MCNP models suggest that the energy spectrums in these elements are 

equivalent. 

6.2.4. 2-D Benchmark Description. The 2-D MSTR benchmark is prepared 

through the spatial homogenization of the validated 120w core configuration Serpent 2 

MSTR model. Because spatial homogenization routines in Serpent 2 rely upon analog 

estimators; inclusion of the entire reactor pool results in prohibitively large sample 

population sizes necessary to obtain tallies throughout the reactor pool. To limit the 

sample population size, the boundary of the full core model is reduced such that the 

thickness of the water reflector outside of the core is considered an infinite reflector. 

Therefore, the total reactivity of the system may be reduced by limitation of the 

boundary; however, the expected deviation in total reactivity compared to the full reactor 

pool model should not amount to more than a few pcm. Most of the neutron leakage will 

occur at the right side of the geometry due to the beam port being located close to the 

geometric boundary. 
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Figure 6.18 70-group neutron flux in elements (top) D5 and (bottom) D9 
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 As mentioned in the previous section, each occupied core lattice is spatially 

homogenized to provide their corresponding multi-group constants. Outside of the grid 

plate, the reactor pool is split into two regions that are divided at the front face of the 

thermal column gamma shield (see Figure 6.19). The region immediately outside of the 

grid plate contains the reactor pool water and portions of the beam port (region identifier 

24, see Figure 6.19). The other region contains the entire thermal column, its surrounding 

reactor pool water, and portions of the beam port (region identifier 25, see Figure 6.19). 

The computational mesh corresponding to the defined spatial homogenization regions is 

prepared with the frontal algorithm in GMESH using a hybrid triangular mesh in which 

100 Lloyd smoothing steps are applied. The foregoing results in the improvement of the 

anisotropy of the unstructured mesh regions. The core lattice within the grid plate is 

structured to reduce the accumulation of error by the introduction of degenerate elements 

in this region, whereas the unstructured region contains the geometry outside of the grid 

plate (region identifiers 24 and 25, see Figure 6.19). 

 The 2-D MSTR benchmark is prepared for two cases. The first being, no 

hydrogen transport correction curve; and the second including a hydrogen transport 

correction curve. The foregoing permits error quantification associated with the out-

scatter approximation used in Monte Carlo codes to calculate diffusion coefficients. For 

each case, the benchmark is conducted with scattering matrices of the zeroth order and up 

to the third order to demonstrate the effect of anisotropic scattering. The reason for this is 

that the 𝑆𝑆0 matrices tend to under estimate the criticality and the 𝑆𝑆1 terms overestimate 

the criticality eigenvalue [44]. The two tables that contain the multi-group constants 

prepared by Serpent 2 from 375E+6 neutron histories for the 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆3 transport 
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approximations are in Appendix D. The region number in the tables in Appendix D 

references to the region number in Figure 6.19. Each table in Appendix D contains both 

the zeroth and third order scattering cross sections denoted by 𝛴𝛴𝑠𝑠,𝑐𝑐𝑡𝑡𝑑𝑑𝑒𝑒𝑡𝑡. Since preparation 

of the benchmark results in two energy groups divided at 0.625 eV, the thermal group chi 

is zero and therefore omitted from the tables. 

 

 

Figure 6.19 MSTR 2D benchmark geometry 
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6.2.5. Benchmark Results. The 2-D MSTR benchmark was conducted with  

triangular mesh sizes of ∆𝑥𝑥,𝑦𝑦= 3, 2, 1, and 0.50 cm. Table 6.6 presents the eigenvalue 

results of both 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆3 approximations in which: (1) no hydrogen transport 

correction curve is applied; and (2) only the 𝑆𝑆0 scattering matrices are considered. The 

converged eigenvalues for the 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆3 approximations concerning this case were 

0.96525 and 0.97387 respectively. Note that none of the linear element cases were able to 

converge. In regard to the quadratic cases, the mesh size in which the eigenvalue 

converged was ∆𝑥𝑥,𝑦𝑦= 0.5 cm. Likewise, the first cubic case that converged was ∆𝑥𝑥,𝑦𝑦= 2 

cm. Application of the 𝑆𝑆𝑆𝑆3 approximation over the 𝑆𝑆𝑆𝑆1/diffusion approximation 

improved the converged eigenvalue result by 885 pcm. However, when considering the 

reference Serpent 2 eigenvalue of 0.999481 ± 0.00007 the total difference in reactivity 

was -2629.46 pcm.  

 

Table 6.6 2-D MSTR benchmark eigenvalue results: P0 scattering matrices and no 
Hydrogen transport correction curve  

 

Element 
shape

Order Total 
unknowns

Total 
unknowns

Triangular Linear 3 x 3 0.969748 -3066.07 4,306 0.978006 -2195.77 8,612

- - 2 x 2 0.967446 -3311.28 9,462 0.975883 -2418.13 18,924

- - 1 x 1 0.965898 -3476.89 35,040 0.974458 -2567.91 70,080

- - 0.5 x 0.5 0.965429 -3527.15 133,966 0.974119 -2603.54 267,932

- Quadratic 3 x 3 0.965533 -3516.02 16,894 0.973931 -2623.44 33,788

- - 2 x 2 0.965327 -3538.05 37,362 0.973931 -2623.44 26,788

- - 1 x 1 0.965262 -3545.07 139,198 0.973876 -2629.14 278,396

- - 0.5 x 0.5 0.965255 -3545.81 533,954 0.973873 -2629.47 1,067,908

- Cubic 3 x 3 0.965267 -3544.55 37,766 0.973884 -2628.36 75,532

- - 2 x 2 0.965257 -3545.58 83,702 0.973875 -2629.27 167,404

- - 1 x 1 0.965254 -3545.86 312,476 0.973873 -2629.46 624,952

S𝑆𝑆1 keff
S𝑆𝑆1 

∆ρ pcm∆𝑥𝑥,𝑦𝑦(cm) S𝑆𝑆3 keff
S𝑆𝑆3 

∆ρ pcm
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 Table 6.7 reflects the results of the 2-D MSTR benchmark concerning the case in 

which there is: (1) no Hydrogen transport correction curve; and (2) the scattering 

macroscopic cross sections now include up to the 𝑆𝑆3 order. The results of Table 6.7, 

reveal convergence as previously discussed in Table 6.6. The converged eigenvalues for 

both 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆3 approximations concerning the case presented in Table 6.7 were 

0.98302 and 0.99176 respectively. Furthermore, the inclusion of scattering matrices up to 

the 𝑆𝑆3 order further improved the converged eigenvalues over the 𝑆𝑆0 case by 1807.69 and 

1803.86 pcm respectively. Moreover, with respect to the Serpent eigenvalue; the 𝑆𝑆𝑆𝑆3 

approximation that includes up to the 𝑆𝑆3 order further reduced the total reactivity 

difference to -777.620 pcm.    

 

Table 6.7 2-D MSTR benchmark eigenvalue results: up to P3 scattering matrices and no 
Hydrogen transport correction curve 

 

 

 Preparation of the 2-D MSTR benchmark with the in-scatter Hydrogen transport 

correction curve [33] to correct the macroscopic transport cross section for the out-scatter 

Element 
shape

Order Total 
unknowns

Total 
unknowns

Triangular Linear 3 x 3 0.987473 -1216.03 4,306 0.995842 -365.38 8,612

- - 2 x 2 0.985194 -1450.17 9,462 0.993749 -576.80 18,924

- - 1 x 1 0.983663 -1608.09 35,040 0.992346 -719.05 70,080

- - 0.5 x 0.5 0.983198 -1656.08 133,966 0.991924 -761.87 267,932

- Quadratic 3 x 3 0.983307 -1644.85 16,894 0.992018 -752.32 33,788

- - 2 x 2 0.983099 -1666.35 37,362 0.991827 -771.74 26,788

- - 1 x 1 0.983033 -1673.20 139,198 0.991772 -777.29 278,396

- - 0.5 x 0.5 0.983026 -1673.91 533,954 0.991769 -777.61 1,067,908

- Cubic 3 x 3 0.983038 -1672.68 37,766 0.991780 -776.52 75,532

- - 2 x 2 0.983028 -1673.68 83,702 0.991771 -777.41 167,404

- - 1 x 1 0.983026 -1673.96 312,476 0.991769 -777.60 624,952

S𝑆𝑆1 keff
S𝑆𝑆1 

∆ρ pcm∆𝑥𝑥,𝑦𝑦(cm) S𝑆𝑆3 keff
S𝑆𝑆3 

∆ρ pcm
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approximation results in an average reduction to the fast group diffusion coefficients of 

1.94% ± 0.74%. For the thermal group, the average increase to the diffusion coefficients 

was 9.37% ± 1.87%. Furthermore, the foregoing changes to the diffusion coefficients 

increased the difference in total reactivity between the referenced Serpent 2 and the FEM 

solution to -820.84 pcm. 

 Figure 6.20 reveals the thermal flux traverses along the lattice divider of row D/E 

for both 𝑆𝑆𝑆𝑆1 and  𝑆𝑆𝑆𝑆3 simulations as discussed in the benchmark description (section 

6.2.4). Use of a fine mesh tally in Serpent 2 resulted in the referenced flux traverse 

solution. The tally bin in the axial direction includes the entire geometry, from the top to 

the bottom of the reactor pool, thereby providing the means to compare the FEM 

solutions. Since the lattice divider of row D/E crosses into the fuel plates within the core; 

increased thermal absorption macroscopic cross sections result in a local perturbation 

about these points as revealed within Figure 6.20. Notwithstanding the local 

perturbations, use of the 𝑆𝑆𝑆𝑆3 approximation results in an improvement in the scalar flux 

traverse. Furthermore, the 𝑆𝑆𝑆𝑆3 solution follows the general trend of the Serpent 2 

reference flux traverse. 

 Figure 6.21 is the fast group scalar flux traverse along the lattice divider of row 

D/E. The fast scalar flux results indicate minimal improvement of the 𝑆𝑆𝑆𝑆1 and the  𝑆𝑆𝑆𝑆3  

solutions. Both 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆3 solutions have nearly identical maximum points at 

approximately 38 cm. Furthermore, minimal deviations concerning the Serpent solution 

occur immediately outside of the core within the water reflector and the locations that 

correspond to the corners of the fuel element. The peaks between the corners of the fuel 

elements correspond to the absorption of thermal neutrons in Figure 6.20. Inasmuch as 
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those thermal neutrons result in nuclear fission thereby give rise to the production of fast 

neutrons.  

 

 

Figure 6.20 2-D MSTR Benchmark: thermal group scalar flux traverses along the lattice 
divider of row D/E 
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Figure 6.21 2-D MSTR Benchmark: fast group scalar flux traverses along the lattice 
divider of row D/E 

 

 Figure 6.22 demonstrates the thermal flux traverse along the lattice divider 5/6. 

Application of the 𝑆𝑆𝑆𝑆3 approximation yields a significant better thermal flux solution as 

compared to the 𝑆𝑆𝑆𝑆1 approximation. However, there remains a significant deviation when 

one compares the Serpent 2 to the best 𝑆𝑆𝑆𝑆3 solution. It should be noted that validation of 

the Serpent 2 MSTR model discussed in Section 6.2.3, indicates that anisotropies exist in 

this direction. Since the 𝑆𝑆𝑆𝑆3 approximation includes higher-order moments, increased 
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resolution of the flux solution occurs. Furthermore, inclusion of the scattering matrices up 

to the 𝑆𝑆3 order revealed better solutions in both the 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆3 approximations. 

Moreover, the foregoing provides support for the existence of anisotropies in this 

direction.  

 

 

Figure 6.22 2-D MSTR Benchmark: thermal group scalar flux traverses along the lattice 
divider of column 5/6 
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Figure 6.23 2-D MSTR Benchmark: fast group scalar flux traverses along the lattice 
divider of column 5/6 

 

 For the most part, Figure 6.23 indicates that the fast flux solutions along the 

lattice divider of column 5/6 reveal virtually identical values when evaluating the 𝑆𝑆𝑆𝑆1, 

𝑆𝑆𝑆𝑆3, and Serpent 2 flux traverses; However, an approximate 3% deviation in the flux 

fraction exists between the 𝑆𝑆𝑆𝑆1/𝑆𝑆𝑆𝑆3 and Serpent 2 reference solution as the flux 
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approaches the rear side of the grid plate in the direction of the thermal column. No 

significant deviations exist between the 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆3 solutions. 

 Construction of a relative thermal flux error map (Figure 6.24) through 

interpolation of the simulation results of both Serpent 2 (see Appendix E for the Serpent 

2 tally relative error map) and the quadratic ∆𝑥𝑥,𝑦𝑦= 0.5 FEM 𝑆𝑆𝑆𝑆3 approximation with 

scattering matrices up to the 𝑆𝑆3 order on a structured grid of mesh size ∆𝑥𝑥,𝑦𝑦= 0.1 cm 

provides the most accurate means to check the spatial deviations of the thermal flux 

distribution. Due to spatial homogenization of the cross sections, large deviations will 

appear in regions with high localized absorbers such as the control rods and the cadmium 

rabbit tube. Therefore, application of the relative thermal error flux map should be 

limited to the regions away from the high localized absorbers. In consideration of the 

foregoing, the relative thermal flux errors are consistently 10% over the entire core 

lattice.   
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Figure 6.24 2-D MSTR benchmark: relative thermal flux error map between Serpent 2 
and FEM quadratic 0.5 cm mesh 
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7. CONCLUSION  

 A finite element framework reactor analysis framework was developed so as to 

include the capability of approximating the multi-group neutron diffusion equation and 

the simplified spherical harmonics transport equations in arbitrary geometries. The 

preliminary 2-D IAEA PWR benchmark indicated correct implementation of the 

framework because convergence to the published criticality eigenvalue of 1.029585 is 

observed for all element shapes and orders. Additionally, verification of the thermal 

spatial flux convergence through the assembly averaged fluxes for the quadratic 

triangular element with mesh size ∆𝑥𝑥,𝑦𝑦= 2  cm was obtained. The average relative 

percent error concerning the referenced values over all sub-assemblies was 0.3360%. 

 Validation of the MSTR Serpent 2 model concerning the approach to criticality 

experiment for the 120w configuration resulted in agreement of the criticality 

eigenvalues. The criticality eigenvalues of the MCNP and Serpent 2 model was 0.99976 

± .00004 for the MCNP model and 0.99959 ± 0.00006 for the Serpent 2 model result in 

an absolute difference of 17.4 ± 7.54 pcm. Spatial flux traverses along the lattice divider 

of row D/E and column 5/6 at the top, bottom, and mid-core planes are consistent 

between the two models; however, the traverses for the row D/E were smoother and had 

less relative errors between the bins. The foregoing suggests that the flux in the MSTR is 

anisotropic. Furthermore, the average relative difference of the 70-group flux spectrum 

between the MCNP and Serpent 2 model in element D5 was 5.314E − 04 ±  7.13E −

04 flux fraction and 6.77𝐸𝐸 − 4 ± 9.41𝐸𝐸 − 4 flux fraction for the element D9. Thus, 

construction of a validation chain between the physical experiments, the validated MCNP 
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120w configuration model, and the Serpent 2 model supports the proposed 2-D MSTR 

benchmark.  

 Application of the 2-D MSTR benchmark to the neutron diffusion equation while 

neglecting the scattering matrices greater than the zeroth order resulted in a converged 

criticality eigenvalue of 0.96525. Further improvements to the criticality eigenvalue were 

observed when employing the 𝑆𝑆𝑆𝑆3 equations to the 2-D MSTR benchmark. The 𝑆𝑆𝑆𝑆3 

simulation resulted in a criticality eigenvalue of 0.97387, for an increase in total 

reactivity of 885 pcm over the diffusion eigenvalue.  

 Inclusion of the scattering matrices up to the 𝑆𝑆3 order resulted in an 𝑆𝑆𝑆𝑆3 

eigenvalue of 0.99176 with a difference of total reactivity with respect to the Serpent 2 

reference eigenvalue of -777.60 pcm. Since the MSTR violates the necessary 

assumptions to derive Fick’s law, as seen through the poor eigenvalues and spatial flux 

solutions, the diffusion equation should not be applied for the analysis of the MSTR. The 

improvements in the criticality eigenvalue and the magnitude of the spatial flux solution 

along the lattice divider column 5/6 when considering the 𝑆𝑆𝑆𝑆3 equations and the 

scattering up to the 𝑆𝑆3 order indicate that the flux is anisotropic and less diffusive in the 

direction perpendicular to the front face of the thermal column.   

 Application of the in-scatter Hydrogen transport correction curve to correct the 

out-scatter approximation resulted in an average increase of the thermal group’s diffusion 

coefficients by 9.37% ± 1.87%. Consequently, the corrected diffusion coefficients result 

in a larger criticality eigenvalue deviation of -820.84 pcm as compared to the non-

corrected diffusion coefficients of -777.60 pcm with respect to the referenced Serpent 2 

eigenvalue. The reason for such difference in deviation is due to the in-scatter’s smaller 
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ratio of 𝛴𝛴𝑡𝑡𝑡𝑡/𝛴𝛴𝑇𝑇 in the thermal energy region about 10−6 MeV. Thus, Serpent 2 calculates 

a smaller macroscopic transport cross section than the transport cross section calculated 

by the out-scatter approximation. Since my work did not include generation of an in-

scatter Hydrogen transport correction curve, it is advisable that additional investigation 

concerning the preparation of a fine Hydrogen transport correction curve, as discussed in 

section 5.2 to resolve any potential error that may have been introduced using a 

correction curve from previously published data using a plot digitizer. 

 Although considerable improvement of the eigenvalue and spatial flux solutions 

are observed when applying the 𝑆𝑆𝑆𝑆3 equations to the 2-D MSTR benchmark, the results 

are not strong enough to suggest that the framework is validated in the case of the MSTR. 

I believe this to be so, as spatial homogenization with the full core flux solution is a 

highly idealized case and does not represent the typical methodologies used in practice. 

Furthermore, it is likely that differences greater than -777.60 pcm with respect to the 

reference solution will be observed with the traditional spatial homogenization 

methodology. Nevertheless, results of the 2-D IAEA benchmark indicate that the 

framework is viable so long as the flux is not strongly anisotropic. It is expected that the 

application of the 𝑆𝑆𝑆𝑆5 and 𝑆𝑆𝑆𝑆7 equations will result in further improvements regarding 

the 2-D MSTR benchmark and will result in further extension of the framework to a 

broader class of reactor types.  

 Future work in connection with this thesis can be broken into two main 

categories: finite element framework development; and MSTR benchmark 

improvements. The first matter that should be addressed is the implementation of the 

framework in compiled computer language (Fortran, C++, etc.). Doing so would permit 



122 
 

use of the frameworks 3-D discretization capabilities, its application to time-dependent 

and large-scale problems. Application of the 𝑆𝑆𝑆𝑆𝑛𝑛 equations have shown that unless 

prohibitively small mesh sizes are employed, the low-order interpolation polynomials 

will not yield numerical convergence. Therefore, higher-order interpolation polynomials 

should be implemented to permit the use of larger mesh sizes to further reduce the 

computational burden in comparison to the small mesh sizes. Future FEM framework 

development should also include implementation of a hybrid continuous/discontinuous 

Galerkin formulation where DG-FEM is used at interfaces and CG-FEM is used for the 

remainder of the computational domain. Implementation of CG/DG-FEM in this manner 

would limit the increase in computational cost which stems from an increase in the 

degrees of freedom associated with the DG-FEM formulation. 

 Following the implementation of the FEM framework in a compiled computer 

language, a 3-D MSTR benchmark should be prepared for further framework validation. 

However, it is advisable to investigate the calculation of albedos in Serpent 2 for further 

domain reduction. Essentially, this would reduce the number of elements and nodal 

points in the computational mesh and reduce the possible error introduced from inclusion 

of regions where the tally uncertainty may be large. This investigation can initially be 

conducted in consideration of the 2-D of the benchmark in the frameworks current state. 

Since the stochastic generation of the multigroup constants using the full core flux 

solution in Serpent 2 permits the preparation of an MSTR benchmark, sensitivity analysis 

concerning the stochastic multigroup parameters should be investigated to quantify the 

introduction of errors associated with the uncertainty of the stochastic multigroup 

constants.     
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Triangular Elements 
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Quadratic Interpolation Polynomial 

𝜓𝜓�𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑋𝑋�2 + 𝑁𝑁𝑗𝑗𝑌𝑌�2 + 𝑐𝑐𝑗𝑗𝑋𝑋�𝑌𝑌� + 𝑑𝑑𝑗𝑗𝑌𝑌� + 𝑛𝑛𝑗𝑗𝑋𝑋� + 𝑓𝑓𝑗𝑗 . 

Quadratic Reference Node Coordinates 

�̂�𝐴1 = (0, 0), 

�̂�𝐴2 = (1, 0), 

�̂�𝐴3 = (0, 1), 

�̂�𝐴4 = (0.5, 0), 

�̂�𝐴5 = (0.5, 0.5), 

�̂�𝐴6 = (0, 0.5). 

Quadratic Reference Basis Functions 

𝜓𝜓�1�𝑋𝑋�,𝑌𝑌�� = 2𝑋𝑋�2 + 2𝑌𝑌�2 + 4𝑋𝑋�𝑌𝑌� − 3𝑋𝑋� − 3𝑌𝑌� + 1, 
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𝜓𝜓�2�𝑋𝑋�,𝑌𝑌�� = 2𝑋𝑋�2 − 𝑋𝑋�, 

𝜓𝜓�3�𝑋𝑋�,𝑌𝑌�� = 2𝑌𝑌�2 − 𝑌𝑌� , 

𝜓𝜓�4�𝑋𝑋�,𝑌𝑌�� = −4𝑋𝑋�2 − 4𝑋𝑋�𝑌𝑌� + 4𝑋𝑋,�  

𝜓𝜓�5�𝑋𝑋�,𝑌𝑌�� = 4𝑋𝑋�𝑌𝑌� , 

𝜓𝜓�6�𝑋𝑋�,𝑌𝑌�� = −4𝑌𝑌�2 − 4𝑋𝑋�𝑌𝑌� + 4𝑌𝑌� . 

 

Cubic Interpolation Polynomial 

𝜓𝜓�𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑋𝑋�3 + 𝑁𝑁𝑗𝑗𝑌𝑌�3 + 𝑐𝑐𝑗𝑗𝑋𝑋�2𝑌𝑌� + 𝑑𝑑𝑗𝑗𝑋𝑋�𝑌𝑌�2 + 𝑛𝑛𝑗𝑗𝑋𝑋�2 + 𝑓𝑓𝑗𝑗𝑌𝑌�2 + 𝑔𝑔𝑗𝑗𝑋𝑋�𝑌𝑌� + ℎ𝑗𝑗𝑌𝑌� + 𝑖𝑖𝑗𝑗𝑋𝑋� + 𝑗𝑗𝑗𝑗 . 

Cubic Reference Node Coordinates 

�̂�𝐴1 = (0, 0), 
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�̂�𝐴3 = (0, 1), 
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1
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Cubic Reference Basis Functions 

𝜓𝜓�1�𝑋𝑋�,𝑌𝑌�� = 1 − 5.5𝑋𝑋� − 5.5𝑌𝑌� + 18𝑋𝑋�𝑌𝑌� + 9𝑋𝑋�2 + 9𝑌𝑌�2 − 13.5𝑋𝑋�2𝑌𝑌� − 13.5𝑋𝑋�𝑌𝑌�2 − 4.5𝑋𝑋�3

− 4.5𝑌𝑌�3, 

𝜓𝜓�2�𝑋𝑋�,𝑌𝑌�� = 𝑋𝑋� − 4.5𝑋𝑋�2 + 4.5𝑋𝑋�3, 

𝜓𝜓�3�𝑋𝑋�,𝑌𝑌�� = 𝑌𝑌� − 4.5𝑌𝑌�2 + 4.5𝑌𝑌�3, 

𝜓𝜓�4�𝑋𝑋�,𝑌𝑌�� = 9𝑋𝑋� − 22.5𝑋𝑋�𝑌𝑌� − 22.5𝑋𝑋�2 + 27𝑋𝑋�2𝑌𝑌� + 13.5𝑋𝑋�𝑌𝑌�2 + 13.5𝑋𝑋�3, 

𝜓𝜓�5�𝑋𝑋�,𝑌𝑌�� = −4.5𝑋𝑋� + 4.5𝑋𝑋�𝑌𝑌� + 18𝑋𝑋�2 − 13.5𝑋𝑋�2𝑌𝑌� − 13.5𝑋𝑋�3, 

𝜓𝜓�6�𝑋𝑋�,𝑌𝑌�� = −4.5𝑋𝑋�𝑌𝑌� + 13.5𝑋𝑋�2𝑌𝑌� , 

𝜓𝜓�7�𝑋𝑋�,𝑌𝑌�� = −4.5𝑋𝑋�𝑌𝑌� + 13.5𝑋𝑋�𝑌𝑌�2, 

𝜓𝜓�8�𝑋𝑋�,𝑌𝑌�� = −4.5𝑌𝑌� + 4.5𝑋𝑋�𝑌𝑌� + 18𝑌𝑌�2 − 13.5𝑋𝑋�𝑌𝑌�2 − 13.5𝑌𝑌�3, 

𝜓𝜓�9�𝑋𝑋�,𝑌𝑌�� = 9𝑌𝑌� − 22.5𝑋𝑋�𝑌𝑌� − 22.5𝑌𝑌�2 + 27𝑋𝑋�𝑌𝑌�2 + 13.5𝑋𝑋�2𝑌𝑌� + 13.5𝑌𝑌�3, 

𝜓𝜓�10�𝑋𝑋�,𝑌𝑌�� = 27𝑋𝑋�𝑌𝑌� − 27𝑋𝑋�2𝑌𝑌� − 27𝑋𝑋�𝑌𝑌�2. 

 

Tetrahedral Elements 

 

Affine Mapping 
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�
𝑀𝑀22𝑀𝑀33 − 𝑀𝑀23𝑀𝑀32 𝑀𝑀13𝑀𝑀32 − 𝑀𝑀12𝑀𝑀33 𝑀𝑀12𝑀𝑀23 − 𝑀𝑀13𝑀𝑀22
𝑀𝑀23𝑀𝑀31 − 𝑀𝑀21𝑀𝑀33 𝑀𝑀11𝑀𝑀33 − 𝑀𝑀13𝑀𝑀31 𝑀𝑀13𝑀𝑀21 − 𝑀𝑀11𝑀𝑀23
𝑀𝑀21𝑀𝑀32 − 𝑀𝑀22𝑀𝑀31 𝑀𝑀12𝑀𝑀31 − 𝑀𝑀11𝑀𝑀32 𝑀𝑀11𝑀𝑀22 − 𝑀𝑀12𝑀𝑀21

� ∙
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�, 

𝑀𝑀11 = 𝜕𝜕2 − 𝜕𝜕1, 

𝑀𝑀12 = 𝜕𝜕3 − 𝜕𝜕1, 

𝑀𝑀13 = 𝜕𝜕4 − 𝜕𝜕1, 

𝑀𝑀21 = 𝜕𝜕2 − 𝜕𝜕1, 
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𝑀𝑀22 = 𝜕𝜕3 − 𝜕𝜕1, 

𝑀𝑀23 = 𝜕𝜕4 − 𝜕𝜕1, 

𝑀𝑀31 = 𝑑𝑑2 − 𝑑𝑑1, 

𝑀𝑀32 = 𝑑𝑑3 − 𝑑𝑑1, 

𝑀𝑀33 = 𝑑𝑑4 − 𝑑𝑑1. 
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𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕2

=
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�2
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕
�
2

+
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�2
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕
�
2

+
𝜕𝜕2𝜓𝜓�

𝜕𝜕�̂�𝑍2
�
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕
�
2

+ 2
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕𝑌𝑌�
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕
�

+ 2
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕
� + 2

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕
�, 

 

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑑𝑑2

=
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�2
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝑑𝑑
�
2

+
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�2
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝑑𝑑
�
2

+
𝜕𝜕2𝜓𝜓�

𝜕𝜕�̂�𝑍2
�
𝜕𝜕�̂�𝑍
𝜕𝜕𝑑𝑑
�
2

+ 2
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕𝑌𝑌�
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝑑𝑑

𝜕𝜕𝑌𝑌�
𝜕𝜕𝑑𝑑
�

+ 2
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝑑𝑑

𝜕𝜕�̂�𝑍
𝜕𝜕𝑑𝑑
� + 2

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝑑𝑑

𝜕𝜕�̂�𝑍
𝜕𝜕𝑑𝑑
�, 

 

𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�2
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝑑𝑑𝜕𝜕
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�2
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝑑𝑑𝜕𝜕
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕�̂�𝑍2
�
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝑑𝑑𝜕𝜕
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕𝑌𝑌�
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕
�

+
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

+
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝑑𝑑𝜕𝜕
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

+
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝑑𝑑𝜕𝜕
�, 

 

𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕𝜕𝜕𝑑𝑑

=
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�2
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝑑𝑑𝑑𝑑
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�2
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝑑𝑑𝑑𝑑
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕�̂�𝑍2
�
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝑑𝑑𝑑𝑑
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕𝑌𝑌�
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝜕𝜕𝑑𝑑

+
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝜕𝜕𝑑𝑑
�

+
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝜕𝜕𝑑𝑑

+
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝑑𝑑𝑑𝑑
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝜕𝜕𝑑𝑑

+
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝑑𝑑𝑑𝑑
�, 

 

𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕𝜕𝜕𝑑𝑑

=
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�2
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝑑𝑑𝑑𝑑
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�2
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝑑𝑑𝑑𝑑
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕�̂�𝑍2
�
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝑑𝑑𝑑𝑑
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕𝑌𝑌�
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝜕𝜕𝑑𝑑

+
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝜕𝜕𝑑𝑑
�

+
𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑌𝑌�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝜕𝜕𝑑𝑑

+
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌�
𝑑𝑑𝑑𝑑
� +

𝜕𝜕2𝜓𝜓�

𝜕𝜕𝑋𝑋�𝜕𝜕�̂�𝑍
�
𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

𝜕𝜕�̂�𝑍
𝜕𝜕𝑑𝑑

+
𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋�
𝑑𝑑𝑑𝑑
�, 

 

𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

=
𝑀𝑀22𝑀𝑀33 −𝑀𝑀23𝑀𝑀32

det𝑀𝑀
,  

𝜕𝜕𝑋𝑋�
𝜕𝜕𝜕𝜕

=
𝑀𝑀13𝑀𝑀32 −𝑀𝑀12𝑀𝑀33

det𝑀𝑀
,  

𝜕𝜕𝑋𝑋�
𝜕𝜕𝑑𝑑

=
𝑀𝑀12𝑀𝑀23 −𝑀𝑀13𝑀𝑀22

det𝑀𝑀
,  
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𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

=
𝑀𝑀23𝑀𝑀31 − 𝑀𝑀21𝑀𝑀33

det𝑀𝑀
,  

𝜕𝜕𝑌𝑌�
𝜕𝜕𝜕𝜕

=
𝑀𝑀11𝑀𝑀33 − 𝑀𝑀13𝑀𝑀31

det𝑀𝑀
,  

𝜕𝜕𝑌𝑌�
𝜕𝜕𝑑𝑑

=
𝑀𝑀13𝑀𝑀21 − 𝑀𝑀11𝑀𝑀23

det𝑀𝑀
,  

𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

=
𝑀𝑀21𝑀𝑀32 − 𝑀𝑀22𝑀𝑀31

det𝑀𝑀
,  

𝜕𝜕�̂�𝑍
𝜕𝜕𝜕𝜕

=
𝑀𝑀12𝑀𝑀31 − 𝑀𝑀11𝑀𝑀32

det𝑀𝑀
,  

𝜕𝜕�̂�𝑍
𝜕𝜕𝑑𝑑

=
𝑀𝑀11𝑀𝑀22 − 𝑀𝑀12𝑀𝑀21

det𝑀𝑀
.  

 

Linear Interpolation Polynomial 

𝜓𝜓�𝑗𝑗�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 𝑎𝑎𝑗𝑗𝑋𝑋� + 𝑁𝑁𝑗𝑗𝑌𝑌� + 𝑐𝑐𝑗𝑗�̂�𝑍 + 𝑑𝑑𝑗𝑗 , 𝑗𝑗 = 1,2,3,4, 

 

Linear Reference Node Coordinates 

�̂�𝐴1 = (0,0,0), 
�̂�𝐴2 = (1,0,0), 
�̂�𝐴3 = (0,1,0), 

�̂�𝐴4 = (0,0,1). 
 
 

Linear Tetrahedral Reference Basis Functions 

 
𝜓𝜓�1�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = −𝑋𝑋� − 𝑌𝑌� − �̂�𝑍 + 1.  

𝜓𝜓�2�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 𝑋𝑋�, 

𝜓𝜓�3�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 𝑌𝑌� , 
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𝜓𝜓�4�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = �̂�𝑍. 

 
Quadratic Interpolation Polynomial 

 
𝜓𝜓�𝑗𝑗�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 𝑎𝑎𝑗𝑗𝑋𝑋�2 + 𝑁𝑁𝑗𝑗𝑌𝑌�2 + 𝑐𝑐𝑗𝑗�̂�𝑍2 + 𝑑𝑑𝑗𝑗𝑋𝑋�𝑌𝑌� + 𝑛𝑛𝑗𝑗𝑋𝑋��̂�𝑍 + 𝑓𝑓𝑗𝑗𝑌𝑌��̂�𝑍 + 𝑔𝑔𝑗𝑗𝑋𝑋� + ℎ𝑗𝑗𝑌𝑌� + 𝑖𝑖𝑗𝑗�̂�𝑍 + 𝑗𝑗𝑗𝑗. 

 

Quadratic Reference Node Coordinates 

�̂�𝐴1 = (0, 0, 0), 

�̂�𝐴2 = (1, 0, 0), 

�̂�𝐴3 = (0, 1, 0), 

�̂�𝐴4 = (0, 0, 1), 

�̂�𝐴5 = (0.5, 0, 0), 

�̂�𝐴6 = (0.5, 0.5, 0), 

�̂�𝐴7 = (0, 0.5, 0), 

�̂�𝐴8 = (0, 0, 0.5), 

�̂�𝐴9 = (0, 0.5, 0.5), 

�̂�𝐴10 = (0.5, 0, 0.5). 

 

Quadratic Tetrahedral Reference Basis function 

𝜓𝜓�1�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 2𝑋𝑋�2 + 2𝑌𝑌�2 + 2�̂�𝑍2 + 4𝑋𝑋�𝑌𝑌� + 4𝑋𝑋��̂�𝑍 + 4𝑌𝑌��̂�𝑍 − 3𝑋𝑋� − 3𝑌𝑌� − 3�̂�𝑍 + 1, 

𝜓𝜓�2�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 2𝑋𝑋�2 − 𝑋𝑋�, 

𝜓𝜓�3�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 2𝑌𝑌�2 − 𝑌𝑌� , 

𝜓𝜓�4�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 2�̂�𝑍2 − 𝑍𝑍,�  

𝜓𝜓�5�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = −4𝑋𝑋�2 − 4𝑋𝑋�𝑌𝑌� − 4𝑋𝑋��̂�𝑍 + 4𝑋𝑋�, 

𝜓𝜓�6�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 4𝑋𝑋�𝑌𝑌� , 

𝜓𝜓�7�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = −4𝑌𝑌�2 − 4𝑋𝑋�𝑌𝑌� − 4𝑌𝑌��̂�𝑍 + 4𝑌𝑌� , 



131 
 

𝜓𝜓�8�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = −4�̂�𝑍2 − 4𝑋𝑋��̂�𝑍 − 4𝑌𝑌��̂�𝑍 + 4�̂�𝑍, 

𝜓𝜓�9�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 4𝑌𝑌��̂�𝑍, 

𝜓𝜓�10�𝑋𝑋�,𝑌𝑌� , �̂�𝑍� = 4𝑋𝑋��̂�𝑍. 

 



 
 

APPENDIX B 

SUPPLEMENTARY 2-D IAEA PWR BENCHMARK PLOTS 
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Figure IAEA 2D PWR Benchmark quadratic triangle h-refinement: (top) thermal, 
(bottom) fast flux traverse along x-axis  
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Figure IAEA 2D PWR Benchmark cubic triangle h-refinement: (top) thermal, (bottom) 
fast flux traverse along x-axis  
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Figure IAEA 2D PWR Benchmark linear quadrangle h-refinement: (top) thermal, 
(bottom) fast flux traverse along x-axis  
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Figure IAEA 2D PWR Benchmark linear triangle h-refinement: (top) thermal, (bottom) 
fast flux traverse along the line y = x  
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Figure IAEA 2D PWR Benchmark quadratic triangle h-refinement: (top) thermal, 
(bottom) fast flux traverse along the line y = x 



 
 

APPENDIX C 

SUPPLEMENTARY SERPENT 2 MSTR VALIDATION PLOTS 
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Figure Serpent 2 validation flux comparison along column 5/6 at the core top plane 

 

 

Figure Serpent 2 validation flux comparison along column 5/6 at the core bottom plane 



 
 

APPENDIX D 

2-D MSTR BENCHMARK MULTIGROUP CONSTANTS 
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Table M
STR 2D

 benchm
ark: H

ydrogen transport corrected diffusion coefficients  

 Region

1
1.4430

0.1657
5.764E-02

8.662E-05
6.296E-02

2.065E-04
5.116E-04

1.889E-02
7.736E-01

2.656E+00
0

0
0

0
0

2
1.4657

0.1825
5.277E-02

9.433E-05
5.757E-02

2.221E-04
4.952E-04

1.823E-02
7.311E-01

2.416E+00
0

0
0

0
0

3
1.6416

0.2600
2.960E-02

1.645E-04
3.217E-02

3.658E-04
2.544E-03

4.733E-02
5.416E-01

1.717E+00
8.082E-04

2.472E-02
2.476

2.437
1

4
1.6747

0.2780
2.628E-02

2.270E-04
2.852E-02

5.087E-04
3.846E-03

6.885E-02
5.255E-01

1.629E+00
1.361E-03

4.542E-02
2.474

2.437
1

5
1.6755

0.2782
2.623E-02

2.336E-04
2.845E-02

5.238E-04
3.843E-03

6.913E-02
5.250E-01

1.630E+00
1.359E-03

4.567E-02
2.474

2.437
1

6
1.6801

0.2761
2.616E-02

2.073E-04
2.840E-02

4.655E-04
3.829E-03

6.858E-02
5.233E-01

1.632E+00
1.356E-03

4.511E-02
2.475

2.437
1

7
1.6815

0.2754
2.611E-02

2.068E-04
2.832E-02

4.640E-04
3.829E-03

6.880E-02
5.227E-01

1.636E+00
1.355E-03

4.528E-02
2.475

2.437
1

8
1.6684

0.2829
2.634E-02

2.544E-04
2.856E-02

5.721E-04
3.870E-03

6.767E-02
5.283E-01

1.612E+00
1.370E-03

4.457E-02
2.473

2.437
1

9
1.6653

0.2839
2.650E-02

2.577E-04
2.873E-02

5.776E-04
3.898E-03

6.796E-02
5.299E-01

1.607E+00
1.378E-03

4.483E-02
2.473

2.437
1

10
1.6280

0.2645
2.924E-02

2.096E-04
3.172E-02

4.692E-04
3.169E-03

4.858E-02
5.460E-01

1.710E+00
8.087E-04

2.458E-02
2.473

2.437
1

11
1.6671

0.2831
2.643E-02

2.529E-04
2.866E-02

5.660E-04
3.890E-03

6.780E-02
5.291E-01

1.609E+00
1.377E-03

4.467E-02
2.473

2.437
1

12
1.6799

0.2754
2.618E-02

2.111E-04
2.841E-02

4.735E-04
3.840E-03

6.868E-02
5.234E-01

1.636E+00
1.359E-03

4.519E-02
2.475

2.437
1

13
1.6769

0.2776
2.654E-02

2.107E-04
2.882E-02

4.746E-04
3.876E-03

6.853E-02
5.252E-01

1.623E+00
1.372E-03

4.511E-02
2.475

2.437
1

14
1.6311

0.2639
2.910E-02

2.051E-04
3.157E-02

4.591E-04
3.173E-03

4.861E-02
5.448E-01

1.711E+00
8.094E-04

2.448E-02
2.473

2.437
1

15
1.6717

0.2788
2.650E-02

2.304E-04
2.877E-02

5.186E-04
3.896E-03

7.022E-02
5.271E-01

1.625E+00
1.379E-03

4.660E-02
2.474

2.437
1

16
1.6329

0.2637
2.910E-02

2.015E-04
3.158E-02

4.505E-04
3.151E-03

4.881E-02
5.441E-01

1.711E+00
8.077E-04

2.482E-02
2.473

2.437
1

17
1.6695

0.2794
2.663E-02

2.399E-04
2.889E-02

5.366E-04
3.907E-03

6.945E-02
5.281E-01

1.626E+00
1.380E-03

4.598E-02
2.473

2.437
1

18
1.6747

0.2791
2.625E-02

2.247E-04
2.849E-02

5.071E-04
3.857E-03

6.678E-02
5.262E-01

1.620E+00
1.368E-03

4.368E-02
2.474

2.437
1

19
1.6637

0.2003
4.193E-02

1.566E-04
4.562E-02

3.481E-04
1.181E-03

3.296E-02
6.173E-01

2.218E+00
0

0
0

0
0

20
1.6891

0.2734
2.610E-02

1.804E-04
2.835E-02

4.046E-04
3.822E-03

6.914E-02
5.205E-01

1.636E+00
1.361E-03

4.549E-02
2.478

2.437
1

21
1.6886

0.2734
2.609E-02

1.811E-04
2.834E-02

4.062E-04
3.821E-03

6.937E-02
5.204E-01

1.635E+00
1.360E-03

4.568E-02
2.478

2.437
1

22
1.6482

0.2085
4.267E-02

1.493E-04
4.645E-02

3.316E-04
6.853E-04

2.391E-02
6.298E-01

2.134E+00
0

0
0

0
0

23
1.6885

0.2725
2.610E-02

1.800E-04
2.835E-02

4.012E-04
3.816E-03

6.790E-02
5.207E-01

1.640E+00
1.356E-03

4.441E-02
2.478

2.437
1

24
1.5274

0.1681
5.662E-02

6.254E-05
6.195E-02

1.492E-04
5.247E-04

1.845E-02
7.313E-01

2.608E+00
0

0
0

0
0

25
1.5297

0.6405
2.932E-03

5.784E-05
2.917E-03

5.645E-05
1.693E-04

6.206E-03
2.631E-01

5.867E-01
0

0
0

0
0

𝐷𝐷
1,𝑡𝑡𝑡𝑡𝑐𝑐

𝐷𝐷
2,𝑡𝑡𝑡𝑡𝑐𝑐

Σ
𝑠𝑠0,1→

2
Σ
𝑠𝑠0,2→

1
Σ
𝑎𝑎,1

Σ
𝑎𝑎,2

Σ𝑒𝑒,1
Σ𝑒𝑒,2

ν�1
ν�2

χ1
Σ
𝑇𝑇,1

Σ
𝑇𝑇,2

Σ
𝑠𝑠0→

3,1→
2

Σ
𝑠𝑠0→

3,2→
1
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Table M
STR 2D

 benchm
ark: no H

ydrogen transport corrected diffusion coefficients  

 Region

1
1.4437

0.1541
5.765E-02

8.691E-05
6.297E-02

2.070E-04
5.116E-04

5.116E-04
9.288E-01

3.131E+00
0

0
0

0
0

2
1.4433

0.1694
5.276E-02

9.405E-05
5.762E-02

2.212E-04
4.952E-04

4.952E-04
8.715E-01

2.856E+00
0

0
0

0
0

3
1.6026

0.2382
2.962E-02

1.654E-04
3.219E-02

3.671E-04
2.543E-03

2.543E-03
6.320E-01

2.069E+00
8.066E-04

2.470E-02
2.476

2.437
1

4
1.6402

0.2518
2.628E-02

2.262E-04
2.852E-02

5.072E-04
3.850E-03

3.850E-03
6.118E-01

1.992E+00
1.361E-03

4.539E-02
2.474

2.437
1

5
1.6404

0.2517
2.623E-02

2.302E-04
2.846E-02

5.172E-04
3.844E-03

3.844E-03
6.113E-01

1.996E+00
1.359E-03

4.571E-02
2.474

2.437
1

6
1.6507

0.2511
2.614E-02

2.071E-04
2.838E-02

4.646E-04
3.831E-03

3.831E-03
6.091E-01

1.981E+00
1.356E-03

4.513E-02
2.475

2.437
1

7
1.6525

0.2505
2.611E-02

2.057E-04
2.835E-02

4.629E-04
3.826E-03

3.826E-03
6.082E-01

1.986E+00
1.356E-03

4.528E-02
2.475

2.437
1

8
1.6298

0.2544
2.633E-02

2.543E-04
2.856E-02

5.700E-04
3.869E-03

3.869E-03
6.152E-01

1.988E+00
1.370E-03

4.455E-02
2.473

2.437
1

9
1.6253

0.2553
2.650E-02

2.570E-04
2.874E-02

5.757E-04
3.898E-03

3.898E-03
6.172E-01

1.979E+00
1.378E-03

4.484E-02
2.473

2.437
1

10
1.5787

0.2396
2.925E-02

2.130E-04
3.172E-02

4.776E-04
3.170E-03

3.170E-03
6.376E-01

2.097E+00
8.089E-04

2.458E-02
2.473

2.437
1

11
1.6283

0.2549
2.643E-02

2.521E-04
2.866E-02

5.644E-04
3.888E-03

3.888E-03
6.163E-01

1.979E+00
1.376E-03

4.471E-02
2.473

2.437
1

12
1.6496

0.2505
2.620E-02

2.068E-04
2.843E-02

4.645E-04
3.842E-03

3.842E-03
6.094E-01

1.988E+00
1.360E-03

4.518E-02
2.475

2.437
1

13
1.6471

0.2525
2.653E-02

2.109E-04
2.880E-02

4.728E-04
3.878E-03

3.878E-03
6.113E-01

1.970E+00
1.373E-03

4.510E-02
2.475

2.437
1

14
1.5842

0.2394
2.910E-02

2.068E-04
3.158E-02

4.644E-04
3.176E-03

3.176E-03
6.364E-01

2.093E+00
8.092E-04

2.450E-02
2.473

2.437
1

15
1.6374

0.2524
2.650E-02

2.288E-04
2.876E-02

5.125E-04
3.895E-03

3.895E-03
6.136E-01

1.985E+00
1.379E-03

4.661E-02
2.474

2.437
1

16
1.5863

0.2393
2.910E-02

2.025E-04
3.158E-02

4.556E-04
3.152E-03

3.152E-03
6.354E-01

2.092E+00
8.072E-04

2.484E-02
2.473

2.437
1

17
1.6325

0.2524
2.663E-02

2.401E-04
2.889E-02

5.378E-04
3.906E-03

3.906E-03
6.151E-01

1.994E+00
1.379E-03

4.594E-02
2.473

2.437
1

18
1.6422

0.2531
2.625E-02

2.266E-04
2.848E-02

5.110E-04
3.854E-03

3.854E-03
6.127E-01

1.974E+00
1.368E-03

4.369E-02
2.474

2.437
1

19
1.6322

0.1847
4.193E-02

1.555E-04
4.562E-02

3.470E-04
1.182E-03

1.182E-03
7.469E-01

2.664E+00
0

0
0

0
0

20
1.6700

0.2505
2.610E-02

1.844E-04
2.836E-02

4.156E-04
3.827E-03

3.827E-03
6.056E-01

1.964E+00
1.361E-03

4.551E-02
2.478

2.437
1

21
1.6692

0.2506
2.609E-02

1.803E-04
2.834E-02

4.063E-04
3.822E-03

3.822E-03
6.057E-01

1.964E+00
1.360E-03

4.566E-02
2.478

2.437
1

22
1.6139

0.1920
4.267E-02

1.504E-04
4.645E-02

3.336E-04
6.864E-04

6.864E-04
7.611E-01

2.569E+00
0

0
0

0
0

23
1.6688

0.2498
2.610E-02

1.778E-04
2.836E-02

3.996E-04
3.811E-03

3.811E-03
6.059E-01

1.970E+00
1.355E-03

4.442E-02
2.478

2.437
1

24
1.5688

0.1571
5.662E-02

6.255E-05
6.195E-02

1.486E-04
5.249E-04

5.249E-04
8.787E-01

3.056E+00
0

0
0

0
0

25
1.5259

0.6281
2.940E-03

5.847E-05
2.930E-03

5.751E-05
1.693E-04

1.693E-04
3.043E-01

6.273E-01
0

0
0

0
0

𝐷𝐷
1

𝐷𝐷
2

Σ
𝑠𝑠,1→

2
Σ
𝑠𝑠,2→

1
Σ
𝑎𝑎,1

Σ
𝑎𝑎,2

Σ𝑒𝑒,1
Σ𝑒𝑒,2

ν�1
ν�2

χ1
Σ
𝑇𝑇,1

Σ
𝑇𝑇,2

Σ
𝑠𝑠0→

3,1→
2

Σ
𝑠𝑠0→

3,2→
1
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SERPENT 2 THERMAL FLUX MAP RELATIVE ERROR 
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GMSH INPUT: 120W MSTR CONFIGURATION  
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// MSTR CORE 120W CONFIGURATION 
// Wayne J. Brewster 
 
SetFactory("OpenCASCADE"); 
 
//-------------------------------------------------- 
// set mesh options  
//-------------------------------------------------- 
 
x = 3.0;                 // mesh size 
Mesh.ElementOrder = 1;   // element order 
Mesh.Lloyd = 100; // Lloyd smoothing steps  
Mesh.Algorithm = 6;         // Frontal algorithm 
 
//-------------------------------------------------- 
// Lattice Geometric Definitions 
//-------------------------------------------------- 
 
Point(1) = {-3.85445, 3.66903, 0, x}; 
Point(2) = {-3.85445, -4.43103, 0, x}; 
Point(3) = {-3.85445, -12.53109, 0, x}; 
Point(4) = {-3.85445, -20.63115, 0, x}; 
Point(5) = {-3.85445, -28.73121, 0, x}; 
Point(6) = {-3.85445, -36.83127, 0, x}; 
Point(7) = {-3.85445, -44.93133, 0, x}; 
Point(8) = {3.85445, 3.66903, 0, x}; 
Point(9) = {3.85445, -4.43103, 0, x}; 
Point(10) = {3.85445, -12.53109, 0, x}; 
Point(11) = {3.85445, -20.63115, 0, x}; 
Point(12) = {3.85445, -28.73121, 0, x}; 
Point(13) = {3.85445, -36.83127, 0, x}; 
Point(14) = {3.85445, -44.93133, 0, x}; 
Point(15) = {11.56335, 3.66903, 0, x}; 
Point(16) = {11.56335, -4.43103, 0, x}; 
Point(17) = {11.56335, -12.53109, 0, x}; 
Point(18) = {11.56335, -20.63115, 0, x}; 
Point(19) = {11.56335, -28.73121, 0, x}; 
Point(20) = {11.56335, -36.83127, 0, x}; 
Point(21) = {11.56335, -44.93133, 0, x}; 
Point(22) = {19.27225, 3.66903, 0, x}; 
Point(23) = {19.27225, -4.43103, 0, x}; 
Point(24) = {19.27225, -12.53109, 0, x}; 
Point(25) = {19.27225, -20.63115, 0, x}; 
Point(26) = {19.27225, -28.73121, 0, x}; 
Point(27) = {19.27225, -36.83127, 0, x}; 
Point(28) = {19.27225, -44.93133, 0, x}; 
Point(29) = {26.98115, 3.66903, 0, x}; 
Point(30) = {26.98115, -4.43103, 0, x}; 
Point(31) = {26.98115, -12.53109, 0, x}; 
Point(32) = {26.98115, -20.63115, 0, x}; 
Point(33) = {26.98115, -28.73121, 0, x}; 
Point(34) = {26.98115, -36.83127, 0, x}; 
Point(35) = {26.98115, -44.93133, 0, x}; 
Point(36) = {34.69005, 3.66903, 0, x}; 
Point(37) = {34.69005, -4.43103, 0, x}; 
Point(38) = {34.69005, -12.53109, 0, x}; 
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Point(39) = {34.69005, -20.63115, 0, x}; 
Point(40) = {34.69005, -28.73121, 0, x}; 
Point(41) = {34.69005, -36.83127, 0, x}; 
Point(42) = {34.69005, -44.93133, 0, x}; 
Point(43) = {42.39895, 3.66903, 0, x}; 
Point(44) = {42.39895, -4.43103, 0, x}; 
Point(45) = {42.39895, -12.53109, 0, x}; 
Point(46) = {42.39895, -20.63115, 0, x}; 
Point(47) = {42.39895, -28.73121, 0, x}; 
Point(48) = {42.39895, -36.83127, 0, x}; 
Point(49) = {42.39895, -44.93133, 0, x}; 
Point(50) = {50.10785, 3.66903, 0, x}; 
Point(51) = {50.10785, -4.43103, 0, x}; 
Point(52) = {50.10785, -12.53109, 0, x}; 
Point(53) = {50.10785, -20.63115, 0, x}; 
Point(54) = {50.10785, -28.73121, 0, x}; 
Point(55) = {50.10785, -36.83127, 0, x}; 
Point(56) = {50.10785, -44.93133, 0, x}; 
Point(57) = {57.81675, 3.66903, 0, x}; 
Point(58) = {57.81675, -4.43103, 0, x}; 
Point(59) = {57.81675, -12.53109, 0, x}; 
Point(60) = {57.81675, -20.63115, 0, x}; 
Point(61) = {57.81675, -28.73121, 0, x}; 
Point(62) = {57.81675, -36.83127, 0, x}; 
Point(63) = {57.81675, -44.93133, 0, x}; 
Point(64) = {65.52565, 3.66903, 0, x}; 
Point(65) = {65.52565, -4.43103, 0, x}; 
Point(66) = {65.52565, -12.53109, 0, x}; 
Point(67) = {65.52565, -20.63115, 0, x}; 
Point(68) = {65.52565, -28.73121, 0, x}; 
Point(69) = {65.52565, -36.83127, 0, x}; 
Point(70) = {65.52565, -44.93133, 0, x}; 
Line(1) = {1, 8}; 
Line(2) = {8, 15}; 
Line(3) = {15, 22}; 
Line(4) = {22, 29}; 
Line(5) = {29, 36}; 
Line(6) = {36, 43}; 
Line(7) = {43, 50}; 
Line(8) = {50, 57}; 
Line(9) = {57, 64}; 
Line(10) = {2, 9}; 
Line(11) = {9, 16}; 
Line(12) = {16, 23}; 
Line(13) = {23, 30}; 
Line(14) = {30, 37}; 
Line(15) = {37, 44}; 
Line(16) = {44, 51}; 
Line(17) = {51, 58}; 
Line(18) = {58, 65}; 
Line(19) = {3, 10}; 
Line(20) = {10, 17}; 
Line(21) = {17, 24}; 
Line(22) = {24, 31}; 
Line(23) = {31, 38}; 
Line(24) = {38, 45}; 
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Line(25) = {45, 52}; 
Line(26) = {52, 59}; 
Line(27) = {59, 66}; 
Line(28) = {4, 11}; 
Line(29) = {11, 18}; 
Line(30) = {18, 25}; 
Line(31) = {25, 32}; 
Line(32) = {32, 39}; 
Line(33) = {39, 46}; 
Line(34) = {46, 53}; 
Line(35) = {53, 60}; 
Line(36) = {60, 67}; 
Line(37) = {5, 12}; 
Line(38) = {12, 19}; 
Line(39) = {19, 26}; 
Line(40) = {26, 33}; 
Line(41) = {33, 40}; 
Line(42) = {40, 47}; 
Line(43) = {47, 54}; 
Line(44) = {54, 61}; 
Line(45) = {61, 68}; 
Line(46) = {6, 13}; 
Line(47) = {13, 20}; 
Line(48) = {20, 27}; 
Line(49) = {27, 34}; 
Line(50) = {34, 41}; 
Line(51) = {41, 48}; 
Line(52) = {48, 55}; 
Line(53) = {55, 62}; 
Line(54) = {62, 69}; 
Line(55) = {7, 14}; 
Line(56) = {14, 21}; 
Line(57) = {21, 28}; 
Line(58) = {28, 35}; 
Line(59) = {35, 42}; 
Line(60) = {42, 49}; 
Line(61) = {49, 56}; 
Line(62) = {56, 63}; 
Line(63) = {63, 70}; 
Line(64) = {1, 2}; 
Line(65) = {2, 3}; 
Line(66) = {3, 4}; 
Line(67) = {4, 5}; 
Line(68) = {5, 6}; 
Line(69) = {6, 7}; 
Line(70) = {8, 9}; 
Line(71) = {9, 10}; 
Line(72) = {10, 11}; 
Line(73) = {11, 12}; 
Line(74) = {12, 13}; 
Line(75) = {13, 14}; 
Line(76) = {15, 16}; 
Line(77) = {16, 17}; 
Line(78) = {17, 18}; 
Line(79) = {18, 19}; 
Line(80) = {19, 20}; 
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Line(81) = {20, 21}; 
Line(82) = {22, 23}; 
Line(83) = {23, 24}; 
Line(84) = {24, 25}; 
Line(85) = {25, 26}; 
Line(86) = {26, 27}; 
Line(87) = {27, 28}; 
Line(88) = {29, 30}; 
Line(89) = {30, 31}; 
Line(90) = {31, 32}; 
Line(91) = {32, 33}; 
Line(92) = {33, 34}; 
Line(93) = {34, 35}; 
Line(94) = {36, 37}; 
Line(95) = {37, 38}; 
Line(96) = {38, 39}; 
Line(97) = {39, 40}; 
Line(98) = {40, 41}; 
Line(99) = {41, 42}; 
Line(100) = {43, 44}; 
Line(101) = {44, 45}; 
Line(102) = {45, 46}; 
Line(103) = {46, 47}; 
Line(104) = {47, 48}; 
Line(105) = {48, 49}; 
Line(106) = {50, 51}; 
Line(107) = {51, 52}; 
Line(108) = {52, 53}; 
Line(109) = {53, 54}; 
Line(110) = {54, 55}; 
Line(111) = {55, 56}; 
Line(112) = {57, 58}; 
Line(113) = {58, 59}; 
Line(114) = {59, 60}; 
Line(115) = {60, 61}; 
Line(116) = {61, 62}; 
Line(117) = {62, 63}; 
Line(118) = {64, 65}; 
Line(119) = {65, 66}; 
Line(120) = {66, 67}; 
Line(121) = {67, 68}; 
Line(122) = {68, 69}; 
Line(123) = {69, 70}; 
Line Loop(1) = {10, -70, -1, 64}; 
Plane Surface(1) = {1}; 
Line Loop(2) = {11, -76, -2, 70}; 
Plane Surface(2) = {2}; 
Line Loop(3) = {12, -82, -3, 76}; 
Plane Surface(3) = {3}; 
Line Loop(4) = {13, -88, -4, 82}; 
Plane Surface(4) = {4}; 
Line Loop(5) = {14, -94, -5, 88}; 
Plane Surface(5) = {5}; 
Line Loop(6) = {15, -100, -6, 94}; 
Plane Surface(6) = {6}; 
Line Loop(7) = {16, -106, -7, 100}; 
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Plane Surface(7) = {7}; 
Line Loop(8) = {17, -112, -8, 106}; 
Plane Surface(8) = {8}; 
Line Loop(9) = {18, -118, -9, 112}; 
Plane Surface(9) = {9}; 
Line Loop(10) = {19, -71, -10, 65}; 
Plane Surface(10) = {10}; 
Line Loop(11) = {20, -77, -11, 71}; 
Plane Surface(11) = {11}; 
Line Loop(12) = {21, -83, -12, 77}; 
Plane Surface(12) = {12}; 
Line Loop(13) = {22, -89, -13, 83}; 
Plane Surface(13) = {13}; 
Line Loop(14) = {23, -95, -14, 89}; 
Plane Surface(14) = {14}; 
Line Loop(15) = {24, -101, -15, 95}; 
Plane Surface(15) = {15}; 
Line Loop(16) = {25, -107, -16, 101}; 
Plane Surface(16) = {16}; 
Line Loop(17) = {26, -113, -17, 107}; 
Plane Surface(17) = {17}; 
Line Loop(18) = {27, -119, -18, 113}; 
Plane Surface(18) = {18}; 
Line Loop(19) = {28, -72, -19, 66}; 
Plane Surface(19) = {19}; 
Line Loop(20) = {29, -78, -20, 72}; 
Plane Surface(20) = {20}; 
Line Loop(21) = {30, -84, -21, 78}; 
Plane Surface(21) = {21}; 
Line Loop(22) = {31, -90, -22, 84}; 
Plane Surface(22) = {22}; 
Line Loop(23) = {32, -96, -23, 90}; 
Plane Surface(23) = {23}; 
Line Loop(24) = {33, -102, -24, 96}; 
Plane Surface(24) = {24}; 
Line Loop(25) = {34, -108, -25, 102}; 
Plane Surface(25) = {25}; 
Line Loop(26) = {35, -114, -26, 108}; 
Plane Surface(26) = {26}; 
Line Loop(27) = {36, -120, -27, 114}; 
Plane Surface(27) = {27}; 
Line Loop(28) = {37, -73, -28, 67}; 
Plane Surface(28) = {28}; 
Line Loop(29) = {38, -79, -29, 73}; 
Plane Surface(29) = {29}; 
Line Loop(30) = {39, -85, -30, 79}; 
Plane Surface(30) = {30}; 
Line Loop(31) = {40, -91, -31, 85}; 
Plane Surface(31) = {31}; 
Line Loop(32) = {41, -97, -32, 91}; 
Plane Surface(32) = {32}; 
Line Loop(33) = {42, -103, -33, 97}; 
Plane Surface(33) = {33}; 
Line Loop(34) = {43, -109, -34, 103}; 
Plane Surface(34) = {34}; 
Line Loop(35) = {44, -115, -35, 109}; 
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Plane Surface(35) = {35}; 
Line Loop(36) = {45, -121, -36, 115}; 
Plane Surface(36) = {36}; 
Line Loop(37) = {46, -74, -37, 68}; 
Plane Surface(37) = {37}; 
Line Loop(38) = {47, -80, -38, 74}; 
Plane Surface(38) = {38}; 
Line Loop(39) = {48, -86, -39, 80}; 
Plane Surface(39) = {39}; 
Line Loop(40) = {49, -92, -40, 86}; 
Plane Surface(40) = {40}; 
Line Loop(41) = {50, -98, -41, 92}; 
Plane Surface(41) = {41}; 
Line Loop(42) = {51, -104, -42, 98}; 
Plane Surface(42) = {42}; 
Line Loop(43) = {52, -110, -43, 104}; 
Plane Surface(43) = {43}; 
Line Loop(44) = {53, -116, -44, 110}; 
Plane Surface(44) = {44}; 
Line Loop(45) = {54, -122, -45, 116}; 
Plane Surface(45) = {45}; 
Line Loop(46) = {55, -75, -46, 69}; 
Plane Surface(46) = {46}; 
Line Loop(47) = {56, -81, -47, 75}; 
Plane Surface(47) = {47}; 
Line Loop(48) = {57, -87, -48, 81}; 
Plane Surface(48) = {48}; 
Line Loop(49) = {58, -93, -49, 87}; 
Plane Surface(49) = {49}; 
Line Loop(50) = {59, -99, -50, 93}; 
Plane Surface(50) = {50}; 
Line Loop(51) = {60, -105, -51, 99}; 
Plane Surface(51) = {51}; 
Line Loop(52) = {61, -111, -52, 105}; 
Plane Surface(52) = {52}; 
Line Loop(53) = {62, -117, -53, 111}; 
Plane Surface(53) = {53}; 
Line Loop(54) = {63, -123, -54, 117}; 
Plane Surface(54) = {54}; 
 
//-------------------------------------------------- 
// Transfinite all plane surfaces to  
// create structured mesh in lattices 
//-------------------------------------------------- 
 
Transfinite Surface(1); 
Transfinite Surface(2); 
Transfinite Surface(3); 
Transfinite Surface(4); 
Transfinite Surface(5); 
Transfinite Surface(6); 
Transfinite Surface(7); 
Transfinite Surface(8); 
Transfinite Surface(9); 
Transfinite Surface(10); 
Transfinite Surface(11); 
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Transfinite Surface(12); 
Transfinite Surface(13); 
Transfinite Surface(14); 
Transfinite Surface(15); 
Transfinite Surface(16); 
Transfinite Surface(17); 
Transfinite Surface(18); 
Transfinite Surface(19); 
Transfinite Surface(20); 
Transfinite Surface(21); 
Transfinite Surface(22); 
Transfinite Surface(23); 
Transfinite Surface(24); 
Transfinite Surface(25); 
Transfinite Surface(26); 
Transfinite Surface(27); 
Transfinite Surface(28); 
Transfinite Surface(29); 
Transfinite Surface(30); 
Transfinite Surface(31); 
Transfinite Surface(32); 
Transfinite Surface(33); 
Transfinite Surface(34); 
Transfinite Surface(35); 
Transfinite Surface(36); 
Transfinite Surface(37); 
Transfinite Surface(38); 
Transfinite Surface(39); 
Transfinite Surface(40); 
Transfinite Surface(41); 
Transfinite Surface(42); 
Transfinite Surface(43); 
Transfinite Surface(44); 
Transfinite Surface(45); 
Transfinite Surface(46); 
Transfinite Surface(47); 
Transfinite Surface(48); 
Transfinite Surface(49); 
Transfinite Surface(50); 
Transfinite Surface(51); 
Transfinite Surface(52); 
Transfinite Surface(53); 
Transfinite Surface(54); 
 
//-------------------------------------------------- 
// Reactor Pool Geometry Definitions 
//-------------------------------------------------- 
 
Point(71) = {-25.25, -90.09223, 0, x}; 
Point(72) = {96.56865, -90.09223, 0, x}; 
Point(73) = {96.56865, -64.69223, 0, x}; 
Point(74) = {96.56865, 25.77173, 0, x}; 
Point(75) = {-25.25, 25.77173, 0, x}; 
Point(77) = {-25.25, -90.09223, 0, x}; 
Point(76) = {-25.25, -64.69223, 0, x}; 
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Line(124) = {71, 72}; 
Line(125) = {72, 73}; 
Line(126) = {73, 74}; 
Line(127) = {74, 75}; 
Line(128) = {75, 76}; 
Line(129) = {76, 71}; 
Line(130) = {73, 76}; 
 
Line Loop(55) = {124, 125, 130, 129}; 
Plane Surface(55) = {55}; 
Line Loop(56) = {130, -128, -127, -126}; 
Line Loop(57) = {55, 56, 57, 58, 59, 60, 61, 62, 63, -123, -122, -121, -120, -119, -118, -9, -8, -7, -6, -5, -4, 
-3, -2, -1, 64, 65, 66, 67, 68, 69}; 
Plane Surface(56) = {56, 57}; 
 
//-------------------------------------------------- 
// Physical Surface Definitions  
// Corresponds to spatial homogenization regions 
// Order must be the same in the Serpent set gcu  
// command and the .res output 
//-------------------------------------------------- 
 
Physical Surface(1) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 27, 28, 29, 30, 
37, 38, 39, 46, 47, 48, 51}; 
Physical Surface(2) = {15}; 
Physical Surface(3) = {23}; 
Physical Surface(4) = {24}; 
Physical Surface(5) = {25}; 
Physical Surface(6) = {26}; 
Physical Surface(7) = {31}; 
Physical Surface(8) = {32}; 
Physical Surface(9) = {33}; 
Physical Surface(10) = {34}; 
Physical Surface(11) = {35}; 
Physical Surface(12) = {36}; 
Physical Surface(13) = {40}; 
Physical Surface(14) = {41}; 
Physical Surface(15) = {42}; 
Physical Surface(16) = {43}; 
Physical Surface(17) = {44}; 
Physical Surface(18) = {45}; 
Physical Surface(19) = {49}; 
Physical Surface(20) = {50}; 
Physical Surface(21) = {52}; 
Physical Surface(22) = {53}; 
Physical Surface(23) = {54}; 
Physical Surface(24) = {56, 57}; 
Physical Surface(25) = {55}; 
 
// Vacuum boundary line 
Physical Line(1003) = {124, 125, 126, 127, 128, 129}; 
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