

Missouri University of Science and Technology Scholars' Mine

Center for Cold-Formed Steel Structures Library

Wei-Wen Yu Center for Cold-Formed Steel Structures

01 Jan 1976

Report on Screw Fastened Sheet Steel Connections for Canadian Steel Industries Construction Council, Volume I

R. W. Eastman

Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-library

Part of the Structural Engineering Commons

Recommended Citation

Eastman, R. W., "Report on Screw Fastened Sheet Steel Connections for Canadian Steel Industries Construction Council, Volume I" (1976). *Center for Cold-Formed Steel Structures Library*. 237. https://scholarsmine.mst.edu/ccfss-library/237

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Center for Cold-Formed Steel Structures Library by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Library Copy

CANADIAN SHEET STEEL BUILDING INSTITUTE 305-201 CONSUMERS ROAD, WILLOWDALE, ONTARIO M2J 4G8

VOLUME I

REPORT ON

SCREW FASTENED SHEET STEEL CONNECTIONS

FOR

CANADIAN STEEL INDUSTRIES CONSTRUCTION COUNCIL

DATE: January, 1976

PREPARED BY:

OFESSION AL a showares 315 R. W. ENSTRAN Than

R.W. Eastman, P. Eng., Project Engineer, Advance Engineering Group, Product Development Department, DOFASCO, Hamilton.

TABLE OF CONTENTS

	Page
Abstract	l
Introduction	2
Pull-Over Test	3
Pull-Out Test	6
Shear Test	9
Recommendations	12
Bibliography	14
Appendix A	17
Explanation of Use	17
Data Table	19
Tables of Empirical Coefficients	20
Metric Conversion Table,	22
Data Comparision Graphs	23
Fastener Designation Chart	28
Abbreviations	29
Photographs	30

LIST OF FIGURES

- A-I Mean Ultimate Loads for Fastener and Washer Combinations Tested in Pull-Over in .028 in. and .023 in. Galvanized Sheet
- A-II Load Vs. Sheet Steel Thickness Relationships for Fasteners Tested in Pull-Out and Grouped According to Diameter
- A-III Load Vs. Sheet Steel Thickness Relationships for Fasteners Tested in Pull-Out and Grouped According to Type
- A-IV Load Vs. Sheet Steel Thickness For Single Lap Shear Connections Between Various Sheet Thicknesses Next to the Fastener Head and a .060 in. Bottom Sheet (No Washers)
- A-V Load Vs. Sheet Steel Thickness for Single Lap Shear Connections Between Sheets of Equal Thickness (No Washers)
- A-VI Type Designation of Tapping Screws and Metallic Drive Screws
- A-VII Photographs

LIST OF TABLES

A-I Ultimate Loads for all Fastener Types and Diameters A-II[i] Polynomial Coefficients for Fastener Tests With No Washers

A-II[ii]Polynomial Coefficients for Fastener Tests With Washers

(iv)

ABSTRACT

Ultimate load data is presented from more than 1600 tests on sample connections made with different thicknesses of zinc-coated sheet steel and a variety of commonly used thread forming and selfdrilling fasteners. The three fundamental loading conditions examined were pull-over, pull-out and single lap shear.

Empirical relationships have been developed which allow interpolation of the data within the range of sheet steel thicknesses tested.

Type AB and type A thread forming fasteners, and a number of different self-drilling fasteners were tested, in sizes from #14 (.250 in.) to #8 (.164 in.) diameter. Flat metal washers and a variety of sealing washers were also used in combination with the different fastener types and head styles.

The thicknesses of steel sheets ranged from .022 in. to .060 in. depending on the particular loading condition being tested. The sheet material was ductile and of medium strength and hardness.

All fastener connections tested under all loading conditions achieved higher failure loads with thicker steel sheets.

The #14 (.250 in.) diameter fasteners of each type gave significantly higher connection failure loads in most sheet thicknesses than the other fastener sizes. Connections with #12 (.216 in.), #10 (.190 in.) and #8 (.164 in.) diameter fasteners showed only marginal differences in ultimate load.

PREFACE

This investigation was jointly sponsored by the Canadian Steel Industries Construction Council (CSICC) and Dominion Foundries & Steel Limited (DOFASCO). The advise and contributions to this work from the members of the Industry Research Subcommittee is gratefully acknowledged.

Special thanks are given to the fastener manufacturers for their advise and donation of samples for testing, and to Derek Tarlton of the Canadian Sheet Steel Building Institute (CSSBI) for his advice and assistance in preparing this report. The self-drilling fasteners generally provided higher connection failure loads than the thread forming fasteners of equal diameter.

The addition of washers produced a noticeable and consistent failure load increase in the pull-over mode only.

Subjecting a connection to a fluctuating shear load resulted in a substantial failure load increase.

INTRODUCTION

Mechanical fasteners can be found in virtually every man-made mechanism, machine or structure. The variety of types, sizes and shapes is staggering; it is estimated that there are 1/2 million different "standard" and 3 million different "non-standard" fasteners used in the world. Many of these are screw fasteners, used to connect cold-formed steel sheet products to each other and to structural elements.

The use of both bolts and welding for structural connections has been extensively researched and design information is easily obtained from many sources. For sheet metal and self-drilling screws however, similar information is not so readily available. The designer must either rely entirely on the manufacturers to provide him with suitable fasteners for his particular design conditions, or conduct his own set of tests, or rely on previous practice and experience.

. . . 3

- 2 -

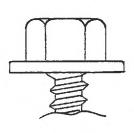
Manufacturers have carried out tests in order that they may guarantee the performance of their product, but to the best of our knowledge, the test procedures varied and the information released to the user was sometimes of limited application.

This report contains ultimate load information and performance characteristics obtained from a large number of tests on some of the more common types and sizes of fasteners used in structural applications. It provides the designer with information which will enable him to select a type and size of fastener, giving him a better idea of the maximum loads attainable from a connection using that fastener and indicate to him the loading condition for which the connection is likely to be critical.

The fasteners chosen for these series of tests by no means cover the entire range available. The intention was only to obtain a general sampling of some of the more commonly used fasteners in the hope that in time this information will be expanded to encompass other fasteners of practical importance.

PULL-OVER

The pull-over test is designed to evaluate the load carrying capabilities of a screw-fastened connection between a thin steel sheet and a heavier structural section or element. The connection is subjected to a force perpendicular to the plane of interconnection, tending to pull the thin sheet over the head assembly of the fastener.


- 3 -

Some 340 samples were tested in pull-over with a variety of fasteners and washers, in different thicknesses of steel sheet. The results have been analysed in terms of diameter and rigidity (or bending resistance) of the fastener head assembly and the thickness of the sheet steel. These parameters, as well as the tensile strength of the steel sheet, are felt to have a significant effect on the pull-over failure load of a connection.

The test results confirm that the ultimate pull-over load of a screw-fastened connection increases with increasing steel sheet thickness.

Although sheet mechanical properties were not under investigation, there was a 17 percent difference in tensile strength between two sheet samples of equal thickness. There was a small but consistent failure load increase attributed to the higher strength sheet.

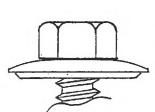
The pull-over strength of a connection may be increased in several different ways:

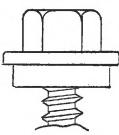
(i)

The addition of a rigid thick flat metal washer (i.e. one that will withstand the bending forces with little or no deformation) can increase the pull-over strength by up to 67 percent. (Figure A-I) The actual percentage increase will largely depend on the thichness of the sheet steel under the washer. These add-on washers were also observed to give

. . . 5

- 4 -


better results with thicker steel sheets. In some instances, when the sharp edge of a rigid washer contacted a thin steel sheet, the washer acted as a punch, shearing a disc out of the sheet. (Figure A-VII[g]). This occurred at a load slightly below that of the common failure mode.


- 5 -

- (ii) The addition of a neoprene sealing washer generally resulted in a 5 to 10 percent decrease in the failure load of a connection. This was mainly due to the neoprene extending beyond the outer edge of the washer or fastener head when tightened, preventing contact between sheet and fastener head as the sheet was deformed over it. The bite of the head against the sheet is effectively reduced and tensile sheet failure is allowed to occur uninterrupted at a slightly reduced load. (Figure A-I)
- (iii) A hex-washer-headed fastener (i.e. a hex-head with an integral washer) produced a pull-over load increase of up to 60 percent over a regular hex-headed fastener of similar type and diameter. (Figure A-I)

(iv)

Thin metal conical washers made of galvanized steel with bonded rubber seals increased the connection failure load 10 to 30 percent over that obtained with plain hex-headed fasteners.

(As compared to the 67 percent maximum increase with thick metal washers.) Although these washers had a larger clamping area, they had less bending resistance and deformed more easily under pull-over action. (Figure A-I)

The actual connection failure loads are tabulated in Appendix A Table A-I.

The action of wind on a building results in a negative wind pressure, generally on the leeward side, and subjects the cladding to uplift forces. These pressures, which act on roofs as well as walls, put cladding fasteners into a pull-over loading condition.

Examination of Table A-I for pull-over mode reveals that in all cases the ultimate loads were in excess of fastener design loads based on calculations of maximum uplift for pitched roofs under normal climatic conditions for the Hamilton area. Even with modification factors of 2.25 to 3 for imperfect workmanship and long term loading, the failure loads per fastener are still higher than calculated valves.

PULL-OUT

The pull-out test series provides ultimate load information on screw-fastened connections made between two thin sheet steel elements. As in the case of pull-over, the connection is subjected to a force perpendicular to the plane of interconnection. The test fixture has been designed so that failure occurs by the gradual and extremely localized deformation of the bottom sheet, as the fastener threads are disengaged from the hole into which they were screwed. (Figure A-VII [j]).

- 6 -

Some 310 samples have been tested in pull-out with a variety of fastener types and sizes, in different thicknesses of sheet steel. In this case the results were analysed in terms of fastener diameter and thread type, predrilled hole diameter and sheet steel thickness.

Again, the results confirm that the thicker the sheet into which the fastener is screwed, the greater will be the connection failure load. (Figure A-II) In the thicker sheets, the amount of material that engages the thread is greater and therefore more material must be deformed or sheared if a pull-out failure is to occur.

In the range of sheet thicknesses tested, the number of threads engaging the sheet did not influence the ultimate load of the connection as much as the amount of overlap between the thread and the sheet (i.e. the height of the threads).

This overlap is greatest in fasteners with fewer threads per inch and/or where the predrilled hole diameter is less than or equal to the fastener minor diameter. Samples exhibiting these characteristics produced higher pull-out failure loads.

Of the fastener diameters tested, the #14 (.250 in.) of all types consistently gave higher ultimate loads than the #12 (.216 in.), #10 (.190 in.), #8 (.164 in.) diameters, in all sheet thicknesses. Results for the #12, #10 and #8 fastener sizes were generally grouped very close together with a maximum difference of only 80 lbs. per fastener between them (i.e. less than 13 percent total variation). (Figure A-III)

- 8 -

The reasons for this are:

- (i) The difference between fastener minor diameter and the recommended predrilled hole diameter is consistently less with #14 fasteners than with the smaller diameters.
- (ii) There is generally greater thread depth with the #14 diameters. Both of these conditions lead to better engagement with #14 fasteners and small engagement differences between the other diameters.

Connections with self-drilling fasteners more consistently exhibited higher pull-out failure loads in thicker sheets than thread forming screws. This is the case because the manufacturers of self-drilling fasteners are able to control the size of the predrilled hole, since they provide the drill on the end of the fastener. In many instances, in particular for stitching applications (i.e. two thin sheets connected together) the drill diameter is less than the minor diameter of the threaded section. This gives rise to an interference fit and assures maximum thread engagement. This effect has also been achieved by providing a slightly tapered shank. If the amount of interference is large enough, work hardening of the steel sheet in the vicinity of the hole may be initiated, thereby increasing its resistance to bending and shear.

In some instances of type AB and more commonly type A, in thinner sheets, the predrilled hole diameters recommended in American Standard B18.6.4 Appendix VII also provide for this interference fit. The result is a marked increase in the connection pull-out failure load.

The actual results are tabulated in Appendix A Table A-I.

The results for each fastener type and diameter have been plotted by computer and a third order polynomial curve has been developed to fit the data. The coefficients of these polynomial expressions are given in Table A-II and allow for accurate interpolation of the data. Extrapolation of the data may give erroneous information and is not recommended at this stage.

SHEAR

In the shear test series, screw-fastened connections between two thin steel sheets in a single lap configuration were evaluated. The connections were subjected to forces parallel, initially, to the plane of interconnection and failure occurred in a number of different ways, depending on the thicknesses of the two sheets used.

(i) The most common mode of failure was the tilting of the fastener in the direction of the applied force and the elongation of the hole in the sheet. For samples of unequal thickness, (the thinner sheet always under the fastener head) there was a build-up of material under the head and ultimate failure resulted by the thinner sheet tearing or curling up over the head of the fastener. For samples of equal thickness this material build-up was observed in the bottom sheet and failure by disengagement of the inclined fastener out of the bottom sheet occurred. (Figure A-VII [n])

- 9 -

- (ii) In connections made between two of the thicker sheets (i.e. .0485 in. to .060 in. etc.) and fastened with a #8 (.164 in.) diameter or a #10 (.190 in.) diameter fastener, the heads of one or both fasteners, on occasion, sheared off. In the case where only one of the two fasteners sheared off, it was generally the one closer to the free end of the sheet directly under the head. (Figure A-VII [0]) A noticeable drop in ultimate load was associated with samples failing in this mode.
- (iii)In some instances, where thin sheets were connected to thicker ones (i.e. .025 in. to .060 in.) by a #14 (.250 in.) diameter fastener, a tensile sheet failure would occur in the thinner sample at the location of the second fastener from the free end. (Figure A-VII[n])

Some 960 samples have been tested in shear with a variety of types and sizes of fasteners in different sheet steel thickness combinations. Of these samples, 162 had previously been subjected to a cyclic loading to enable dynamic effects to be examined.

The test results confirm that the thicker sheets gave higher connection shear failure loads. Connections made between two .060 in. thick sheets produced higher failure loads than connections between .025 in. and .060 in. thick sheets which, in turn, produced higher failure loads than connections between .025 in. and .025 in. thick sheets.

In most sheet thicknesses, all #14 (.250 in.) diameter fasteners gave higher connection shear failure loads than the smaller diameters. The maximum difference in failure load between connections using a #10 (.190 in.) and those using a #8 (.164 in.) diameter fastener was 170 pounds per fastener (i.e. less than 12 percent total variation).

The addition of flat metal and rubber sealing washers to these shear connection fasteners made differences of less than 10 percent to the results. No consistencies were observed in these differences, thus the presence of a washer can be said to have little beneficial effect on the shear strength of the connection.

The effect of a fluctuating shear load on the connections was investigated by applying 75 percent of the previously determined static shear failure load and returning to zero. This was repeated at a frequency of 20 Hz for 5,000 cycles and the sample retested statically. The result was a consistent failure load increase of 18 percent to 50 percent, apparently due to work hardening of the material around the hole.

The ultimate loads recorded for each fastener connection have been plotted by computer and empirical relations derived, which enable interpolation of the data. Extrapolation is not recommended as the continuation of the relationship is uncertain.

Coefficients for these empirical relations are tabulated in Appendix A Table A-II. Actual results are given in Appendix A Table A-I.

RECOMMENDATIONS

It was not the intention of this project to determine whether any particular fastener, washer or combination was superior. The information obtained is by no means comprehensive and more extensive research is recommended before reliable design standards can be established. The following recommendations are intended to point out some areas of importance and to act as a guideline for further research.

- Investigate the relationship between pull-over strength and fastener head or washer diameter for a larger range of sheet steel thicknesses, mechanical properties and sheet profiles.
- Determine at which load intolerable permanent deflections occur in the sheet as it is drawn over the fastener head. This may then be a criterion by which all pull-over results can be evaluated for design purposes.
- Expand the present pull-out and static shear data by incorporating thicker sheets and different material strengths.
- 4. Examine the effect of varying the driving torque on all connections and loading conditions.
- 5. Determine the optimum relationship between predrilled hole diameter, fastener size and driving torque.

- 6. Investigate further the effect of fluctuating loads by varying the frequency and the total number of cycles, not only for shear but for pull-out and pull-over loading conditions as well.
- 7. Investigate different combinations of the three fundamental loading conditions (e.g. combined shear and pull-out or pull-over).

- 14 -

BIBLIOGRAPHY

- 1. Metal Building Manufacturers Association, <u>Metal Building</u> Systems Manual, Cleveland, Ohio. (1974)
- Illinois Tool Works, Inc., Buildex Division, "Hard Facts -Application Information for the Construction Industry", Chicago, Illinois. (1972)
- Central Electricity Generating Board, Extracts from "Design Memorandum 097/117, Part 4, Wall and Roof Cladding". United Kingdom (April 1970)
- Pos Jacob, "Evaluating the Load Carrying Capacity of a Utility Type Framing Fastener", presented at the second Building Materials Conference, University of Guelph, Guelph, Ontario. (April 1972)
- 5. Abankwah, J.M., "The Lateral Strength of Wire Nail Joints", Ghana Standards Board, Accra, Ghana. (1973)
- 6. Industrial Stapling and Nailing Technical Association, <u>HUD-FHA</u> <u>Bulletin No. UM-25D - Application and Fastening Schedule</u>, <u>Department of Housing & Urban Development</u>, Federal Housing Administration, Washington, D.C. (1973)
- 7. Industrial Stapling and Nailing Technical Association, "Manual No. 19-73 - Pneumatic and Mechanically Driven Building Construction Fasteners", Department of Housing & Urban Development, Federal Housing Administration, Washington, D.C.. (1973)
- Fraczek, J., "Mechanical Connections in Cold-Formed Steel: Comprehensive Test Procedures and Evaluation Methods", Ph.D. Thesis, Cornell University, New York. (September 1975)
- 9. Johnson, J.C., "Cold Roll-Formed Components Important Products of the European Building and Construction Industry", Acier-Stall-Steel Magazine. (October 1974)
- 10. Baehre, R., and Berggren, L., Joints in Sheet Metal Panels, Document D8:1973, National Swedish Building Research, Sweden. (1973)
- 11. Steel Company of Canada Ltd., "Tapping Screws", Hamilton, Ontario. (1974)

- 12. Illinois Tool Works, Inc., Shakeproof Division, "An Engineering Statement on the Relationship of Washer Design to Torque and Tension Measurement, Report No. 92, Chicago, Illinois. (1963)
- 13. Illinois Tool Works, Inc., Shakeproof Division, "Total Fastening Design as it can be Achieved to Fulfill Complex Application Objectives", Report No. 71, Chicago, Illinois. (1965)
- 14. Illinois Tool Works, Inc., Shakeproof Division, "Introduction of the Self-Extruding E.X.T.M. Fasteners for Thin Sheet Metal", Report No. 106, Chicago, Illinois. (1968)
- 15. Illinois Tool Works, Inc., Shakeproof Division, "Predicting the Behavious of Thread Cutting Screws in Plastic". Report No. 104, Chicago, Illinois. (1964)
- 16. Illinois Tool Works, Inc., Shakeproof Division, "Design Criteria for Spring Washers with Controlled Characteristics", Report No. 117, Chicago, Illinois. (1963)
- 17. Illinois Tool Works, Inc., Shakeproof Division, "A Design for Improving the Performance of Threaded Fasteners in Plastic", Report No. 132, Chicago, Illinois. (1967)
- Illinois Tool Works, Inc., Shakeproof Division, "Design Considerations for Sealing Fasteners", Report No. 116, Chicago, Illinois. (1963)
- 19. The Steel Company of Canada, Ltd., "Fastener Facts" Issues 1, 2, 3, and 4, Hamilton, Ontario. (November 1972, March 1973, July 1974 and January 1974)
- 20. Illinois Tool Works, Inc., Shakeproof Division, "An Engineering Statement on the Economics of Fastener Holes", Report No. 81, Chicago, Illinois. (1971)
- 21. Bakker, K. and Stark, J., "European Research on Connections in Cold Rolled Sections", Institute TNO for Building Materials and Building Structures, Delft, Netherlands. (1973)
- 22. Obrzut, P.V. and Shah, R., "The Riddle of Tightness in Nuts and Bolts", Article from IAMI Magazine. (November 1973)

- 23. Industrial Fasteners Institute, Fastener Standards, Fourth Edition, Cleveland, Ohio. (1965)
- 24. Society of Automotive Engineers, "Mechanical and Quality Requirements for Tapping Screws", SAE Recommended Practice - SAE J9336. (September 1969)
- 25. Die Beratungsstelle fur Stahlverwendung, "Blechschrauben -Bohrschrauben Gewinde-Schneidschraugen", German. (1974)

APPENDIX A

APPENDIX A

EXPLANATION OF USE

Appendix A contains all the data collected during the test program. Table A-I presents the mean ultimate loads for the various fastener and washer combinations (listed on the left side of the table) for the fundamental loading conditions and sheet steel thicknesses (shown across the top of the table).

To determine the ultimate strength of a particular fastener:

- (i) Locate the fastener in the left hand columns.
- (ii) Choose the appropriate washer, if any, from column number 4.
- (iii) Proceed across the table to the loading condition of interest.
- (iv) Locate the appropriate sheet steel thickness within that loading condition.
- (v) Read the ultimate load directly.

This table also permits the examination of the ultimate loads for a fastener connection under all loading conditions. This will reveal the weakest condition and probable failure mode.

If the exact sheet thickness desired is not represented in Table A-I, refer to Table A-II which gives the coefficients of a polynomial expression permitting interpolation of the data. It must be emphasized, however, that only interpolation is valid. Extrapolation beyond the test range may give false and misleading information.

Data comparison graphs have been provided as a supplement to the text to enable examination of the relationships between ultimate load and sheet thickness for various fastener types and diameters etc. in the different loading conditions.

Appendix C contains similar information plotted by computer, and exact relationships and data correlation can be seen.

Detailed test information i.e. test procedures, material and fastener specifications, etc. is presented in Appendix B.

Appendices B and C are presented under separate cover in Volume II.

		PLATE	3485" 8 GA)								2520	2942	3300	2600	2990	3033					Ī			3240	3213	4033			4167	3353				3820	3950			
A-L	SHEAR	SHEET-TO-PLATE	•0485" •033" •0485" (186A) (226A) (186A)			-					2570 2				i.					1				2703 3	1	2810 4			2 833	2743 3	1			2280 3	2723			
ш			485" •0 3 GA) (2								2150 2	2450	:		2473		1							2417 2		2950 2			2917 2	3033			<u> </u>	3437 2	2957 2			
IABL	DYNAMIC	SHEET-TO-SHEET	•033 * •0 (22 GA) (18								1415 2	1343 2	1280	1200										1363 2		1310 2			1257 2	1517 3				2037 3	1390 2			.
		3	•0485" •0 (18.6A) (2	1327	1374	1140	1068	1253	1473		1376 1		1507 1			1482 1					1647		1	1581 1	1	1851 1			2011 1	1591 1				1852 2	2069 1	 		
		LATE	(20 GA) (1 E	1226 13	1189 13		-	1194 12	1303 14		1341 13	1 -	1329 1		1371 14	1324 1					1457 16			1547 15	1538 16	1601 11			1611 2	1408 1				1644 16	1567 2			
		SHEET-TO-PLATE	33" •0	1200 12	1161 11	1174 12	1075 10	1111 11	1204 13		1242 13	1	1307 13	1171 12	1283 13	1255 1:					1326 1-		 	1400 15	1388 15	1409 16			1397 10	1358 14				1058 16	1234 15			
	SHEAR	SHE	•025" •033" (24GA)(22GA)	753 12		760 11	866 10	800 11	939 12		764 12	813 11	800 13			942 12		 			962 13			921 14	1064 13	762 14			1055 13	1055 13				702 10	927 12			
NDD			•0485" •03 (18 GA)(24	1036 7	1082 8	1020 7	1032 8	1019 8	1114 9		1073 7	1221 8	1035 8	1110 9	1149 6	1156 9					1207 9			1268 9	1220 1	1375 7			1400 10	1303 10				1692 7	1494 9	1		
FASIENER (PUUNUS)	STATIC	HEET	*038" •04 (20GA) (18	708 10	755 10	783 10	785 10		711 117		790 10		743 10	731 11	762 11	725 11					802 12			861 12	767 12	834 13			759 14	849 13				1141 16	1056 14			
		SHEET-TO-SHEET	33" •0: GA) (20	596 7	624 7	594 7	614 7	573 6	593 7		673 7		580 7	573 7	609	601 7					655 8			670 8	671 7	582 8			586 7	41				909 11	722 10			
- 1		SHEE	•025" •033" 24 GA) (22 GA)	386 59	453 6	413 5	469 6	373 5	362 5		423 6	464 6	429 5	378 5	432 6	411 6					465 6			515 6	463 6	418 5			445 5	0				604 9	473 7			
		_			4					4	488 4:	468 4			4	4	4	6	556	2	1			-			m	<u>е</u>		_	0		0	9	4		0	0
LUAU			" • 061" A) (16 GA)			1 552	1 552	6 565	6 565	534	-		2 557	2 557			604	3 559		1 617	617			3 699		8 633	8 633	633	633	8 633	8 633	633				7 856	5 598	5 596
- ł	THC .		02" •051" A) (18GA)	7 441		8 464	8 464	4 496	4 496	6 421	1 447	1 447	4 452	4 452			1 500	4 443	3 492	4 501	4 501			3 573	3 573		2 538	2 538	2 538	2 538	2 538	2 538	2 538			3 617	1 ,485	1. 485
ULTIMAIC			A) (20GA)	3 347	347	3 368	8 368	1		356	3 401	5 401	3 344	3 344			0 371	9 304	9 353	3 384	3 384			7 423	7 423	402	0 402	0 402	0 402		0 402	0 402				523	381	381
F			1" •0312" V) (22GA)		276	288	288	273	273	213	336	336	273	273	-		250	229	279	263	263			347	347	350	350	350	350		350	350				416		
MCAN		-	r" •0278" \) (24GA)																			695	855			801	1453	1283	1056	1377	1572	1279	1401				3 1203	1472
	0760	*	•022" •023" •0239" (26 GA) (26 GA) (24 GA)																			807	861			817	1313	1161	868	1236	1371	1262	1337				1096	1372
			•023*																			666	628			643	944	855	773	1011	992	944	1068				944	1061
		*	°022" (26 GA									Int										701	667			609	1107	943	764	976	1161	1053	1081				936	1107
		HS')- 0			METAL		FLAT METAL		SEAL	1		FLAT & NEOPRENE		FLAT &		TWIN		1			SEAL	1			GALV. & RUBBER	1	METAL	FLAT &	GALV. &		FLAT	FLAT &	GALV. &		SEAL			SEAL
		PE AD		PAN	PAN	H _o W _b H _o	H _o W _o H _o	H _o W _o H _o	ы‰н₀	HoWoHa	PAN	PAN	PAN	PAN	H _o W _o H _o	HoWoHo	H _o W _o H _o	H _o W _o H _o	HoHo	Howeho	H _o W _o H _o	PLASTIC HEAD	H _o W _o H _o	HoWoHo	How Ho	H _o H _o	HeHe	He He	HoWeHo	H _o W _o H _o	H _o W _o H _o	How Ho	H _o W _o H _o	HoWoHo	H _o W _o H _o	H.M.H.	H.W.H.	HoWoHo
	۵۶	BE BE		A	A	AB	AB	TEKS/2F	TEKS/ 2F	υ	A	A	AB	AB	TEKS/I STITCH	EKS/1	TEKS/2	TEKS/3	AB		TEKS/2 MB/HT	EKS/3 P		A	۲	AB	AB	AB	AB	AB	A B	AB	1			TEKS/2 MB	TEKS/3	TEKS/ 3
	IJT	BME	AID	8	8	8	8	8 TE	8	8	10	#10	#10	#10	#10 S	#10 S	# 10 TE	#10 TE	#12	#12 #	#12 T			#14	14	_				-				1	1	1	-	
5	NE	IET	FAS		#		.4	#		*	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#14	#14	#14	#14		#14	41 4	#14	#14	#14	# 14	#14	#14	#14

- 19 -

TABLE A-I

٩T	ТАВLЕ А- II - (i)	3			POLY	POLYNOMIAL	IAL COEFF ULTIMATE	<u>.</u>	NTS F ENGTH	OR INTE	INTERPOLATION ATA	ATION		
				•					÷	SH	SHEAR			
FASTENER	-	HEAD			100			SHEE T-TO	TO - SHEET	L		SHEET- T	SHEET-TO-PLATE	
DIA.	н Т Т	1 1 1	(¢01x)	(x10 ⁵)	(x10 ⁷)	(x10 ⁷)	(x10 ⁴)	(x10 ⁶)	(x107)	(x10 ⁸)	(×10 ⁴)	(x10 ⁶)	C 8)	0 (x 10 ⁹
*	۲	PAN	-961	716	- ,132	.897	342	.313	826	.767	-118	1.07	287	.253
8	AB	H.W.H.	-684	.572	-108	177	.0562	0577	.289	-,311	659	.571	-135	.103
*	TEKS/2F	H.W.H.	144	-943	.235	-1,70.	325	-299	792	1767	564	.522	-133	312
*10 *	A	PAN	885	.752	-,14,8	101	-,411	.368	953	.856	959	.845	216	.183
#10	AB	PAN	-414	.401	0768	609"	.0288	0192	.137	-134	- 140	126	343	306
10	TEKS/1 STITCH	H.W.H.					-,130	.127	302	.298	-106	976	247	.213
01#	TEKS/2	НЖН.	101-	.686	,116	762								
#10	TEKS/3	HWH.	.469	279	-0818	555								
*12	AB	H.H.	.919	-,585	,158	- 138								
*12	TEKS/2 MB/HT	HWH.	-182	127	-,248	124								
*14	۷	H.W.H.	-910	515	136	-931	.0652	0422	.189	-,155	-,803	.710	-175	343
*14	AB	H.H.					.181	-,158	.526	7.24.7	- 123	107	273	.234
#14	AB	HWH	.672	- 323	.0875	-592	.0054.8	.00139	.0759	-,0514	697	.680	-,184	165
#14	TEKS/1 STITCH	H:W:H.				•	283	.259	622	.581	.983	-,962	.319	319
*14	TEKS/2 MB/HT	H.W.H.	-144	114	231	1/21								
* 14	TEKS/3	HWH.	222	.282	-0484	392								
			Ľ	POLYNOMIAL		COEFFICIENTS FOR FASTENER TESTS WITH	FOR FASTE	ENER TES	TS WITH	NO WASHERS	RS			5
	POLYNOM	POLYNOMIAL OF THE FORM								TON	E: APPLIES	PLIES TO THE FOLL	NOTE: APPLIES TO THE FOLLOWING SHEET STEEL	ET STEEL
	Y A I	Y = A + BX + CX + DX									N N J N N	LENAN VIA		

- 20 -

06:10 ţ 0730.

TABLE A-II[i]

SHE AR

Y = ULTIMATE LOAD PER FASTERER

T-TO-PLATE T-TO-PLATE (x10 ⁸) (x10 ⁸) (x10 ⁸) (189 189 169 165 165 165 165 165 165 165 165 165 0787 0463 0 0 (.0610 to .0610 to .0610		ТАВLЕ А- п - (іі)	-(ü)				POLYNOMIAL OF ULI	=	FI CI E STR	NTS ENGT	A O	INTERPOLATION ATA	ATION		
THER ID FHE IT-TO-FINE T FHE IT-TO-FINE T FHE IT-TO-FINA T TYPE TYPE TYPE FME T						Ho					SF	IEAR			
Image: Marking and Mark	FASTENE		HEAD			3			SHEE T-		E		SHEET-	IO-PLATE	
a PAN -961 .74 632 .697 .154 .371 .391 711 .693 169 .169 169				(x10 ³)			(×10 ⁷)		(x 10 ⁶	(×10 ⁷)	(x10 ⁸		(x10 ⁶	(x10 ⁸)	×
ab HWH 684 572 :097 .0911 :327 :.326 .869 :.836 :.333 IEKS/2F HWH (44 -940 :235 -700 :410 :403 :.333 IEKS/2F HWH (44) -940 :235 -146 701 :429 :405 :403 :104 Ab PAN -414 401 -056 :643 :161 :162 :643 :163 IEKS/1 HWH C 662 :166 :762 :613 :165 :165 IEKS/1 HWH C 562 :164 :160 :161 :165 :166 :165 :166 :165 :166 :165 :166 :165 :166 :165 :166 :165 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166 :166	8	A	PAN	961	.714	-,132	769,	-,154	.152	371	.351	721	.693	189	171.
IEKS/2F HWH. 144 -355 -700 416 .377 401 .406 406 406 406 406 406 406 406 406 406 406 406 406 406 402 .406 402 .406 401 .	* ⁸	AB	H.W.H.	684	.572	108	777.	6260.	0811	.327	-,325	869	.836	- , 233	.211
A PAN -485 -732 -148 V01 -187 -147 -1439 -143 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1433 -1633	8	TEKS/2F	нжн.	144	943	.235	-170	- 416	.377	-101	.954	410	.408	104	6680.
AB FAN - 414 - 401 - 5058 - 500 555 - 511 105 - 562 653 - 515 TEKSIA HWH - 70 - 10 - 407 - 101 105 - 662 663 - 515 TEKSIA HWH - 701 586 - 106 - 782 - 101 105 - 662 633 165 TEKSIA HWH - 901 586 - 106 - 782 105 - 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 161 160 161 -161 161 161	*10	A	PAN	-,885	.752	- 148	IQ1	187	177.	429	.406	474	.423	0984	.0780
IteRs/2 HWH.	*10	AB	PAN		.401	- ,0768	609	164	:150	354	.337	622	.614	169	.155
TEKS/2 HWH - '0'1 686 -16 762 16 762 16	01	TEKS/1 STITCH	нжн.					447	.407	-111	1.05	652	.623	165	.145
TEKS/3 HWH 469 -279 D818 555 1	01#	TEKS/2	HWH.	- 101	.686	- 116	.762								
AB HH. '919 '585 '158 '118 '1 '11 </td <td>*10</td> <td>TEKS/3</td> <td>HWH.</td> <td>.469</td> <td>279</td> <td>0818</td> <td>555</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	*10	TEKS/3	HWH.	.469	279	0818	555								
TEKS/2 HWH. -182 127 248 Va 191 .186 474 .461 597 .559 141 MB/HT HWH. .910 515 .136 931 474 .461 597 .559 141 AB HWH. .910 515 .136 931 474 .120 1.16 333 .00767 . AB HWH. .572 323 .00866 292 334 333 0787 STICH HWH. .672 323 .00760 .00866 292 314 333 0787 STICH HWH. .672 323 .00767 273 .963 9363 119 07693 0763 FKS/1 HWH. .144 .121 .121 273 9633 0763 0763 11 FKS/1 HWH. .124 .121 273 9633 0343 0763 <td>*12 *1</td> <td>AB</td> <td>.HH</td> <td>919.</td> <td>-585</td> <td>.158</td> <td>- 118</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	*12 *1	AB	.HH	919.	-585	.158	- 118								
A HWH. .910 515 .136 931 .449 .427 -120 116 381 .373 0876 AB H.H.	*12	TEKS/2 MB/HT	H.W.H.	-1,82	127	248	174	-,191	.186	474	.461	597	.559	-,141	.121
AB H.H. Correct Correc	#14	A	H.W.H.	.910	515	,136	931	449	.427	-120	1.16	381	.373	0876	.0703
AB HWH. .672 323 .0875 592 .<592 .<592 .<592 .<593 .<119 .<0949 .<0463 TEKS/1 HWH. -144 114 .231 171 273 .963 938 .119 0949 .0463 TEKS/2 HWH. -144 114 231 171 277 538 199 0949 .0463 TEKS/2 HWH. -144 114 231 171 277 273 963 199 0949 .0463 TEKS/3 HWH. -144 114 231 171 277 273 963 19 0 0 MB/HT <td>*14</td> <td>AB</td> <td>н.н.</td> <td>•</td> <td></td> <td></td> <td></td> <td>0760</td> <td>9860.</td> <td>292</td> <td>.375</td> <td> 334</td> <td>.333</td> <td>0787</td> <td>.0678</td>	*14	AB	н.н.	•				0760	9860.	292	.375	334	.333	0787	.0678
TEKS/1 HWH. HWH. -104 114 -231 171 273 .963 936 .119 0949 .0463 TEKS/2 HWH. -144 114 231 171 273 .963 936 .119 0949 .0463 TEKS/2 HWH. -144 114 231 171 P <td< td=""><td>#14</td><td>AB</td><td>HWH.</td><td>.672</td><td>-323</td><td>.0875</td><td>592</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	#14	AB	HWH.	.672	-323	.0875	592								
TEKS/2 H.W.H. -144 114 -231 171 MB/HT -144 114 -231 171 0 TEKS/3 H.W.H. 222 .282 0484 .392 POLYNOMIAL OF THE FORM 222 .282 POLYNOMIAL OF THE FORM Y = A + BX + CX*+ DX* MERE X = 11.051 J/// HIMATE LOAD PER FASTENCER	#14	TEKS/1 STITCH	нжн					.277	-,273	.963	938	.119	0949	.0463	0473
TEKS/3 HW.H. 222 .282 0484 .392 POLYNOMIAL OF THE FORM Y* A + BX + CX*+ DX* WHERE X* 11 AD1 SIfter STEEL THICKNESS Y* ULTIMATE LOAD PER FASTENCER	#14	TEKS/2 MB/HT	H.W.H.	- 144	114	-231	171								
POLYNOMIAL COEFFICIENTS FOR FASTENER TESTS WITH WASHE ADMIAL OF THE FORM A+Bx+Cx ¹⁺ Dx ³ • X+ 14,051 5/fret THICKNESS Y+ ULTIMATE LOAD PER FASTENER	*14	TEKS/3	НЖН.	222	.282	0484	.392								
IOMIAL OF THE FORM A + Bx + Cx ³ + Dx ³ • X = 14 ASI - 5/16.FT STEEL THICKNESS Y = ULTIMATE LOAD PER FASTENER				<u>م</u>	OLY NOMIZ			FOR FASTE		A HTIM S	WASHERS				
• X = 11AST SILET STEEL THICKNESS PULL-OUT .0312 to Y = ULTIMATE LOAD PER FASTENER .0276 to		POLYNOM	IAL OF THE Bx+Cx ⁸ +Dx								ION	E: APPLIES	TO THE FOL ESS RANGES	S ONLY	ET STEEL
			X= LLAST S	IN:ET STEEL	THICKNESS FASTENER							ULL-OUT HEAR	.0312 to		

- 21 -

TABLE A-II[ii]

CONVERSION TABLE

From Inches into Millimetres

1

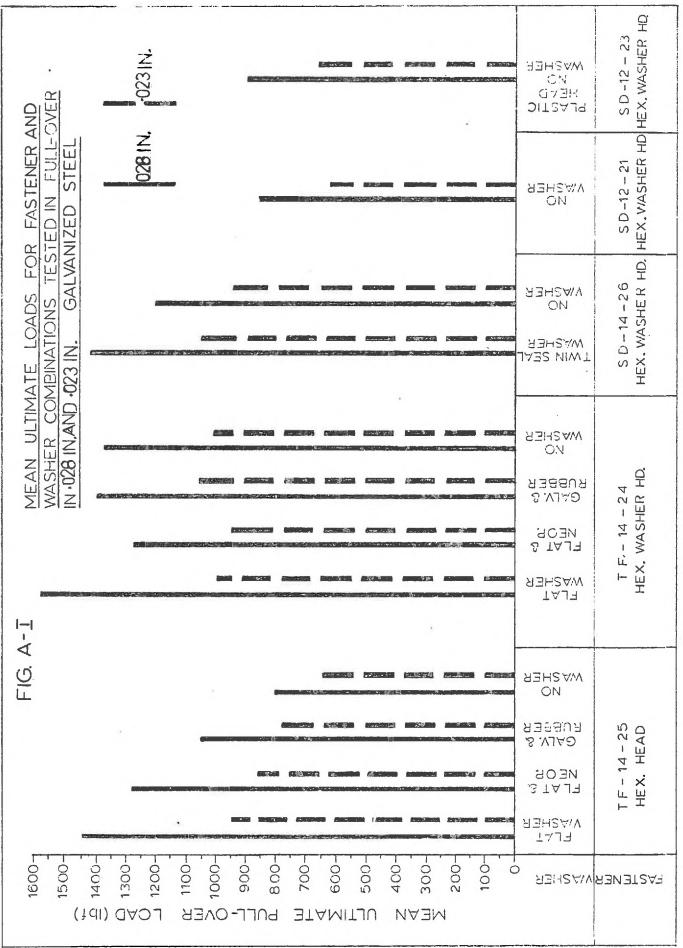

. E

TABLE A-III

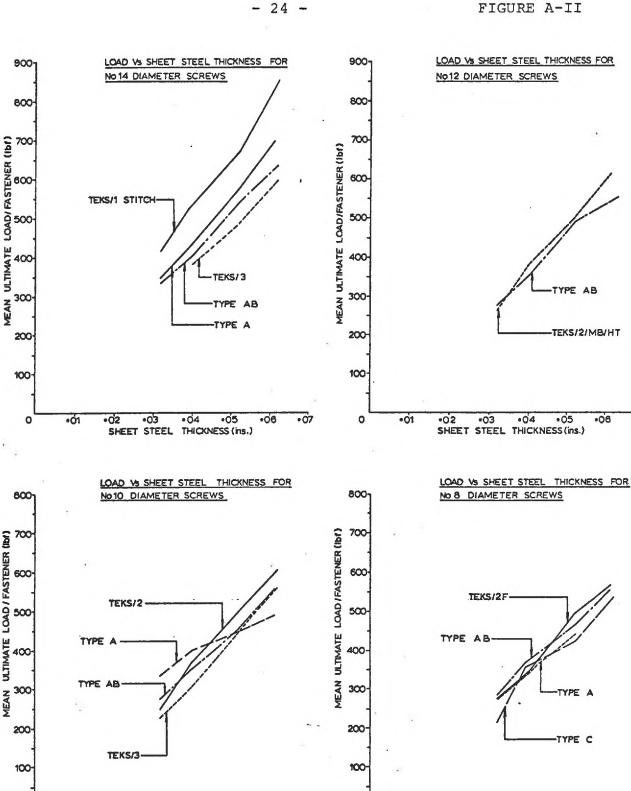
	Inch	0	1	2	3	4	5	6	7	8	9	10	11	12	Inch
	1/64 1/32	0.397 0.794	25.400 25.797 26.194	50.800 51.197 51.594	76.200 76.597 76.994		127.397		178.197		228.997		279.797	305.197	1/64 1/32
	3/64 1/16 5/64	1.191 1.588 1.984	26.591 26.988 27.384	51.991 52.388 52.784	77.391 77.788 78.184	103.188		153.591 153.988 154.384	179,388		229.791 230.188 230.584	255.191 255.588 255.984		305.991 306.388 306.784	3/64 1/16 5/64
	3/32 7/64 1/8	2.381 2.778 3.175	27.781 28.178 28.575	53.181 53.578 53.975	78.581 78.978 79.375			154.781 155.178 155.575		205.581 205.978 206.375	231.378	256.381 256.778 257.175			3/32 7/64 1/8
	9/64 5/32 11/64	3.572 3.969 4.366	28.972 29.369 29.766	54.372 54.769 55.166	79.772 80.169 80.566		130.572 130.969 131.366		181.372 181.769 182.166	206.772 207.169 207.566	232.172 232.569 232.966	257.572 257.969 258.366	282.972 283.369 283.766	308.372 308.769 309.166	9/64 5/32 11/64
	3/16 13/64 7/32	4.763 5.159 5.556	30.163 30.559 30.956	55.563 55.959 56.356		106.363 106.759 107.156	132.159	157.163 157.559 157.956	182.959	207.963 208.359 208.756	233.363 233.759 234.156	258.763 259.159 259.556	284.163 284.559 284.956		3/16 13/64 7/32
	15/64 1/4 17/64	5.953 6.350 6.747	31.353 31.750 32.147	56.753 57.150 57.547	82.153 82.550 82.947	107.950	132.953 133.350 133.747	158.750		209.153 209.550 209.947	234.553 234.950 235.347	259.953 250.350 260.747	285.353 285.750 286.147	310.753 311.150 311.547	15/64 1/4 17/64
	9/32 19/64 5/16	7.144 7.541 7.938	32.544 32.941 33.338	57.944 58.341 58.738	83.344 83.741 84.138		134.541	159.544 159.941 160.338	185.341	210.344 210.741 211.138	235.744 236.141 236.538	261.144 261.541 261.938	286.544 286.941 287.338	312.341	9/32 19/64 5/16
	21/64 11/32 23/64	8.334 8.731 9.128	33.734 34.131 34.528	59.134 59.531 59.928	84.534 84.931 85,328		135.731		186.531	211.534 211.931 212.328	236.934 237.331 237.728	262.334 262.731 263.128	287,734 288,131 288,528	313.531	21/64 11/32 23/64
	3/8 25/64 13/32	9.525 9.922 10.319	34.925 35.322 35.719	60.325 60.722 61.119	85.725 86.122 86.519	111.522	136.922	161.925 162.322 162.719	187.722	212.725 213.122 213.519	238.125 238.522 238.919	263.525 263.922 264.319	288.925 289.322 289.719	314.325 314.722 315.119	3/8 25/64 13/32
	27/64 7/16 29/64	10.716 11.113 11.509	36.116 36.513 36.909	61.516 61.913 62.309	86.916 87.313 87.709	112.316 112.713 113.109	138.113		188.913	213.916 214.313 214.709	239.316 239.713 240.109	264.716 265.113 265.509	290.116 290.513 290.909	315.516 315.913 316.309	27/64 7/16 29/64
	15/32 31/64 1/2	11.906 12.303 12.700	37.306 37.703 38.100	62.706 63.103 63.500	88.106 88.503 88.900					215.106 215.503 215.900	240.506 240.903 241.300	265.906 266.303 266.700	291.306 291.703 292.100	316.706 317.103 317.500	15/32 31/64 1/2
	33/64 17/32 35/64	13.097 13.494 13.891	38.497 38.894 39.291	63.897 64.294 64.691	89.297 89.694 90.091	114.697 115.094 115.491				216.297 216.694 217.091	241.697 242.094 242.491	267.097 267.494 267.891	292.497 292.894 293.291	317.897 318.294 318.691	33/64 17/32 35/64
	9/16 37/64 19/32	14.288 14.684 15.081	39.688 40.084 40.481	65.088 65.484 65.881	90.488 90.884 91.281	116.284	141.684	167.084		217.488 217.884 218.281	242.888 243.284 243.681	268.288 268.684 269.081	293.688 294.084 294.481		9/16 37/64 19/32
	39/64 5/8 41/64	15.478 15.875 16.272	40.878 41.275 41.672	66.278 66.675 67.072	91.678 92.075 92.472	117.475	142.875	168.275	193.675	218.678 219.075 219.472	244.078 244.475 244.872	269.875	295.275	320.278 320.675 321.072	39/64 5/8 41/64
	21/32 43/64 11/16	16.669 17.066 17.463	42.069 42.466 42.863	67.469 67.866 68.263	93.266	118.666	144.066	169.069 169.466 169.863	194.866		245.269 245.666 246.063	271.066	296.466	321.866	21/32 43/64 11/16
•	45/64 23/32 47/64	17.859 18.256 18.653	43.259 43.656 44.053	68.659 69.056 69.453	94.059 94.456 94.853	119.856	145.256	170.259 170.656 171.053	195.659 196.056 196.453	221.059 221.456 221.853	246.856	271.859 272.256 272.653	297.656	323.056	45/64 23/32 47/64
	3/4 49/64 25/32	19.050 19.447 19.844	44.450 44.847 45.244	69.850 70.247 70.644	95.250 95.647 96.044		146.447	171.450 171.847 172.244	197.247	222.250 222.647 223.044	247.650 248.047 248.444	273.050 273.447 273.844	298.450 298.847 299.244	323.850 324.247 324.644	3/4 49/64 25/32
	51/64 13/16 53/64	20.241 20.638 21.034	45.641 46.038 46.434	71.041 71.438 71.834		122.238	147.638	172.641 173.038 173.434		223.441 223.838 224.234	248.841 249.238 249.634	274.241 274.638 275.034		325.041 325.438 325.834	51/64 13/16 53/64
	27/32 55/64 7/8	21.431 21.828 22.225	46.831 47.228 47.625	72.231 72.628 73.025	97.631 98.028	123.031 123.428 123.825	148.431 148.828	173.831 174.228 174.625	199.231	224.631	250.031	275.431	300.831	326.231 326.628 327.025	27/32 55/64 7/8
	57/64 29/32 59/64	22.622 23.019 23.416	48.022 48.419 48.816	73.422 73.819 74.216	98.822 99.219	124.222 124.619	149.622 150.019	175.022 175.419 175.816	200.422 200.819 201.216	225.822 226.219	251.222 251.619	276.622 277.019	302.022 302.419 302.816	327.422 327.819 328.216	57/64 29/32 59/64
	15/16 61/64 31/32	23.813 24.209 24.606	49.213 49.609 50.006	74.613 75.009 75.406	100.013 100.409	125.413 125.809	150.813 151.209	176.213 176.609 177.006	201.613 202.009	227.013 227.409	252.413 252.809 253.206	277.813 278.209 278.606	303.213 303.609 304.006	328.613 329.009 329.406	15/16 61/64 31/32
	63/64	25.003	50.403	75.803				177.403			253.603	279.003		329.803	63/64

· 23

1.1.

- 23 -

FIGURE A-I


FIGURE A-II

.06

+07

.07

.06

LOAD VS SHEET STEEL THICKNESS RELATIONSHIPS FOR FASTENERS TESTED

.07

0

•Ċ1

.02

FIGURE A -II

0

•01

.02

.03

MEAN

ULTIMATE LOAD / FASTENER (Ibr)

MEAN

IN PULL-OUT AND GROUPED ACCORDING TO DIAMETER

•06

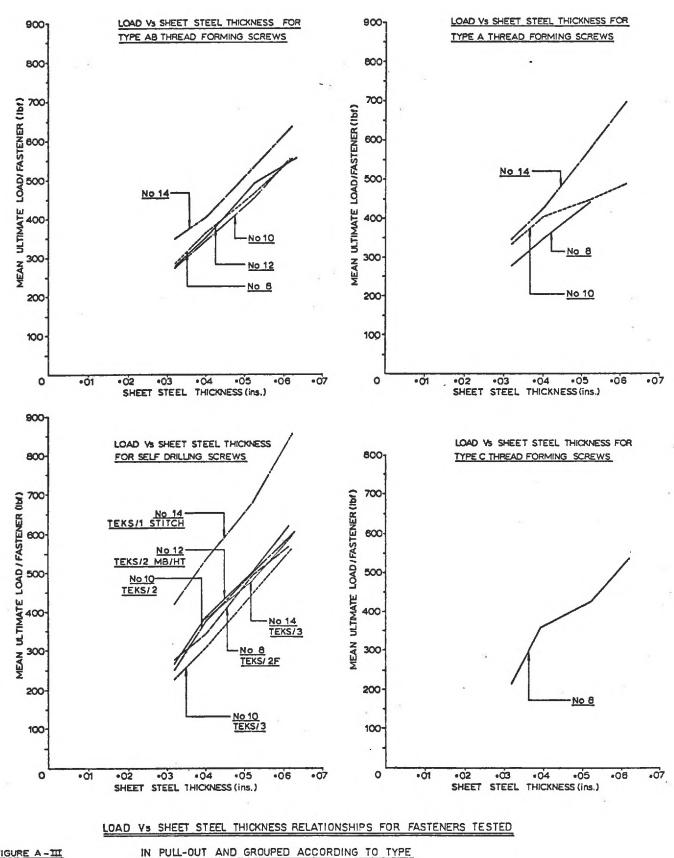
+05

•04

SHEET STEEL THICKNESS (ins.)

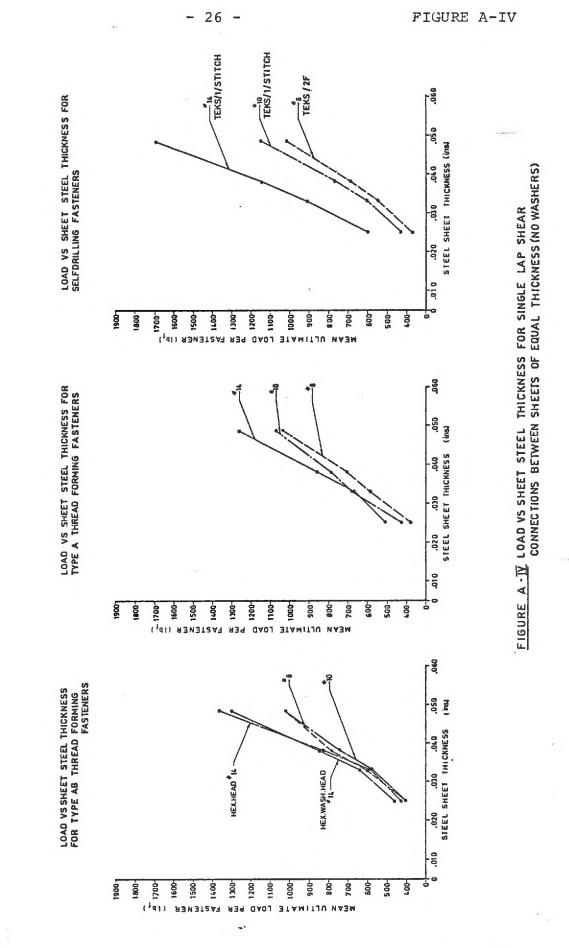
+03

SHEET STEEL


•04

•05

THICKNESS(ins.)


FIGURE A-III

26 .

FIGURE A-III

. . 27

.

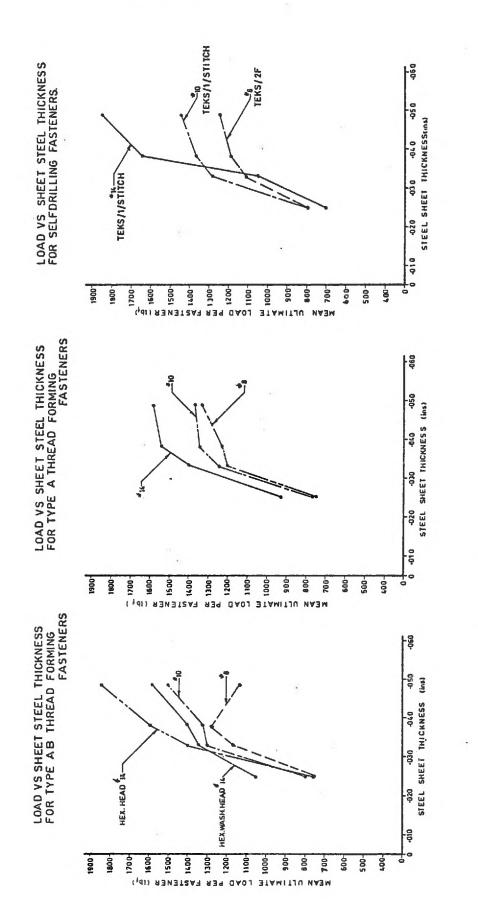


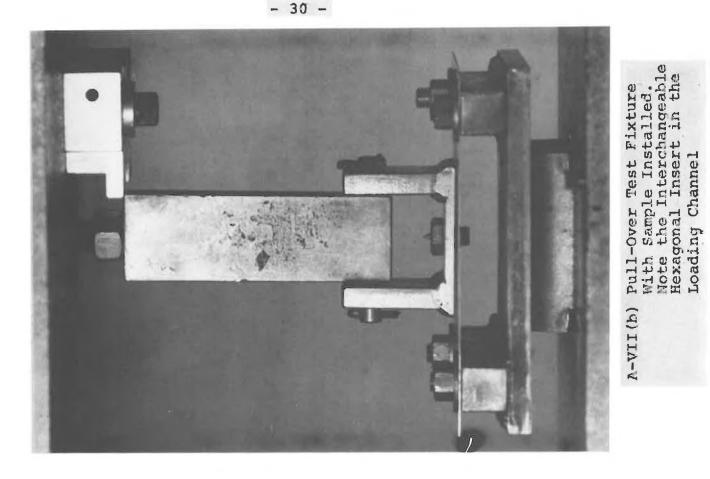
FIGURE A T LOAD VS SHEET STEEL THICKNESS FOR SINGLE LAP SHEAR CONNECTIONS BETWEEN VARIOUS SHEET THICKNESSES NEXT TO THE FASTENER HEAD AND A 16 GAUGE (0.060') BOTTOM SHEET. (NO WASHERS.)

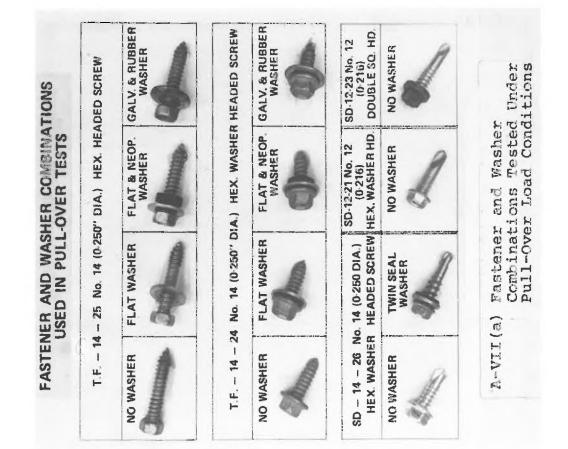
27 -

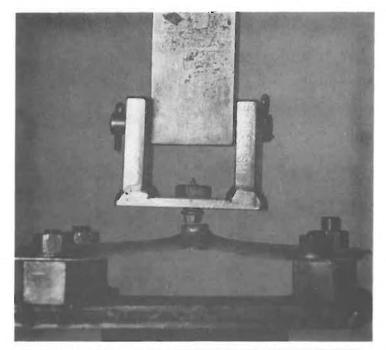
-

NOMENCLATURE OF TAPPING SCREWS

(1965 Draft Revision of American Standard B18.6.4 - 1958)

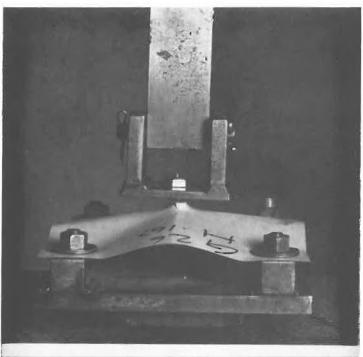

TYPE	ASA	MANUF
	AB	AB
ATATAS	A	~ A
	B	В
	BP	BP
	C	C
	D	1
	F	F
	G	G
ENTITLE CONTRACTION OF CONTRACT	Т	23
	BF	BF
	BT	25
	U	U

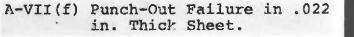

ABBREVIATIONS

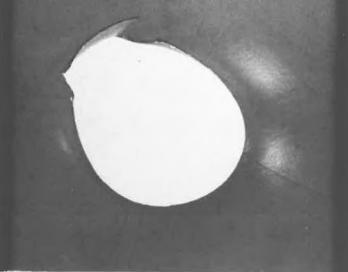

-	Galvanized
-	Galvanized & Rubber
-	Hex-Head
-	Hex-Washer Head
-	Neoprene
-	Panel Match
	- -

DEFINITIONS

Mean ultimate failure load refers to the <u>arithmetic mean</u> load determined from 5 repititions of each test.

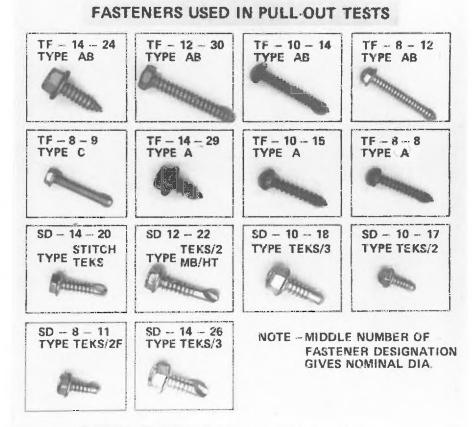


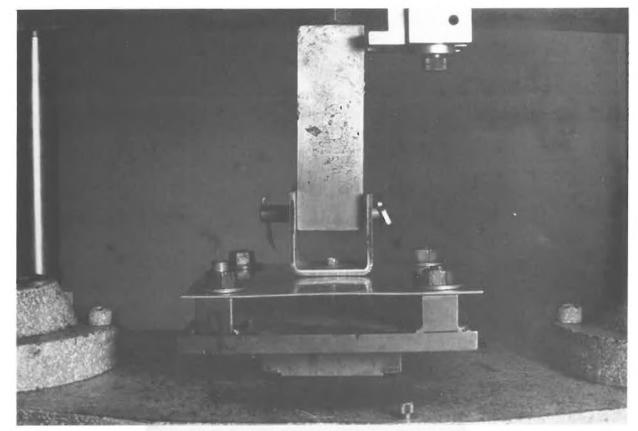

A-VII(c) Conventional Failure Mode in .060 in. Thick Sheet. Note the Slight Overall Sheet Deformation, Localize Necking and Tensile Sheet Failure.

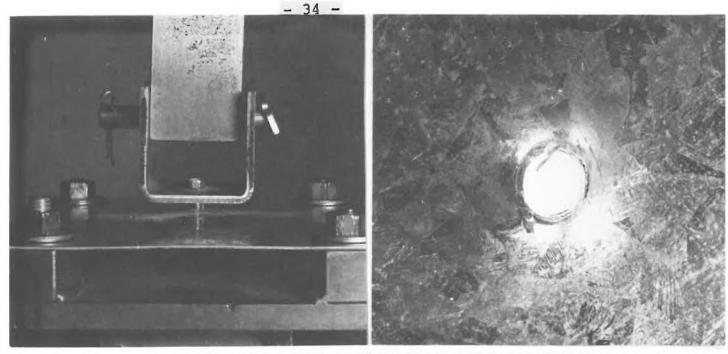


A-VII(d) Sheet Failure by Thinning and Tearing in the Vicinity of the Hole.

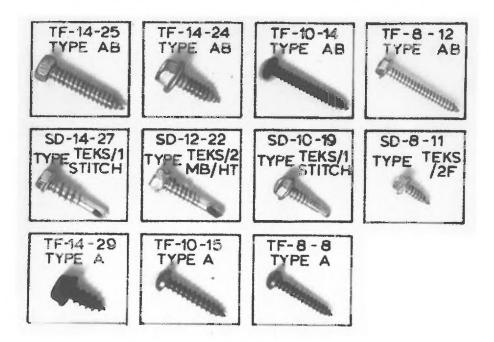
A-VII(e) Failure Mode in .022 in. Thick Sheet. Sheet Deformations are Large and the Connection Washer Sheared a Disc from the Sheet.






A-VII(g) Fastener and Washer Samples that Produced Punch-Out Failures in .022 in. Thick Sheet.

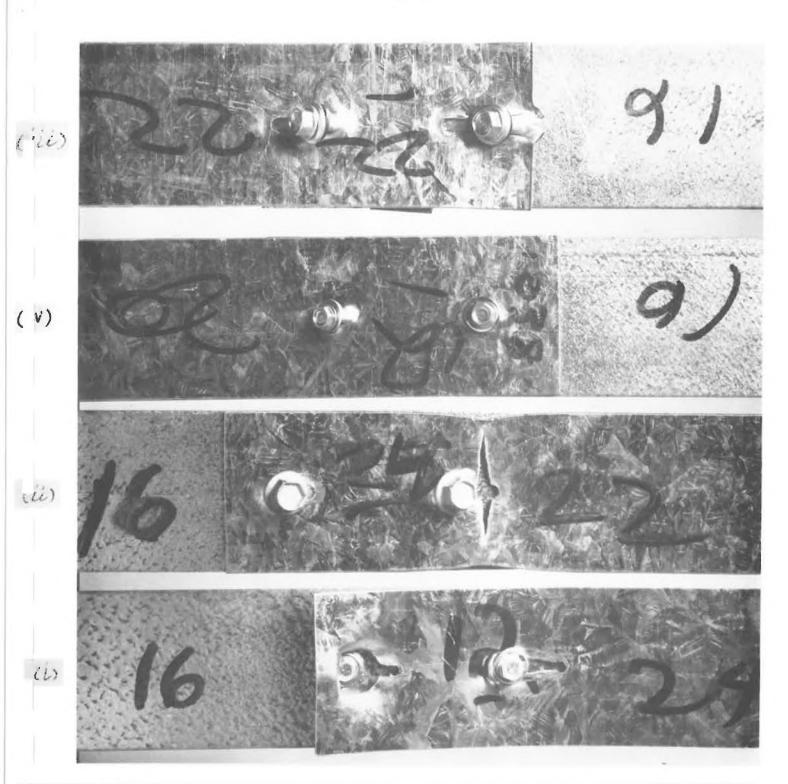
A-VII(h) Fasteners Tested Under. Pull-Out Load Conditions.


A-VII(i) Pull-Out Test Fixture in Tensile Testing Machine.

- A-VII(j) Typical Failure by Threads A-VII(k) At Failure the Sheet Disengaging from Sheet. Experienced Extremely
 - I(k) At Failure the Sheet Experienced Extremely Local Bending and Partial Shearing of Some Material Around the Periphery of

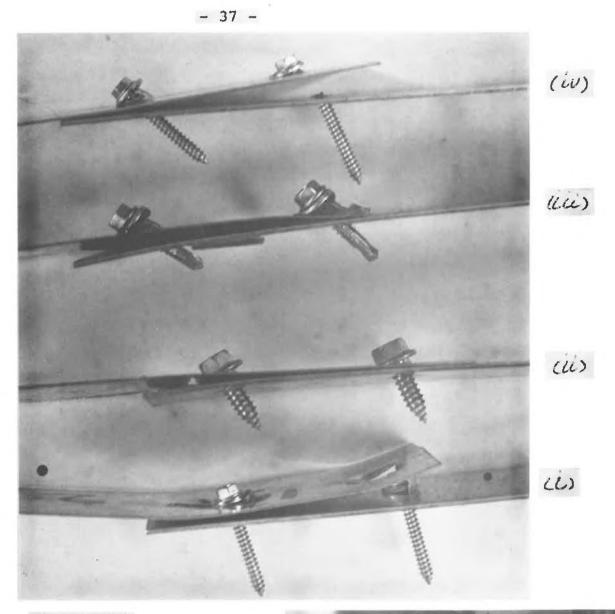
the Hole.

FASTENERS USED IN SHEAR TESTS



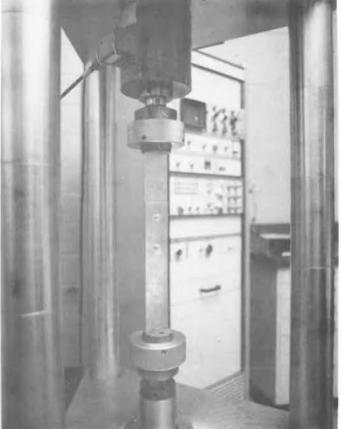
NOTE - MIDDLE NUMBER OF FASTENER DESIGNATION GIVES NOMINAL DIAMETER

A-VII(1) Fasteners Tested Under Static and Dynamic Shear Load Conditions. Sealing Washers (as shown in A-VII(a)) were also Tested with these Fasteners.



A-VII(m) Static Shear Test Sample Installed in Tensile Testing Machine.

- . -VII(n) & (o) Typical Shear Failure Modes: (i) Bearing Failure with Thin Top
- Sheet Curling up (iv) at Free End. (ii) Tensile Failure in Thin Top Sheet. (iii) Bearing Failure,


Shear Failure in One Fastener.

A-V11 - (0)

A-VII(p) Dynamic Shear Test Fixture Installed in M.T.S. Fatigue Testing Machine. The Sample Grips were Specially

> Designed to Prevent Loosening of the Jaws Upon Release or Reversal of the Load.

CANADIAN SHEET STEEL BUILDING INSTITUTE

VOLUME II

REPORT ON

SCREW FASTENED SHEET STEEL CONNECTIONS

DETAILS

FOR

CANADIAN STEEL INDUSTRIES CONSTRUCTION COUNCIL

DATE :

January, 1976

PREPARED BY:

PROFESS

R.W. Eastman, P. Eng., Project Engineer, Advance Engineering Group, Product Development Departmen DOFASCO, Hamilton.

TABLE OF CONTENTS

			Page
Ap	pendix B - De	tailed Information	
	B.1 Sheet St	eel Mechanical Properties	1
	B.2 Fastener	and Washer Specifications	1
	B.3 Predrill	ed Hole Specifications	3
	B.4 Drive To	rque	3
	B.5 Test Pro	cedures	5
	B.6 Comparis	on with Published Results	9
	B.7 Variance	of Results	12
	Table B-I	Steel Mechanical Properties-Pull-	
		Over Test	14
	Table B-II	Sheet Steel Mechanical Properties-	
		Pull-Out Test	14
	Table B-III	Sheet Steel Mechanical Properties -	
		Shear Test	14
	Table B-IV	Specifications for Screw Fasteners	15
	Table B-V	Washer Specifications	16
÷	Table B-VI	Comparison of Power and Hand	
		Applied Fasteners	17
	Table B-VII	Comparison of Ultimate Shear Loads	
		With Published Data	18
	Figure B-I	Pull-Over Test Fixture	19
	Figure B-II	Pull-Out Test Fixture	20
	Figure B-III	Shear Test Fixture	21
	Figure B-IV	Pull-Out and Pull-Over Test Speci-	
		men Dimensions	22
	Figure B-V	Shear Test Specimen Dimensions	23
	Figure B-VI	Comparison of Pull-Out Results	
		With Published Data	24

TABLE OF CONTENTS

Page

			<u>i ugc</u>
Append	ix C - Co	mputer Curve Fitting and Data	
	Co	rrelation For Connection	
	Ul	timate Loads	
C.I	Diameter	Relationships for Fasteners of	
	Similar	Туре	
	C.1.1	Shear-Unequal Thickness Sheets	
		Туре А	25
		Туре АВ	26
		Self Drilling	27
	C.1.2	Shear-Equal Thickness Sheets	
		Туре А	28
		Туре АВ	29
		Self-Drilling	30
	C.1.3	Pull-Out	
		Туре А	31
		Туре АВ	32
		Self Drilling	33
C.2	Load Vs.	Sheet Thickness Relationships For	
	Single La	ap Shear Connections Between Sheets	
	Of Unequa	al Thickness	
	#8 Type 2	A	34
	#8 Type i	AB	37
	#8 Self I	Drilling	40
	#10 Type	A	43
	#10 Type	AB	46
	#10 Self	Drilling	49
· ·	#12 Self	Drilling	52
	#14 Type	A	53
	#14 Type	AB	56
	#14 Self	Drilling	60

TABLE OF CONTENTS

C.3 Load Vs. Sheet Thickness Relationships For. Single Lap Shear Connections Between Sheets of Equal Thickness 63 #8 Type A..... 66 #8 Type AB..... 69 #8 Self Drilling..... 72 #10 Type A..... #10 Type AB..... 75 78 #10 Self Drilling..... 81 #12 Self Drilling..... 82 #14 Type A..... 85 #14 Type AB..... 89 #14 Self Drilling..... C.4 Load Vs. Sheet Thickness Relationships For Pull-Out Conditions #8 Type A..... 92 93 #8 Type AB..... 94 #8 Self Drilling..... 95 #8 Type C..... 96 #10 Type A..... 97. **#10** Type AB..... 98 #10 Self Drilling..... 100 #12 Type AB..... 101 #12 Self Drilling..... 102 #14 Type A..... 103 #14 Type AB..... 104 #14 Self Drilling.....

Page

APPENDIX B

APPENDIX · B

B.1 SHEET STEEL MECHANICAL PROPERTIES

One parameter which greatly affects the performance of any fastener connection is the mechanical properties of the steel sheets. Since all failures occurred by deformation of the sheet, it's tensile strength and ductility are of prime importance. In order to examine the effects of sheet thickness more closely, mechanical properties were maintained as constant as possible. This was true for all samples of galvanized material. Unfortunately, the prefinished samples showed approximately 30 percent less ductility than the galvanized samples and had 22 percent and 40 percent greater yield strengths for.022 in. and .024 in. thicknesses respectively. Tables B-I, B-II and B-III give a full record of the mechanical properties of all test sheet samples.

In the pull-over and pull-out tests, a pure tensile force normal to the plane of interconnection is developed. This gives rise to membrane stresses which propogate radially out from the point of fastening, and consequently, sheet directionality is of little importance. In shear tests, however, directionality may be important because of the variation of sheet properties with rolling direction and therefore all sheet samples were cut with the long dimension coinciding with the rolling direction.

B.2 FASTENER AND WASHER SPECIFICATIONS

The fasteners used in this test series were considered to be "commonly used" by a variety of industries and were not of a specialized nature. It should be emphasized that

. . 2

these fasteners and washers by no means cover the entire range available for structural applications. There may be fasteners that give greater connection strengths and washers with better sealing characteristics. To limit the size of the project it was necessary to choose only a small representative sample.

The fasteners tested ranged in size from #14 (.250 in.) to #8 (.164 in.) and were generally of the thread forming type. The thicknesses of the test sheet (which did not exceed .060 in.) did not warrant the use of thread cutting screws. The action of the thread forming screw is to displace or form a thread in the material adjacent to the The closeness of fit offered by the thread pilot hole. forming screw gives good resistance to loosening (i.e. the material adjacent to the pilot hole is pushing back against the fastener). In applications such as engineered metal buildings where fluctuating winds and internal vibrations may frequently occur, this fastener type has a definite advantage. Also, the internal stresses set up in the structural members by the action of the thread forming screws are generally permissible in this application.

The thread cutting screws are generally used in thicker and/or harder material. They also give rise to disruptive internal stresses, by virtue of their cutting action, and they generally require higher driving torques than thread forming screws.

- 2 -

The types of threads investigated in this test series were A and AB thread forming and self-drilling.

Tables B-IV and B-V give a complete breakdown of fastener and washer properties.

B.3 PREDRILLED HOLE SPECIFICATIONS

The pull-over sheet samples were provided with a clearance hole equal in diameter to the major diameter of the fastener. In pull-out and shear, where thread engagement was tested, the pilot hole diameters used were in accordance with the recommendations in American Standard Bl8.6.4 1965 Appendix VII.

For the self-drilling fasteners, a hole equal in diameter to the drill shank of the fastener was predrilled in the test sheets. This procedure was necessary since all fasteners were applied and torgued by hand.

B.4 DRIVE TORQUE

American Standard B18.6.4 1965 Appendix VII gives tables of recommended minimum torsional strengths for screw-fasteners according to diameter and thread type. The same requirements are specified in the SAE recommended practice J9336 "Mechanical and Quality Requirements for Tapping Screws". (Buildex Builders Guide Series 18 was useful in obtaining minimum torsional strengths for self-drilling fasteners.) These recommended values were used in lieu of performing torque

• • • 4

tests on all the fasteners for a number of reasons: -

(i) The fasteners were not being researched.

- (ii) Realistic conditions should be reproduced, therefore fasteners should be used "off the shelf".
- (iii) By using these minimum values the lowest possible application torques would be tested.

If, during the sample preparation stage, any fastener torsion failures did occur, we were prepared to perform torque tests on those fasteners. However, no such failures occurred and this additional procedure was not required.

General practice indicates that an actual application torque of 60 percent to 70 percent of the minimum torsional strength of the fastener be used. We therefore chose 65 percent of the recommended minimum torsional strengths as our application torque.

In order to control this application torque, all screw samples were applied by hand and hand torqued. This is not a practical method of application. It was felt, however, that since this parameter was not under investigation it should be controlled as accurately as possible.

A short test series was undertaken to see if hand torquing the fasteners did produce a significant change in the ultimate strength of a connection. The results are presented in Table B-VI. The percentage differences for the .061 in. and .040 in. samples, tested in pull-out with a #14 (.250 in.) diameter type AB, hex-headed fastener, were -6.2 percent and +2.7 percent respectively. These differences were considered to be within experimental accuracy.

5

- 4 -

B.5 TEST PROCEDURES

A research project sponsored by the American Iron Steel Institute, entitled "Mechanical Connections in Cold-Formed Steel: Comprehensive Test Procedures and Evaluation Methods" (8) has recently been completed by researchers at Cornell University, Ithaca, New York. The purpose of this investigation was to review and evaluate all existing test specifications for mechanically fastened connections, select test procedures suitable for industrial standards, and develop methods to evaluate the results obtained from the chosen standard procedure. These recommended testing procedures have been followed as closely as possible in this test series.

5 -

Pull-Over

General arrangements of the test fixture for pull-over and pull-out are shown in Figures B-I and B-II. The fixture consists of a base plate assembly to which the sheet steel test specimen was clamped. This base plate assembly was gripped firmly in the lower jaws of the tensile testing machine. A loading arm, gripped in the upper jaws of the tensile testing machine, was attached via a removable pin to the loading channel. The loading channel was the only part of the fixture that was different for pull-over and pull-out tests.

For pull-over testing, the loading channel was fabricated from 1/2 in. and 1/4 in. barstock. A 1/2 in. diameter threaded hole was provided in the base to accept a threaded insert.

6

A number of such inserts were made with a threaded hole through the center, prepared according to the requirements of the particular fastener to be tested. Thus, rather than change loading channels for each of a large number of different fasteners, the threaded insert needed only to be changed.

The pull-over test must be viewed with a certain amount of caution, however, since many simplifications have been made to arrive at a general testing fixture. There are a number of practical considerations which could greatly affect the results. The most important of these is rotation of the structural member to which the sheet is fastened. A typical channel of Z-shaped roof purlin, for example, may experience a degree of rotation under load. This rotation results in an eccentric loading on the fastener as well as a prying or peeling action, rather than an idealized uni-axial tensile force as developed in this test procedure.

Some work is being done at Cornell University on the effect of purlin rotation on the pull-over strength of roofing fasteners. In their recommended testing procedures (8) they note that a general simulation of this effect is difficult. If extreme accuracy is required, actual application conditions must be reproduced in the test set-up. As a half-way measure, a fastener placed eccentrically in the loading channel of the test rig will give an indication of rotation effects on a given connection.

. . . 7

- 6 -

In preparation for the test, the fastener was passed up through the clearance hole in the test sheet, threaded into the insert in the loading channel and hand tightened to the specified torque. The test sheet was placed over the studs on the base plate and nuts and washers securely tightened. The loading arm was lowered into the loading. channel and the 1/2 in. diameter pin passed through the aligned holes. This pin was prevented from slipping out of the channel by flat washers and split pins on both ends.

The speed of testing is very important. The recommended procedures specify a rate of loading of 100 lbs. per minute during initial testing stages where sheet deformations are large and loads are small. As deformations become more localized in the vicinity of the fastener and the loads begin to increase rapidly, a displacement rate of 0.02 in. per minute is recommended. These rates have been selected to allow the propagation of uniform membrane stresses while reducing the time required per test.

Too fast a testing rate would result in impact loading. In such a case the physical phenomena would not be fully developed and the results could be extremely misleading.

Pull-Out

For the pull-out tests, a number of loading channel were

. 8

- 7 -

made from 3/16 in. flat stock. For each size fastener a minimum clearance hole in the base of the channel was provided. (Four different sizes).

The fastener was applied through the clearance hole in the base of the channel and into the predrilled hole in the test sheet. Again, the fastener was tightened by hand to a specified torque and the sheet assembled on the fixture as previously described.

The rate of testing was the same as described for the pull-over test.

The sheet steel test specimens for pull-over and pull-out are shown in Figure B-IV. Maximum sample size was 8 X 8 in. and four 5/8 in. diameter holes were punched at 6 in. o.c. to facilitate clamping to the base plate. The fastener location hole in the center of the sheet was predrilled to the required size depending on the fastener being tested, the thickness of the test sheet and the type of test.

Shear

For the shear tests, the fixture consisted of a pair of grips, each containing a set of hardened jaws. (Figure B-III)

The samples were prepared according to Figure B-V. The steel sheet coupons were located in a jig so that the required holes could be drilled through both coupons simultaneously.

- 8 -

Two fasteners were applied by hand from the same side of the sample and hand torqued to the required value.

The sample was inserted between the jaws and into a slot in the upper body of the grips which provided location and alignment. Snugging the collar up tight locked the jaws onto the sample.

As per the recommended procedures, the rate of separation of the two heads of the testing machine under load did not exceed either 0.05 in. per minute or 100 pounds per minute rate of loading, whichever was greater.

For the dynamic tests, the same procedures for sample preparation were followed and the same grips used.

The test sequence was to load the sample to 75 percent of its average static shear failure load as determined by earlier tests, and return the load to 0. This cycling was continued for 5000 cycles at a frequency of 20 Hz. After this period the sample was retested according to the static test procedures and the connection failure load recorded.

B.6 COMPARISON WITH PUBLISHED RESULTS

Pull-Over

There is little information available for comparing the results of the pull-over tests, and the data that has been published is rarely accompanied by adequate testing specifications. Buildex Division of ITW, in their Builders Guide Series 15 (2) brochure gives test results for a limited

. 10

- 9 -

number of fasteners tested in pull-over and pull-out. Although these fasteners and washers are not identical to those we have tested, the information is included in Figure B-IV so that trends may be examined.

Our tests were limited to only two sheet thicknesses and comparison over a larger range is therefore not possible. However, our tests indicate a similar behaviour for fasteners with different sizes of heads and washers. (Figure B-VI)

Verification of the testing fixture by the authors of the recommended procedures (8) involved a limited number of pull-over tests using a #14 type A hex-headed fastener with a 0.020 in. thick x 5/8 in. O.D. metal-and-bonded neoprene washer. Our test results on a similar fastener with a 0.7 in. O.D. x .038 in. thick galvanized metal-and-bonded rubber washer are in good agreement. (i.e. Dofasco 773 lb., Cornell 784 lb., a difference of 1.3 percent.) Testing procedures and sheet properties for the above comparison were almost identical (i.e. .021 in. thick, 37 Ksi yield strength and 32 percent elongation in 2 in.)

Pull-Out

Data published by the authors of the recommended testing procedures (8) indicated the verification of the fixture by tests on a #14 type A fastener in pull-out, from .060 in. and .030 in. galvanized material of approximately the same mechanical properties as used in this test series. They did, however, use about half the tightening torque. Their tests produced pull-out values of 519 lb. and 274 lb. in

. . . 11

.060 in. and .030 in. sheets respectively, (35 percent and 27 percent lower than comparable results presented here. Some of this discrepancy could be attributed to the difference in torques.

Buildex Division of $ITW^{(2)}$ have also published data on pull-out tests performed on a #12 - 14 TEKS/2 fastener. The material they used in testing had a 50 ksi yield strength or 25 percent higher than the material in a comparable test. For .060 in. and .048 in. materials, they recorded 940 lb. and 730 lb. respectively, approximately 50 percent higher than the results obtained from this series. The difference in material properties has some effect on the results, but the lack of further test specifications limits the validity of a comparison.

Shear

The data available for comparisons of shear connections comes from Cornell University ⁽⁸⁾ where a number of tests were necessary to verify the testing procedures and from the National Swedish Building Research, Document D8:1973 ⁽¹⁰⁾ which presents design equations for predicting ultimate connection loads.

Table B-VII compares this data with our test results for a #14 (.250 in.) diameter type A thread forming fastener with a galvanized-and-bonded rubber sealing washer. Some of the Cornell tests, using the same fastener, were performed using steel sheets with thickness combinations differing from ours. In these instances, the closest values have been

- 11 -

. . 12

included and the differences are indicated in the table.

A number of the Cornell tests give ultimate loads which are approximately 200 pounds per fastener lower than ours and the remainder show good agreement.

If two steel sheets of different thicknesses are used in a connection, the Swedish formulae consider the properties of the thinner sheets only. Consequently, in such cases, they considerably under-estimate, the connection failure loads.

B.7 VARIANCE OF RESULTS

Five repetitions of each test were performed. The values appearing in Table A-I are arithmetic mean values. The coefficient of variation was calculated for each set of results according to the following statistical formulae:

> $V = \underline{S}$ Where V = Coefficient of Variation \overline{X} \overline{X} \overline{X} = Mean

> > S = Standard Deviation

x = Discrete Value

n = Number of Discrete Values

$$s = \frac{\sum x^2 - 1/n \sum (x)^2}{n-1}$$

. . 13

The variance coefficients expressed as a percentage, averaged between 4 percent and 5 percent. This indicates very good agreement of results and little scatter. There were however, a number of isolated incidents where coefficients greater than 10 percent were calculated.

In pull-over, the tests with flat metal washers generally exhibited high variation. This may be partly due to the fact that the inside diameter of the washer was larger than the maximum fastener diameter. Exact alignment was therefore difficult and the slight eccentricities caused some scatter of results.

In pull-out and shear, when the thin sheets were being tested, high variations were also encountered. It is felt that, tightening fasteners to their specified torque in thin material is often difficult and the probability of overtorquing is high.

. 14

 i_{I}

.

TABLE B-I	SHEET	STEEL MECHAIL	ICAL PROPERTIE	S PULL-	OVER_TEST
NOMINAL GAUGE ACTUAL THICKNESS IN.	CONTING	YIELD STRENGTH (ksi)	TENSILE STRENGTH (ksi)	PERCENT ELONGATION IN 2 IN.	HARDNESS ROCKWELL B
24 (0.0278)	G-90	39.4	52.3	33.5	56
24 (0.0239)	Prefinished	55.9	63.7	19.0	62
26 (0.0230)	G-90	39.7	51.0	30.0	58
26 (0.0220)	Prefinished	48.4	57.0	20.0	60

TABLE B-II	SHEET	STEEL MECHAN	IICAL PROPERTI	ES PULL-(DUT TEST
NOMINAL GAUGE ACTUAL THICKNESS IN.	COATING	YIELD STRENGTH (ksi)	TENSILE STRENGTH (ksi)	PERCENT ELONGATION IN 2 IN.	HARDNESS ROCKWELL B
16 (0.0610)	G-90	41.0	51.5	30.0	56
18 (0.0510)	G-90	40. 3	53.6	33.5	59
20 (0.0402)	G-90	40.2	50.4	34.0	56
22 (0.0312)	G-90	42. 5.	51. 2	25.0	53

TABLE B-III	SHEET	STEEL MECHANIC	AL PROPERTIES	SHEA	<u>R TEST</u>
NOMINAL GAUGE	COATING	YIELD STRENGTH (ksi)	TENSILE STRENGTH (ksi)	PERCENT ELONGATION IN 2 IN.	HARDNESS ROCKWELL B
24 (0.025)	G-90	42. 75	50. 75	30.0 .	60
20 (0.038)	G-90	39.6	50.0	32.5	57
18 (0.0485)	G-90	36, 6	46.9	31.0	58
22 (0.033)	G-90	36.2	46.75	30.0	50
16 (0.060)	G-90	36, 6	47.5	35.0	57

TABLE B-IV		-	S	SPECIFI CATIONS	AT		FOR SCREW	FASTENERS	ERS			
DESIGNATION	ТҮРЕ	FINISH	DIAMETER (IN)	THREAD TYPE	T.P.L	LENGTH (in)	HEAD TYPE	DRIVE PATTERN	POINT	WASHER TYPE	MINIMUM TORSIONAL STRENGTH (IN-LB)	DRIVE TORQUE (IN - LE) * *
T.F-8-8	THREAD	PLAIN STEEL	*8 (.164.)	A	15	1	PAN	SCRULOX	GIMLET	NONE	39	25.4
T.F 8 - 12	THREAD	ZINC	*8 (.164)	AB	18	1-1/4	HEX WASHER	НЕХ	GIMLET	NONE	39	36.4
S.D-8-11	SELF	ZINC PLATED	*8 (.164)	TEKS/2F	Ø	1/2	HEX WASHER	HEX	S-12	NONE	42	27.3*
T.F-8-9	THREAD FORMII:3	CADMIJM PLATED AND WAXED	*8 (.164)	υ	32	-	INDENTED HEX WASHER	НЕХ	CHAMFER	NONE	42	27.3
T.F10-15	THREAD	PLAIN STEEL	*10 (.190)	۷	12	1	PAN	ROBERTSON RECESS	GIMLET	NONE	48	31.2
T.F-10-14	THREAD FORMING	PHOSPHATE	*10 (.190)	AB	16	1-1/4	PAN	PHILIPS	GIMLET	NONE	56	26.4
S.D10-19	SELF	ZINC PLATED	*10 (.190)	TEKS/1/STITCH	16	3/4	HEX WASHER	НЕХ	S-12	NONE	61	39.7
S.D10-17	SELF	ZINC PLATED	*10 (.190)	TEKS/2	16	1/2	HEX WASHER	НЕХ	S-12	NONE	61	39.7*
S.D10-18	SELF	ZINC PLATED	*10 (,190)	TEKS/3	16	3/4	HEX WASHER	НЕХ	S-12	NONE	61	39.7*
T.F. 12-30	THREAD	MECHANICAL	*12 (.216)	AB	4	1-1/2	HEX	HEX	GIMLET	NONE	88	57.2
S.D12-22	SELF	CADMIUM PLATED	#12 (.216)	TEKS/2/MB/HT	14	1	HEX WASHER	НЕХ	S-12	TWIN SEAL	92.	59.8*
S.D12-23	SELF DRILLING PAN MATCH	ZINC	*12 (.216)	TEKS/3	4	1	DOUBLE SQUARE	DOUBLE	S-12	NONE	92	59.8*
S.D12-21	SELF	CADMIUM PLATED	*12 (.216)	TEKS/4	24	7/8	HEX WASHER	. HEX	S-12	NONE	100	65°
T.F14-29	THREAD	PHOSPHATE	*14 (.250)	A	9	5/8	INDENTED HEX WASHER	НЕХ	GIMLET	NONE	125	813
T.F14-25	THREAD	MECHANICAL	*14 (.250)	AB	13	1-1/4	НЕХ	HEX	GIMLET	NONE	142	.923
T.F14-24	THREAD	MECHANICAL	#14 (.250)	AB	4	3/4	HEX WASHER	НЕХ	GIMLET	NONE	142	923
S.D14-27	SELF	CADMIUM PLATED	#14 (.250)	TEKS/1/STITCH	0	1	HEX WASHER	нех	S-12	TWIN SEAL	92	59.8*
SD-14-20	SELF	CADMIUM PLATED	#14 (.250)	TEKS/2/MB	14	-	HEX WASHER	НЕХ	S-12	TWIN	92	59.8
S.D14-26	SELF	CADMIUM PLATED	*14 (.250)	TEKS/3	14	3/4	HEX WASHER	НЕХ	S-12	NONE	150	975*

VALUES GIVEN IN BUILDEX - BUILDERS GUIDE SERIES 18 RULE-OF-THUMB FOR DETERMINING DRIVE TORQUES-65% OF MINIMUM TORSIONAL STRENGTH

• * *

16

.

.

MINIMUM TORSIONAL STRENGTH REQUIREMENTS PER AMERICAN STANDARD B18,6.4-1965

- 15 -

TABLE B-Y	4	WASHER SPI	SPECIFICATIONS	ATIO	٨S
DESIGNATION	ТҮРЕ	MATERIAL		(,in.)	CROSS SECTION SKETCH
1-W	SEALING	NEOPRENE	29/64	7/32	CA 25
W-2	SEALING	RUBBER BONDED GALV。STEEL	02.00	7/32	GALV. STEEL 0.038 THICK BONDED RUBB. 0.060 THICK
W-3.	DOUBLE SEALING	CADMIUM PLATED STEEL WITH RUBBER INSERT	5/8	7/32	RUBBER INSERT
W-4	FLAT	CADMIUM PLATED STEEL	5/8	9/32	EALEN STEEL
S->	FLAT	CADMIUM PLATED STEEL	1/2	7/32	STEEL 0.060 THICK
8-N	FLAT	CADMIUM PLATED STEEL	7/16	3/16	ETT STEEL 0.050 THICK

, , , 17

- 16 -

TABLE B-V

TABLE B-VI

COMPARISON OF PULL-OUT RESULTS FOR A No14 BY. TYPE AB, HEX. HEADED, FASTENER APPLIED SCREWDRIVER POWER BY A AND HAND

	- 1/ -	-	TABLE
СЕ %	HAND DRIVEN	2.2	9.6
VARIANCE %	POWER HAND DRIVEN DRIVEN	2-5	2.5
STANDARD DEVIATION	HAND DRIVEN	13-3	44.6
STANDARD	POWER DRIVEN	15.9	11-3
MEAN PULL-OUT LOAD(Ibf)	DIFFERENCE $\left(\frac{b-A}{b} \times 10^{0}\right)^{0/6}$	- 6.2	+ 2.7
JULL-OUT		599	461
1 1	POWER DRIVEN	636	449
TEST SHEET	THICKNESS (ins.)	16 GA. (0.061)	20 GA. (0.040)

SCREWDRIVER SPEED 1600 R.P.M. TORQUE SETTING AT 80 ins 1bs SAMPLE SIZE N=10

B-AT

NOTE

. . 18

a.	ULTIMAT	ULTIMATE SHEAR LOAD /	LOAD /	FASTENER (Ib)	ER (Ib)
	SHEET "A" THICKNESS (IN.)	SHEET "B" THICKNESS (IN.)	DOFASCO	CORNELL	SWEDISH
	.0485	.060 (.061)	1696	* 1737	901
	.033	.060	1388	1125	604
•	.025	.060 (.061)	1064	* 817	639
	033	.033	671	475	464
	.025 (021)	.025	463	* 312	341
*	RESULTS I SHO	RESULTS FROM TESTS IN SHEET SHOWN IN PARENTHESIS	S IN SHEE RENTHESIS	T THICKNESSES	SSES
TABLE	B-VII	-			

TABLE B-VII

COMPARISON OF ULTIMATE SHEAR LOADS

WITH PUBLISHED DATA

- 18

19

FIG B-I

TEST FIXTURE FOR PULL-OVER TEST WITH SPECIMEN INSTALLED

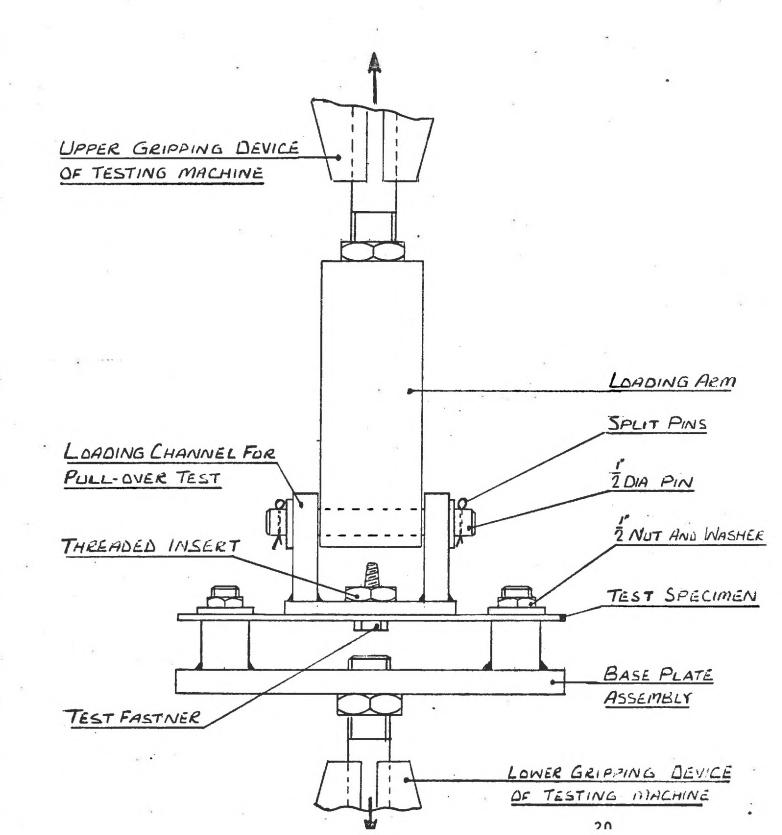
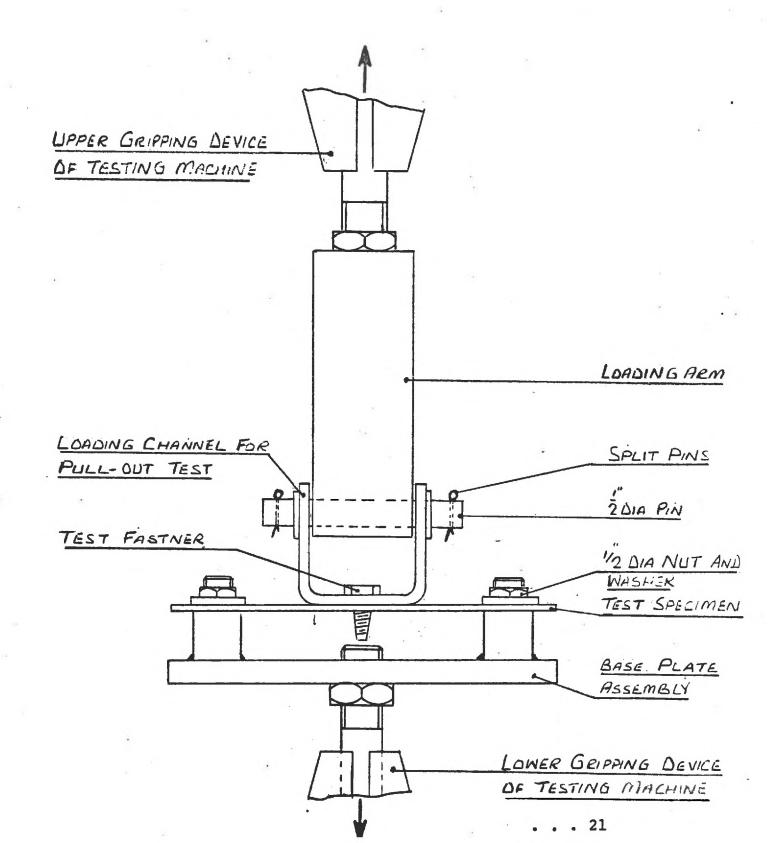
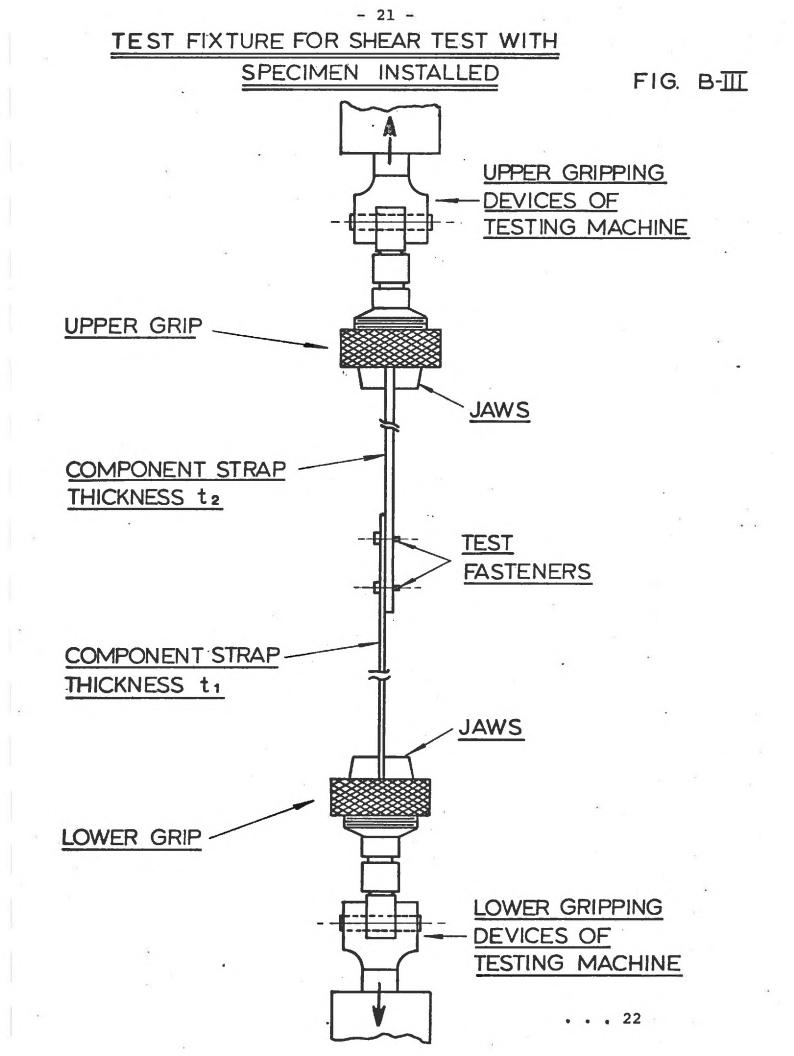




FIG. B-II

TEST FIXTURE FOR PULL-OUT TEST WITH SPECIMEN INSTALLED

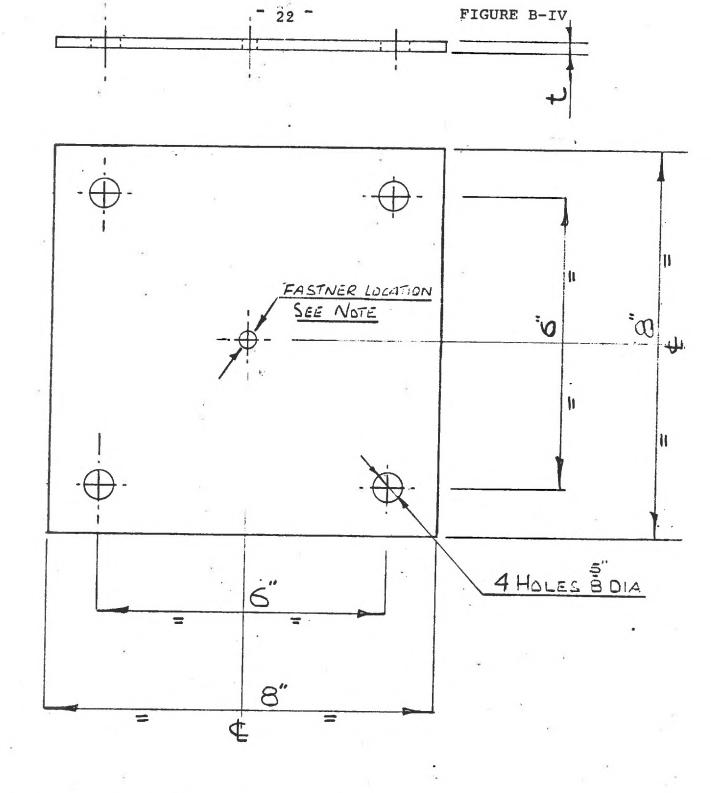
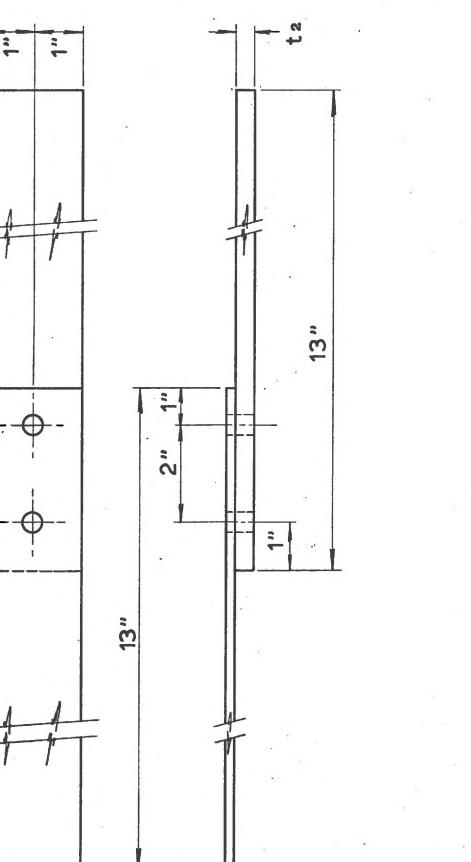
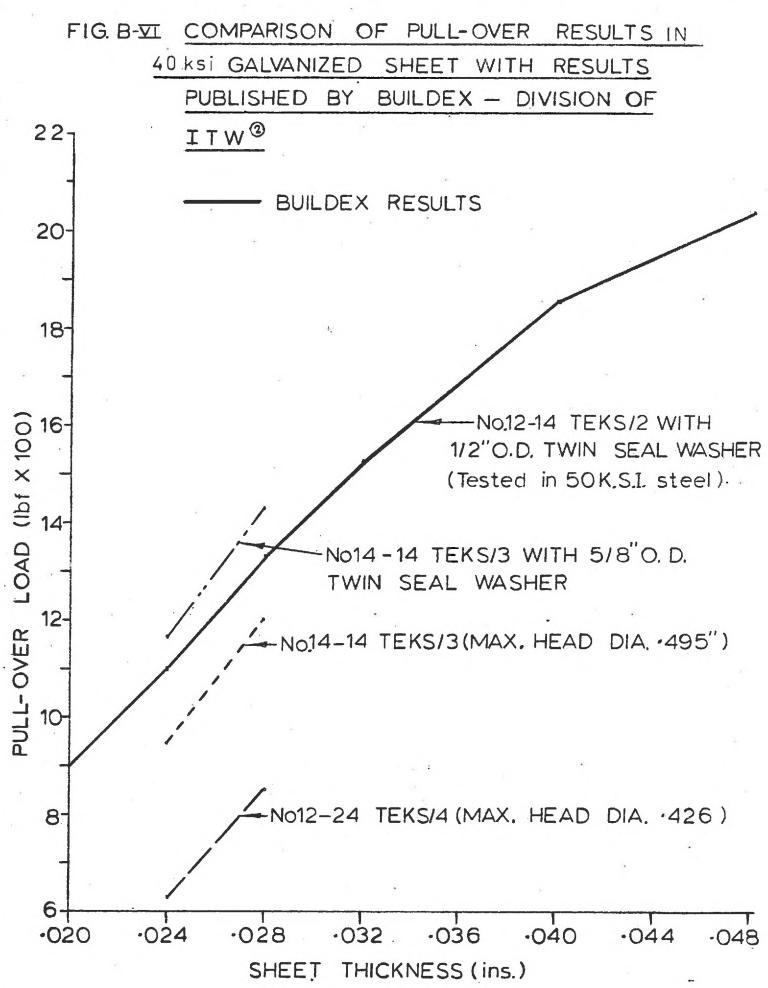



FIG. B-IV TEST SPECIMEN DIMENSIONS FOR FLAT SECTIONS TESTED IN PULL-OUT AND PULL-OVER

> NOTE FASTNER LOCATION HOLE DIA. DEPENDS ON TYPE OF TEST AND DIAMETER OF FASTNER


ŝ

SINGLE-SHEAR (LAP JOINT) TEST SPECIMEN DIMENSIONS FIG. B-Y

24

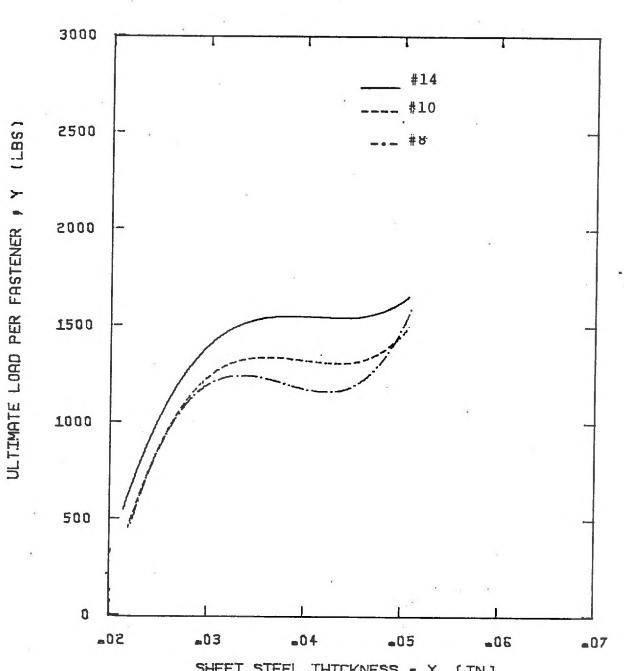
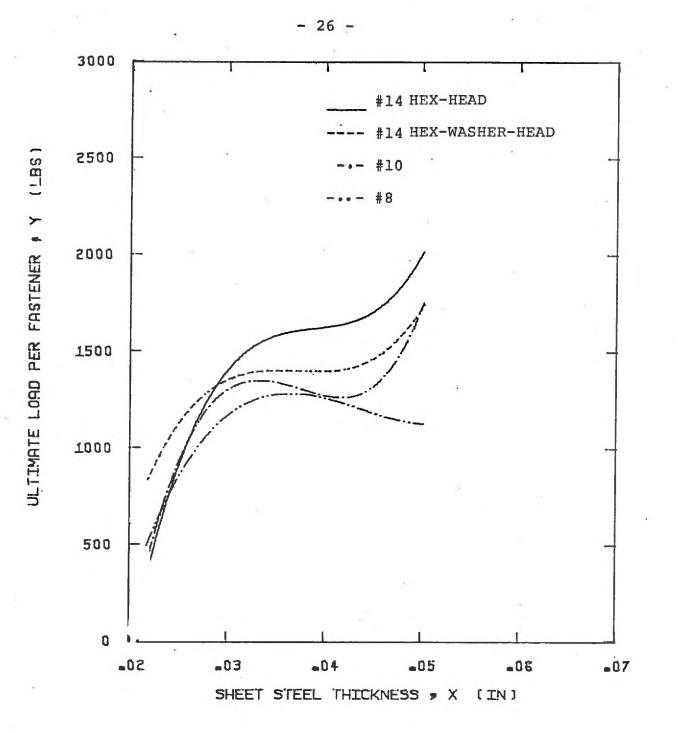

- 23 -

FIGURE B-V

- 24 -

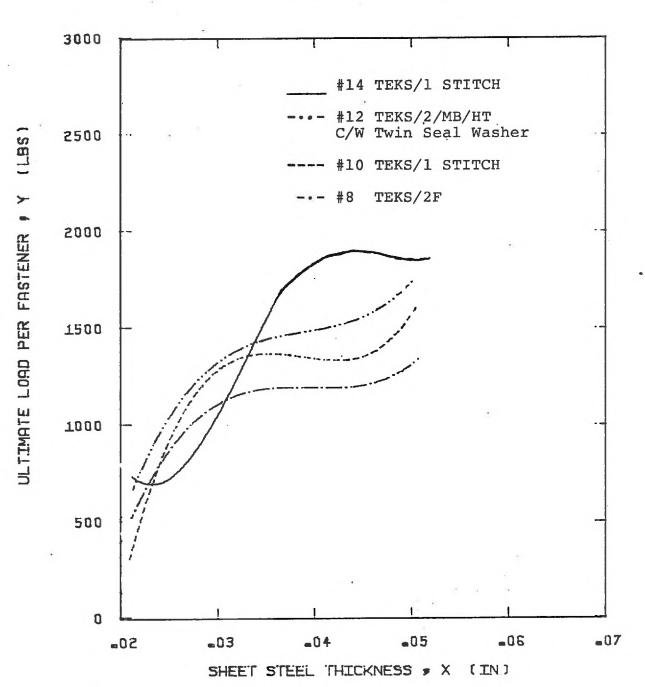
APPENDIX C



SHEET STEEL THICKNESS , X (IN)

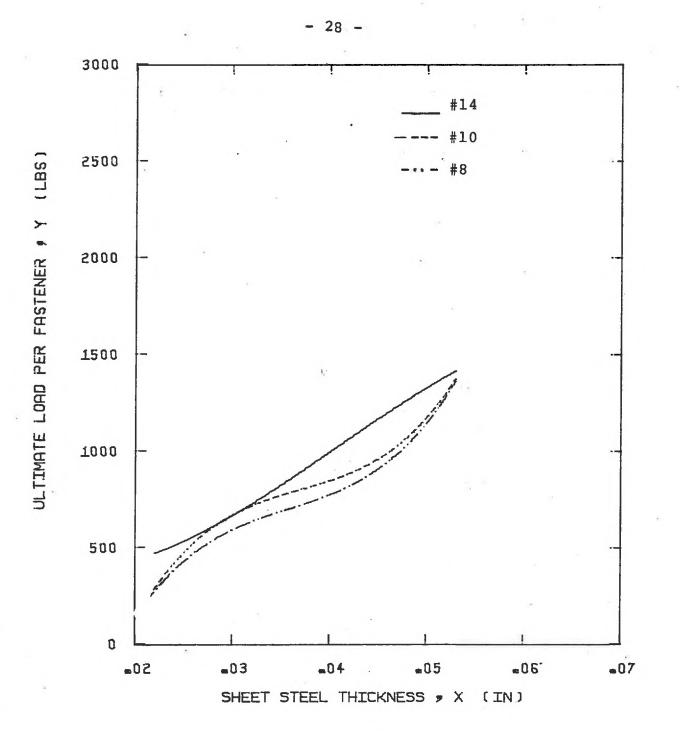
TYPE A THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3)

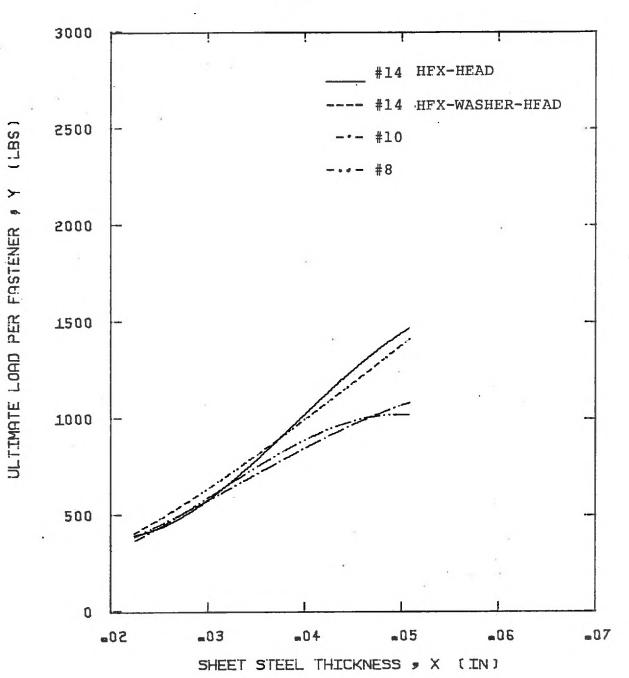

25 -

TYPE AB

NO WASHER


Y = A + B X + C [X++2] + D [X++3]

SELF DRILLING


Y = A + B X + C [X++2] + D [X++3]

- 27-

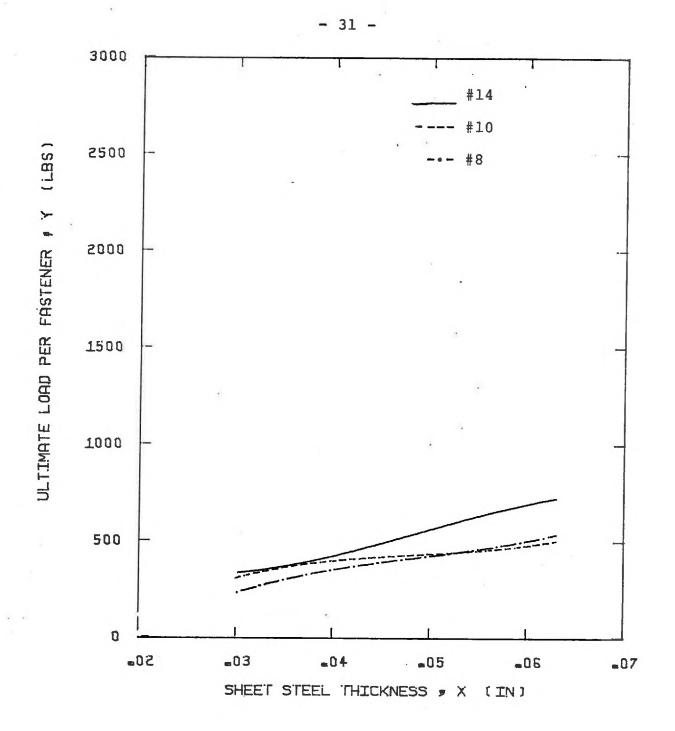
TYPE A THREAD FORMING NO WASHER

Y = A + B X + C [X++2] + D [X++3]

TYPE AB THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3)

- 29 -



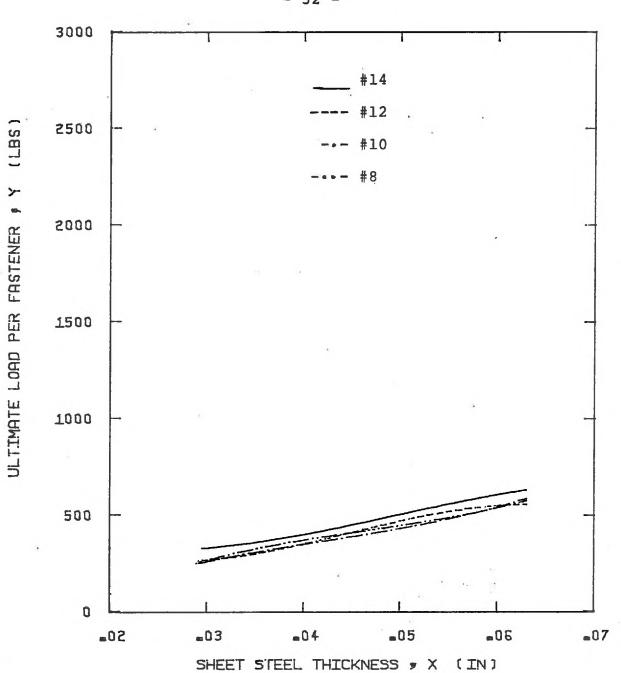
SELF DRILLING NO WASHER

Y = A + B X + C (X++2) + D (X++3)

- 30 -

2

TYPE A THREAD FORMING

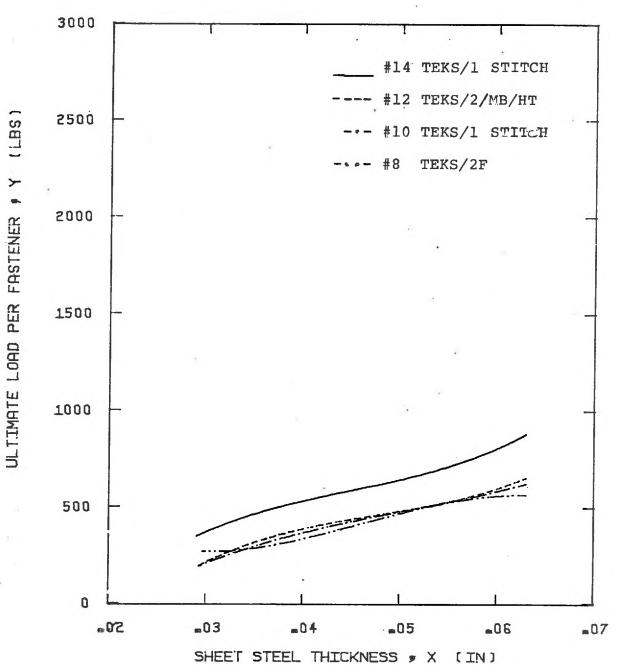

NO WASHER

3

Ń.

Y = A + B X + C (X++2) + D (X++3)

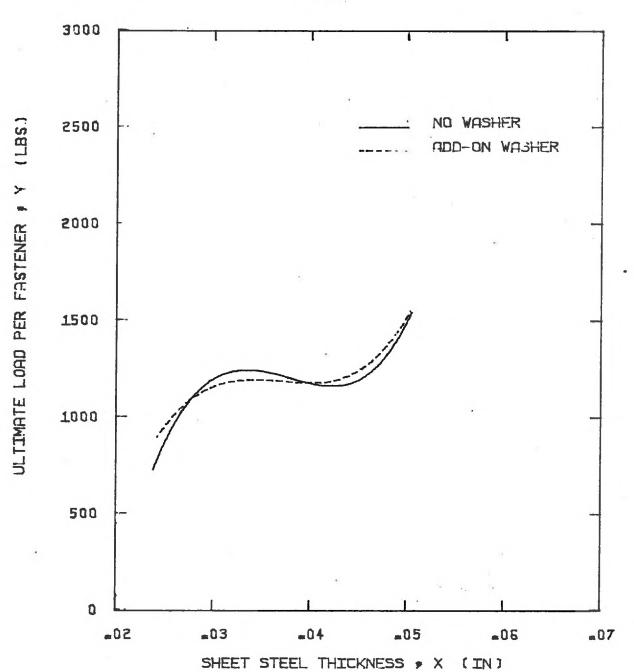
•



TYPE AB THREAD FORMING NO WASHER

Y = A + B X + C [X++2] + D [X++3]

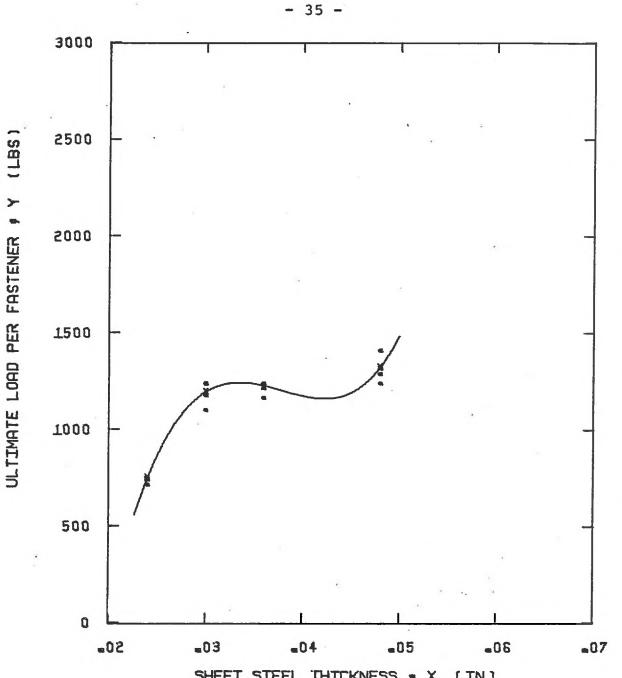
- 32 -


3

SELF DRILLING NO WASHER

Y = A + B X + C [X + + 2] + D [X + + 3]

- 33 -

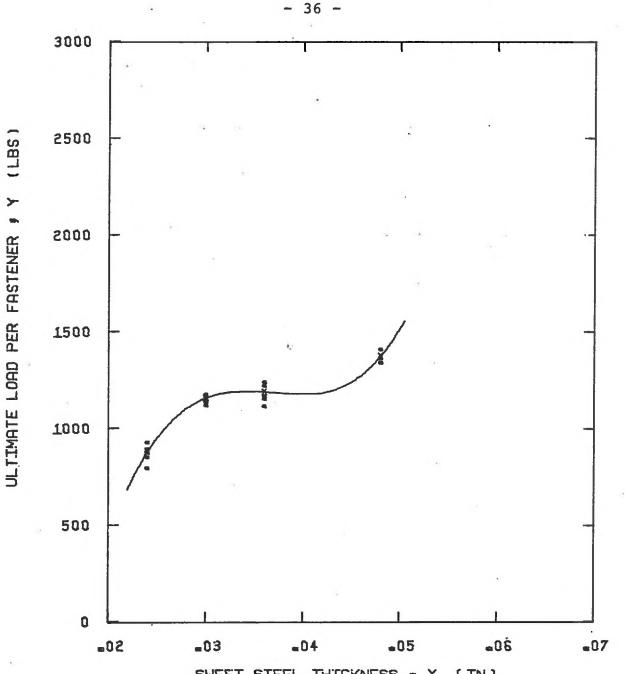


NUMBER 8 TYPE A 15TPI THREAD FORMING

Y = A + B X + C (X + + L) + D (X + + 3)

- 34 -

4

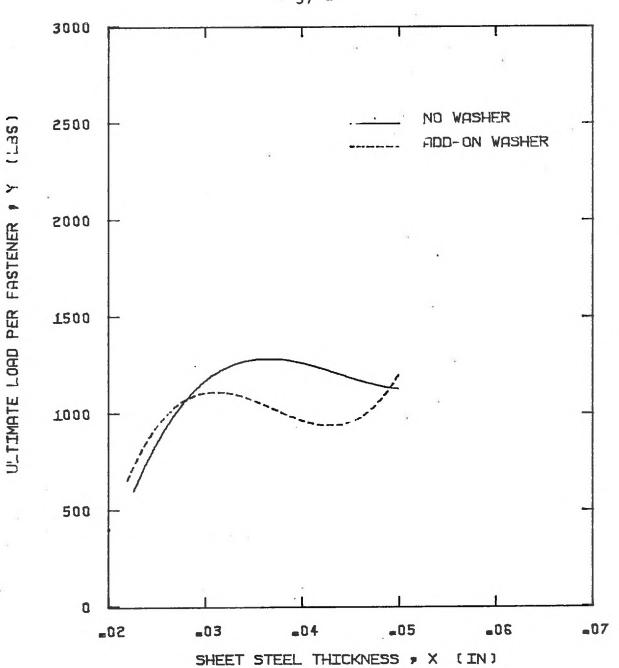

SHEET STEEL THICKNESS . X (IN)

NUMBER 8 TYPE A 15 TPI THREAD FORMING NO WASHER

4

Y = A + B X + C (X + 2) + D (X + 3)

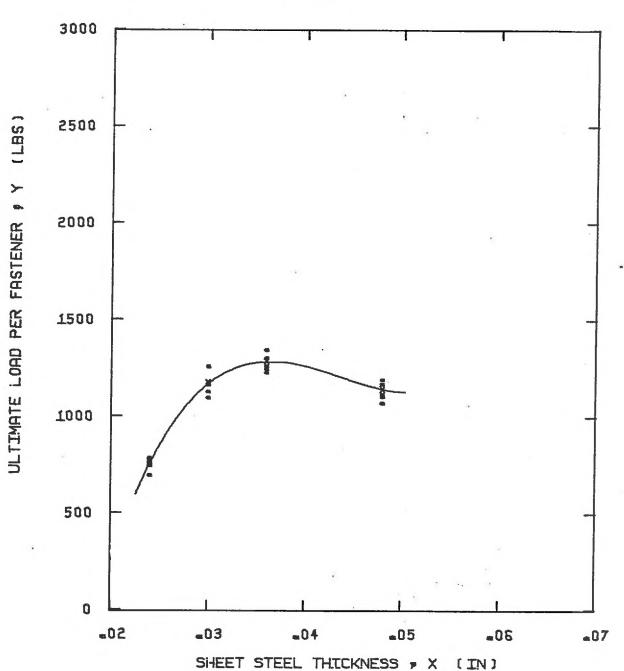
A	=	118E+05	В	Ŧ	-107E+07
C	=	287E+08	ם	=	€253E+09



SHEET STEEL THICKNESS . X (IN)

NUMBER 8 TYPE A 15TPI THREAD FORMING FLAT METAL WASHER

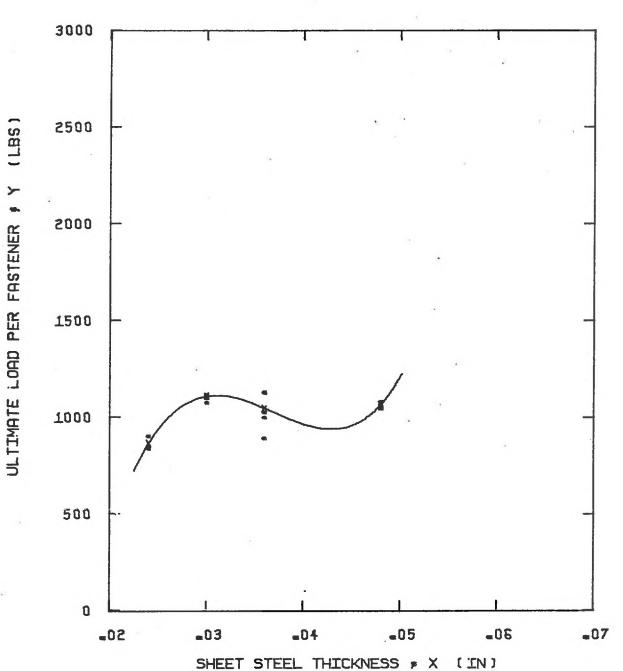
4


Y = A + B X + C (X++2) + D (X++3) $A = -{}_{0}721E+04 \qquad B = {}_{0}693E+06$ $C = -{}_{0}189E+08 \qquad D = {}_{0}171E+09$

NUMBER & TYPE AB 18 TPI THREAD FORMING

Y = A + B X + C (X++2) + D (X++3)

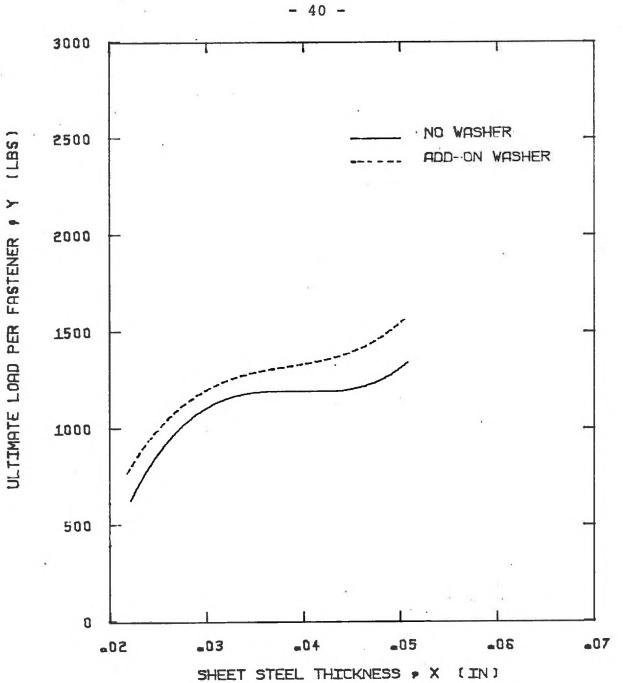
- 37 -



NUMBER 8 TYPE AB 18TPI THREAD FORMING NO WASHER

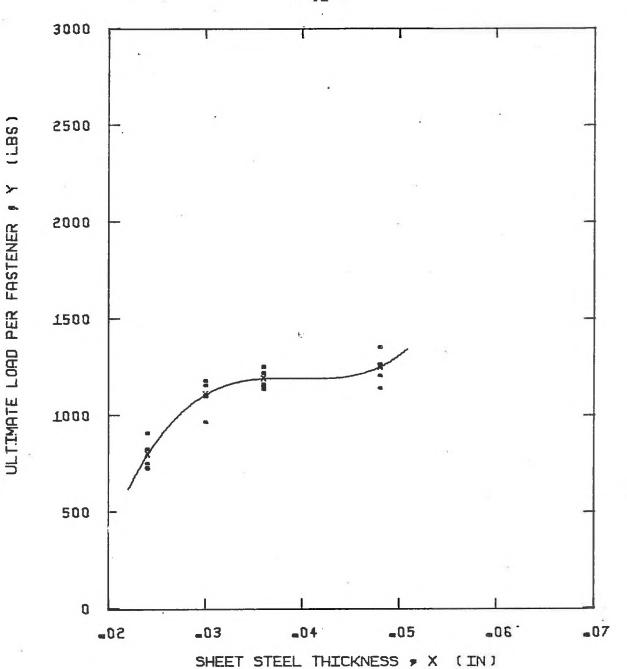
Y = A + B X + C [X++2] + D [X++3] $A = -_{0}659E+04 \qquad B = _{0}571E+06$ $C = -_{0}135E+08 \qquad D = _{0}103E+09$

- 38 -


4

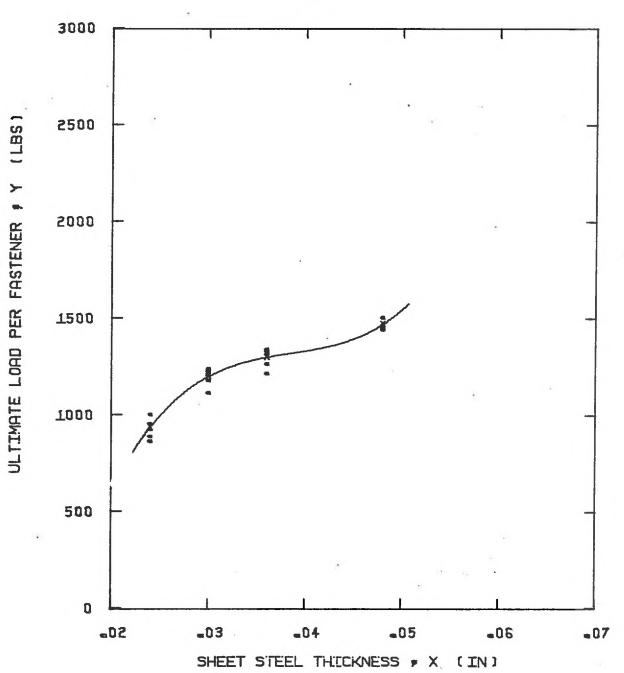
NUMBER 8 TYPE AB 18TPI THREAD FORMING FLAT WASHER

Y = A + B X + C (X++2) + D (X++3) $A = -..869E+04 \qquad B = ..836E+06$ $C = -..233E+08 \qquad D = ..211E+09$


- 39 -

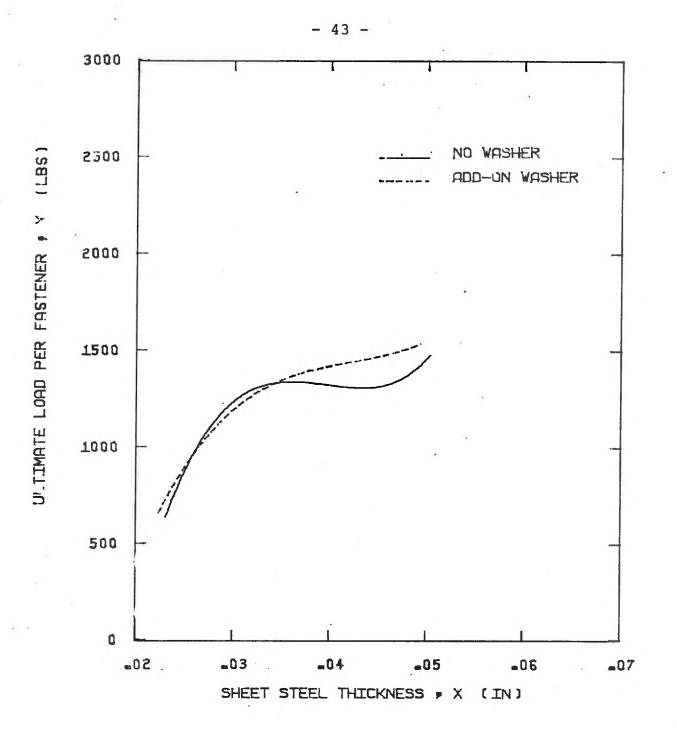
NUMBER 8 TYPE TEKS/2F 18TPI SELF DRILLING

B X + C [X++2] + D [X++3]Y

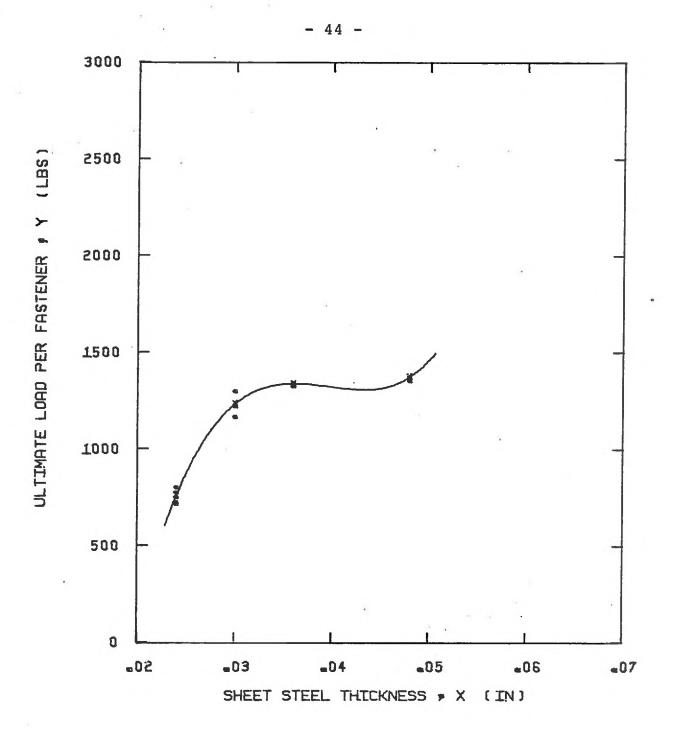

Ly

NUMBER & TYPE TEKS/2F 18TPI SELF DRILLING NO WASHER

Y = A + B X + C [X++2] + D [X++3] $A = -.564E+04 \qquad B = .522E+06$ $C = -.133E+08 \qquad D = .112E+09$

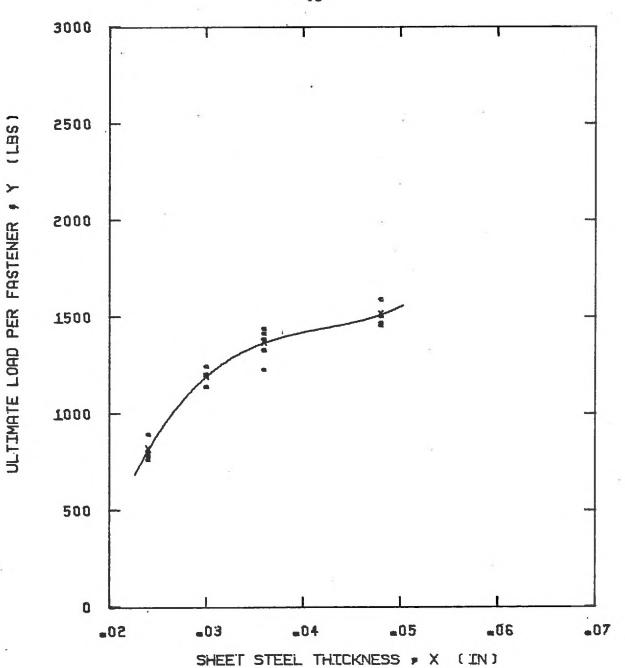

- 41 -

NUMBER 8 TYPE TEKS/2F 18 TPI SELF DRILLING TWIN SEAL WASHER


Y = A + B X + C [X++2] + D [X++3] A = -a410E+04 B = a408E+06C = -a104E+08 D = a899E+08

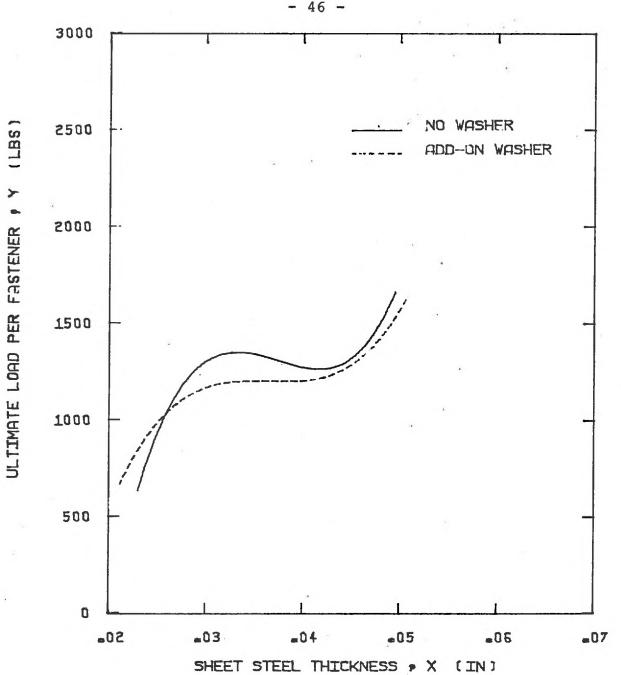
- 42 -

NUMBER 10 TYPE A 12TPI THREAD FORMING


Y = A + B X + C [X++2] + D [X++3]

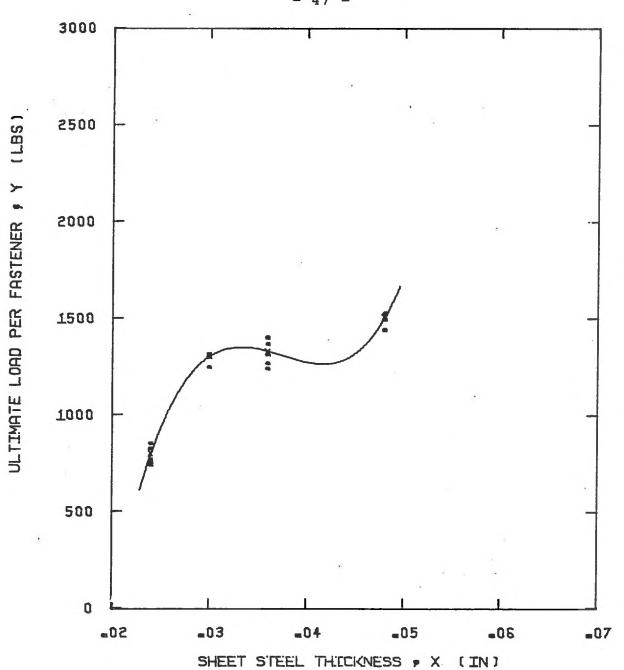
NUMBER 10 TYPE A 12TPI THREAD FORMING NO WASHER

Y = A + B X + C (X + 2) + B [X + 3]


	A	-	959E+04	B =	-845E+06
•	C	=	-°510E+08	D =	-183E+09

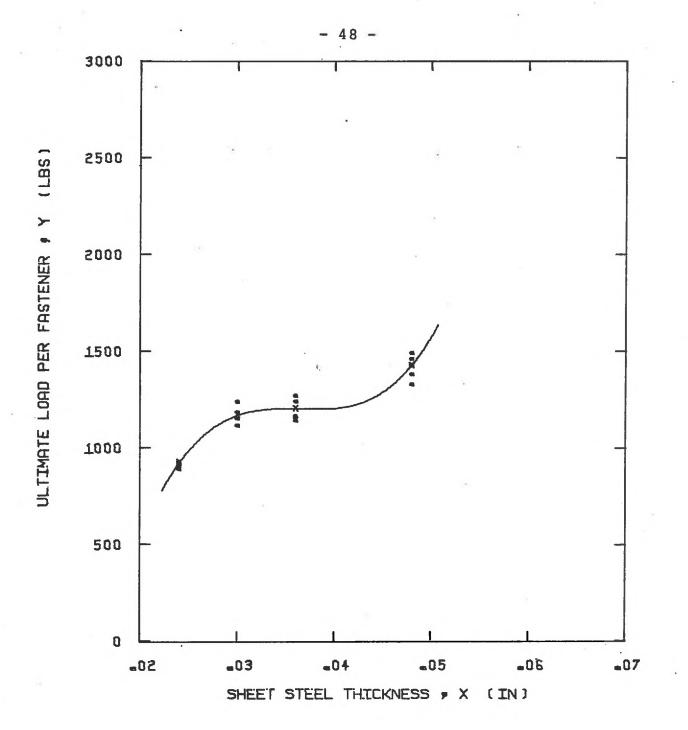
NUMBER 10 TYPE A 12TPI THREAD FORMING FLAT METAL AND NEOPRENE WASHER

Y = A + B X + C (X++2) + D (X++3) A = -a474E+04 B = a423E+06C = -a984E+07 D = a780E+08


45 -

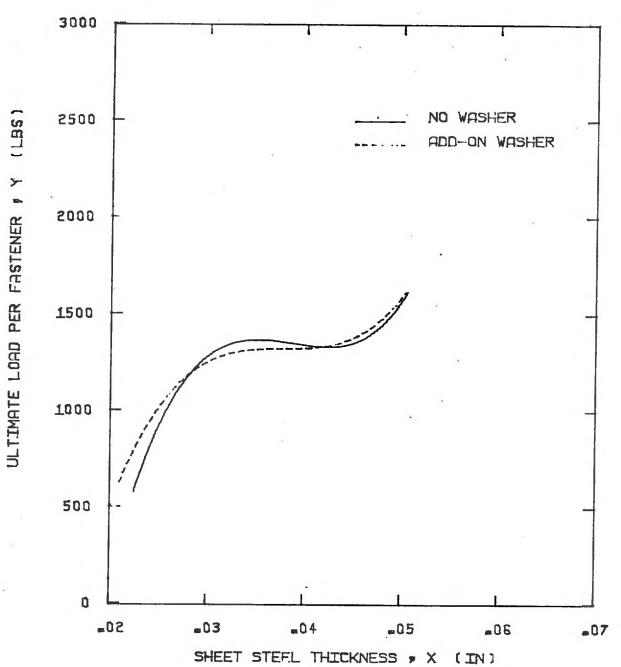
NUMBER 10 TYPE AB 16 TPI THREAD FORMING

Y = A + B X + C (X++2) + D (X++3)


46 -

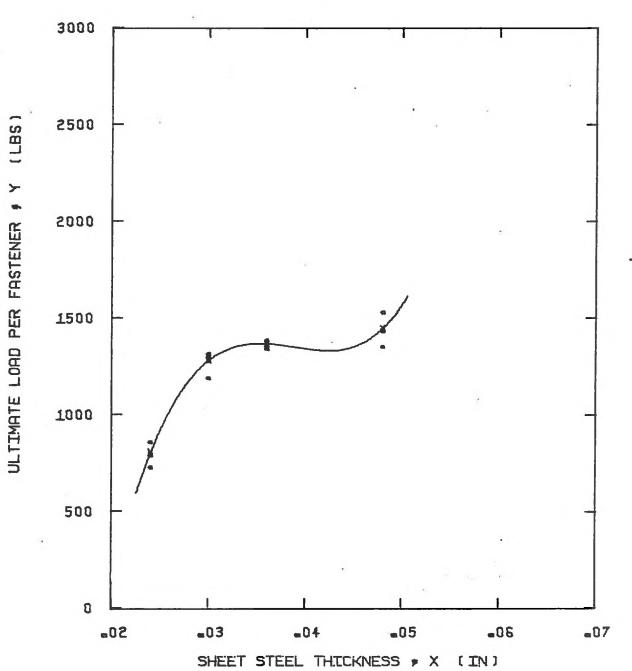
NUMBER 10 TYPE AB 16TPI THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3) $A = -a140E+05 \qquad B = a126E+07$ $C = -a343E+08 \qquad D = a306E+09$


- 47 -

6

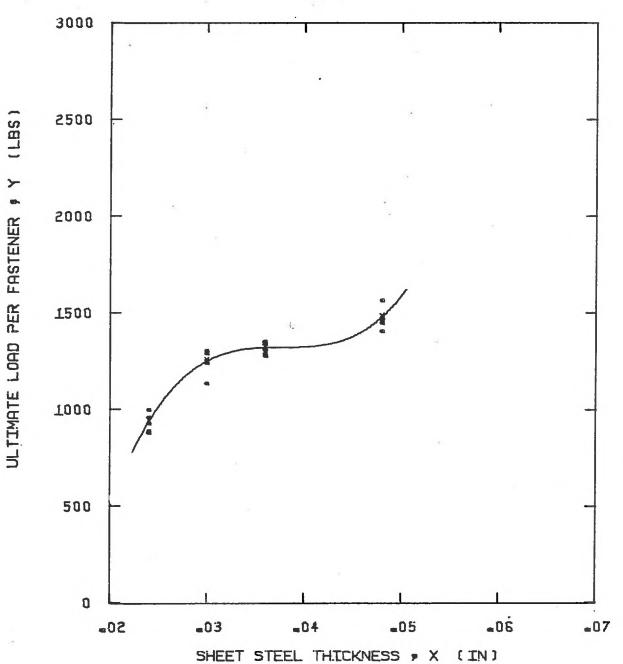
NUMBER 10 TYPE AB 16TPI THREAD FORMING FLAT METAL AND NEOPRENE WASHER


Y = A + B X + C (X++2) + D (X++3) $A = -_{0}622E+04 \qquad B = _{0}614E+06$ $C = -_{0}169E+08 \qquad D = _{0}155E+09$

NUMBER 10 TYPE TEKS/1<STITCH 16 TPI SELF DRILLING

Y = A + B X + C (X++2) + D (X++3)

- 49 -

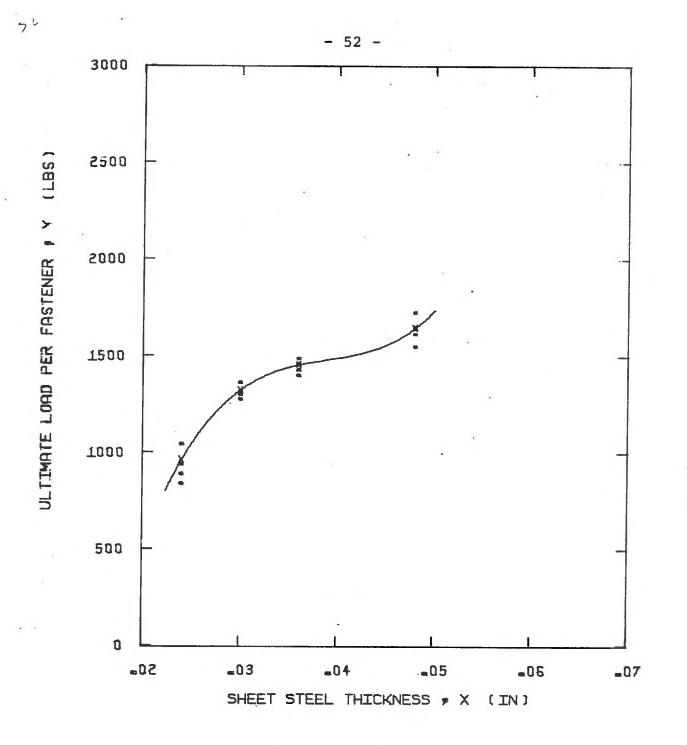


NUMBER 10 TYPE TEKS/1<STITCH< 16 TPI SELF DRILLING NO WASHER

Y = A + B X + C (X++2) + D (X++3)A = -106E+05 B = -946E+06

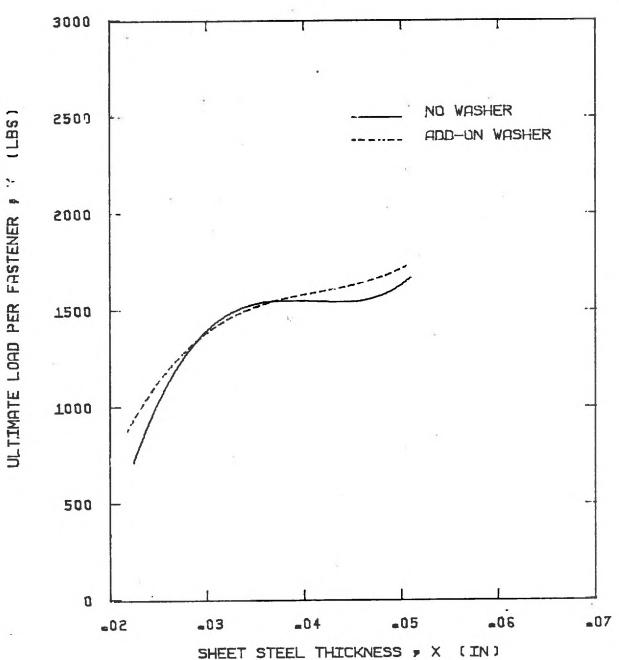
	ETCOL 103	- u	BJ40C100
C =	247E+08	D =	-213E+09

- 50 -



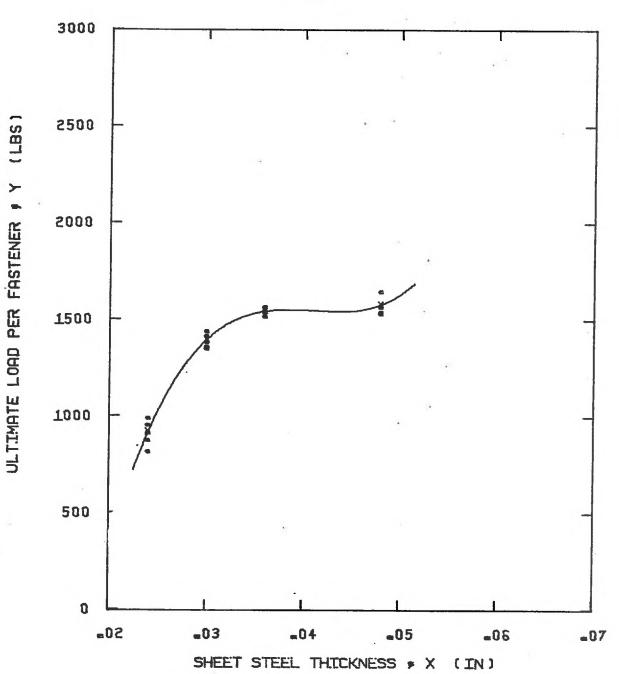
NUMBER 10 TYPE TEKS/1<STITCH< 16 TPI SELF DRILLING TWIN SEAL WASHER

Y = A + B X + C [X++2] + D [X++3]


A =	652E+04	B =	-623E+06
C =	165E+08	D =	-145E+09

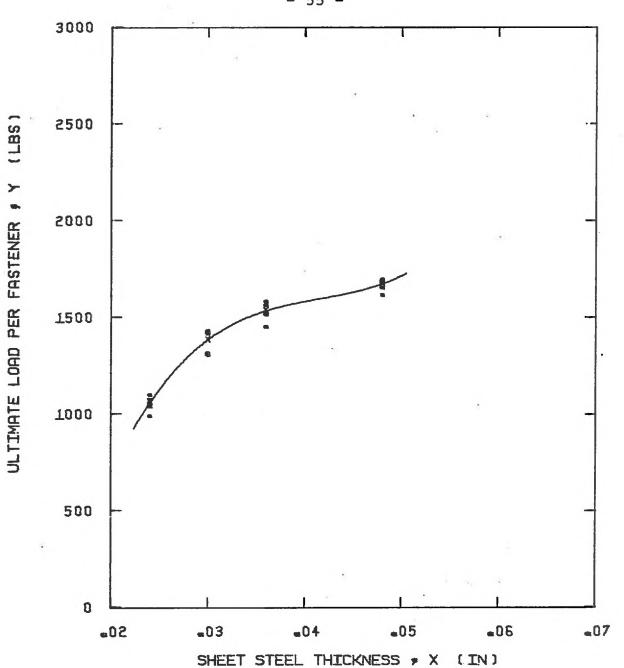
· 51 -

NUMBER 12 TYPE TEKS/2/MB/HT 14TPI SELF DRILLING TWIN SEAL WASHER


Y = A + B X + C [X++2] + D [X++3] $A = -.597E+04 \qquad B = .559E+06$ $C = -.141E+08 \qquad D = .121E+09$

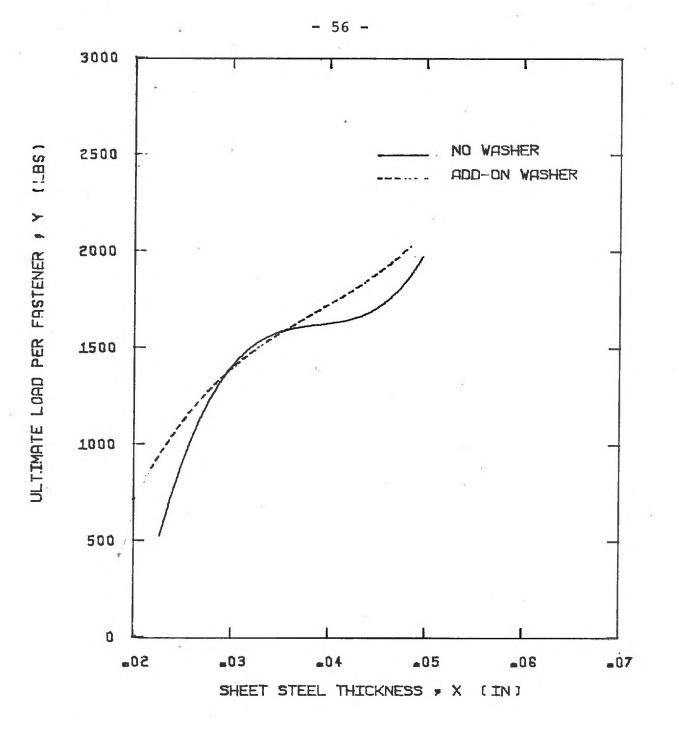
- 53 -

NUMBER 14 TYPE A 10TPI THREAD FORMING

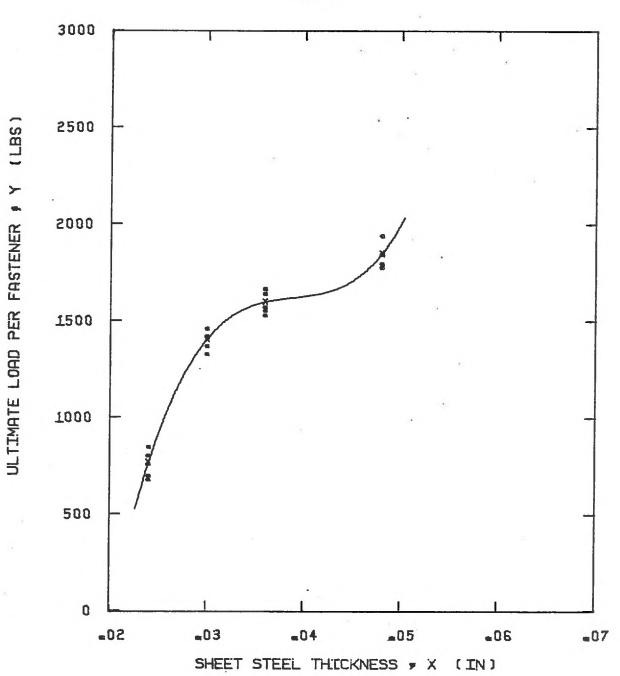

Y = A + B X + C (X++2) + D (X++3)

NUMBER 14 TYPE A 10TPI THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3) $A = -..803E+04 \qquad B = ..710E+06$ $C = -..175E+08 \qquad D = ..143E+09$


- 54 -

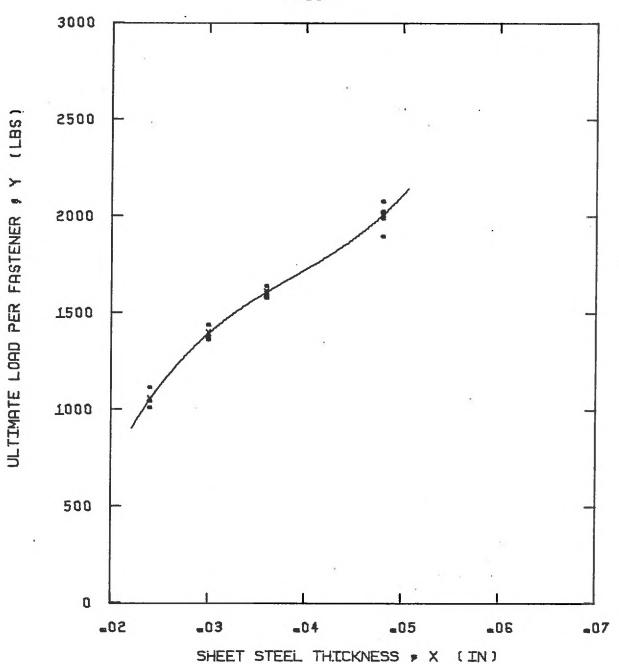
NUMBER 14 TYPE A 10 TPI THREAD FORMING GALVANIZED AND RUBBER WASHER


Y = A + B X + C (X++2) + D (X++3) $A = -...381E+04 \qquad B = ...373E+06$ $C = -...876E+07 \qquad D = ...703E+08$

- 55 -

NUMBER 14 TYPE AB 14 TPI THREAD FORMING

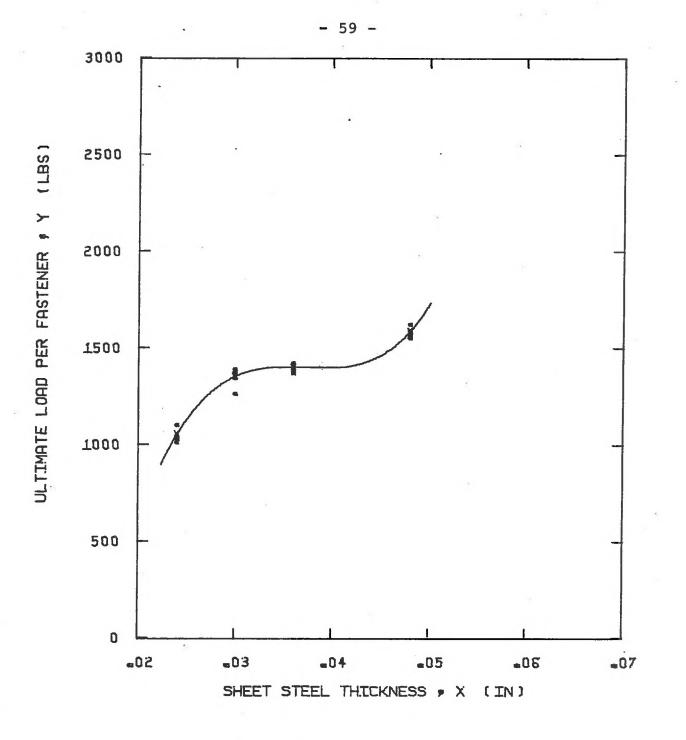
Y = A + B X + C (X++2) + D (X++3)



NUMBER 14 TYPE AB 14 TPI H.H. THREAD FORMING NO WASHER

Y = A + B X + C (X + 2) + B (X + 3)

A =	123E+05	8 =	€107E+07
C =	273E+08	D =	-234E+09

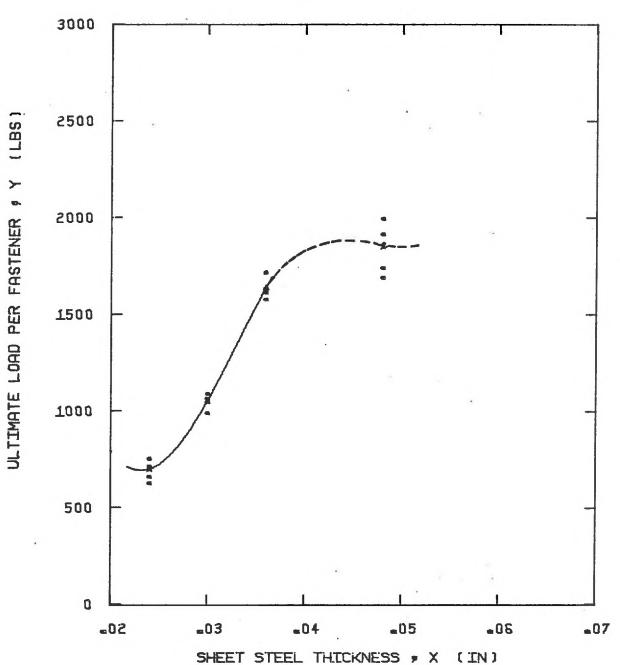

- 57 -

NUMBER 14 TYPE AB 14 TPI H.H. THREAD FORMING GALVANIZED AND RUBBER WASHER


Y = A + B X + C (X++2) + D (X++3) $A = -a334E+04 \qquad B = a333E+06$ $C = -a787E+07 \qquad D = a678E+08$

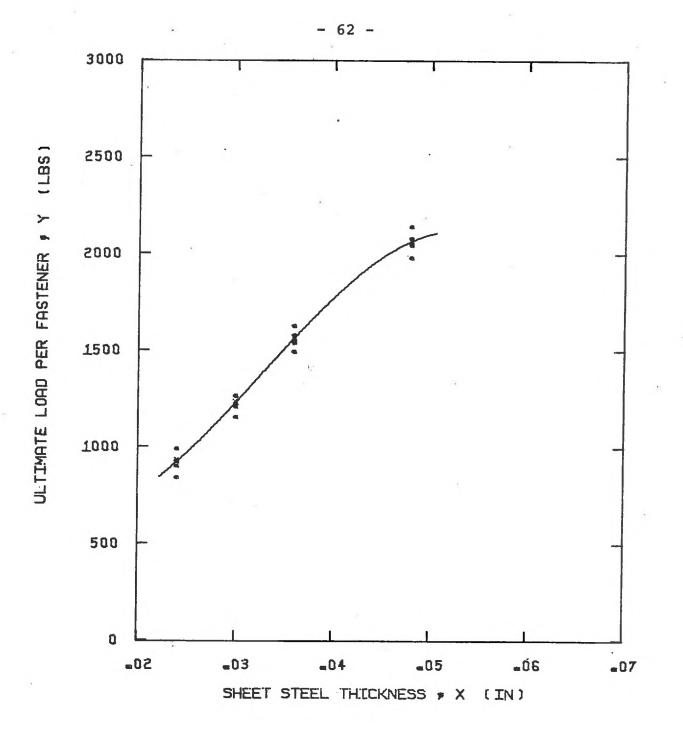
- 58 -

NUMBER 14 TYPE AB 14 TPI H.W. H. THREAD FORMING NO WASHER


Y = A + B X + C (X++2) + D (X++3) $A = -_{0}697E+04 \qquad B = _{0}680E+06$ $C = -_{0}184E+08 \qquad D = _{0}165E+09$

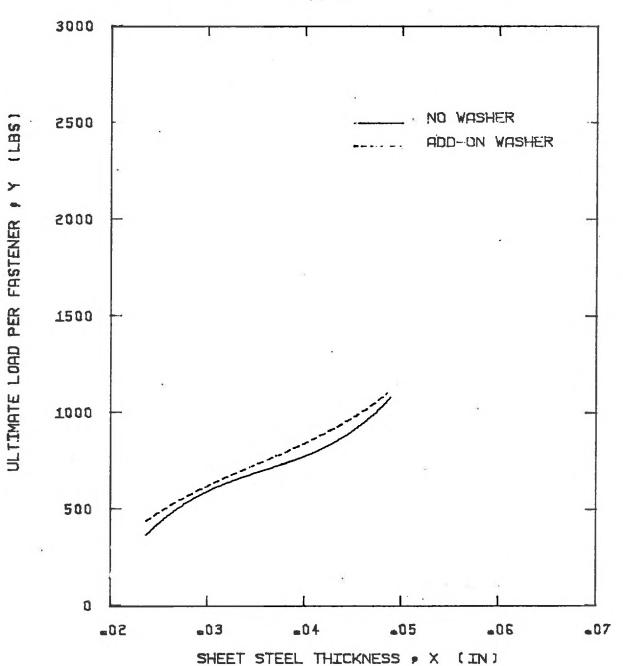
6

NUMBER 14 TYPE TEKS/1<STITCH 10 TPI SELF DRILLING


Y = A + B X + C (X++2) + D (X++3)

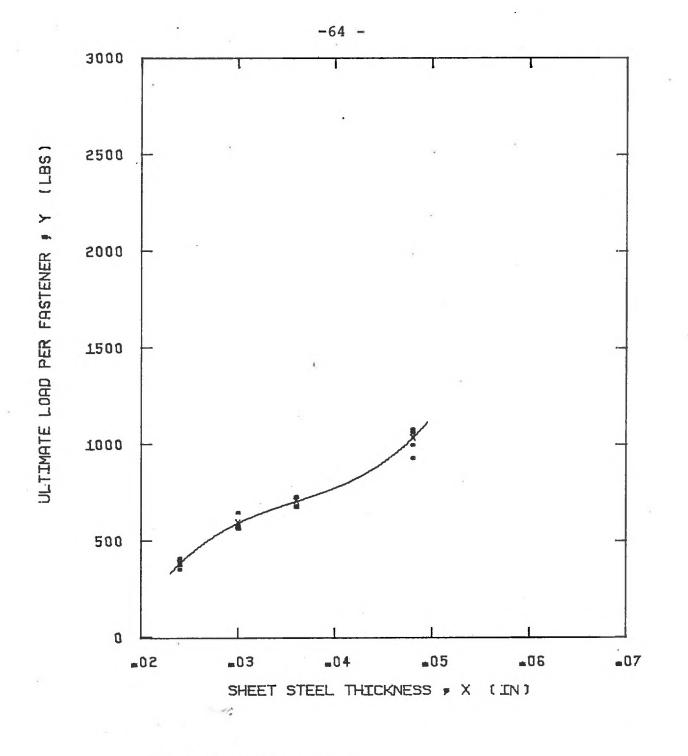
NUMBER 14 TYPE TEKS/1<STITCH 10 TPI SELF DRILLING NO WASHER

 $Y = P_1 + P_1 X + C_1 (X + + 2) + P_1 (X + + 3)$ 983E+04 B = -.962E+06 . . A = -319E+08 D = -.319E+09C =


- 61 -

NUMBER 14 TYPE TEKS/1<STITCH 10 TPI SELF DRILLING TWIN SEAL WASHER

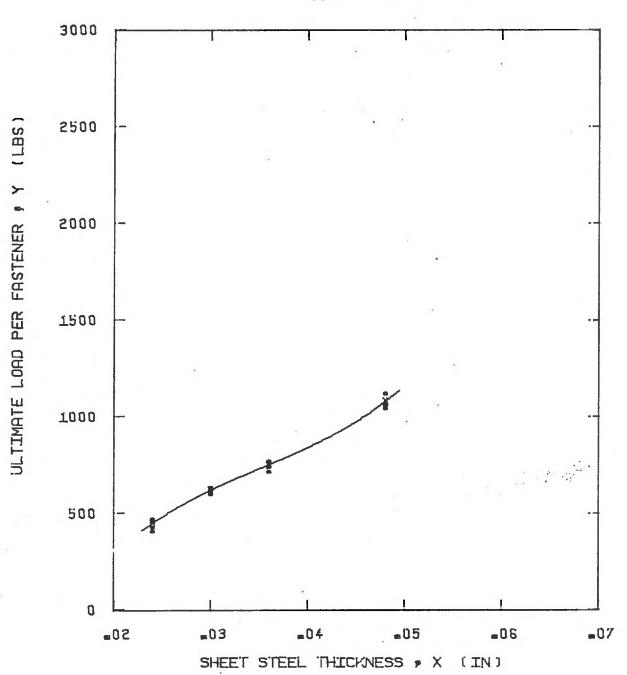
Y = A + B X + C (X++2) + D (X++3)


н	=	ellje+u4	B = - 343E+05
С	=	-463E+07	D = -473E+08

NUMBER 8 TYPE A 15TPI THREAD FORMING

Y = A + B X + C (X++2) + D (X++3)

- 63 -

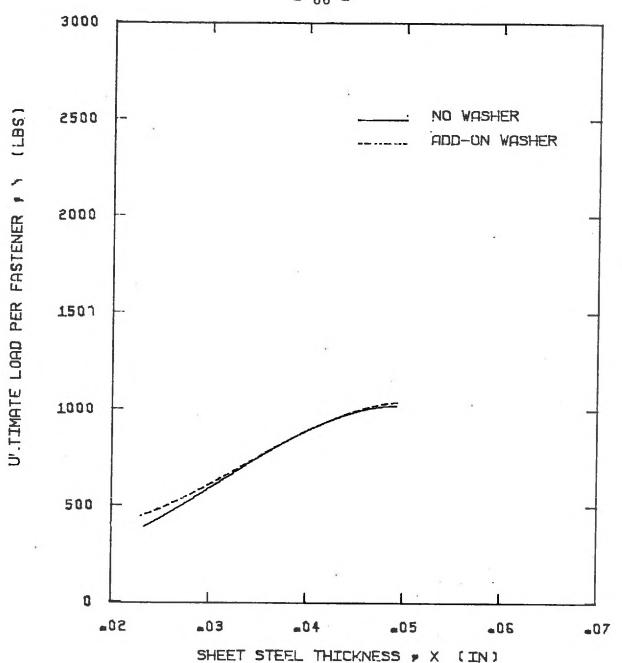


NUMBER 8 TYPE A 15 TPI THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3)

A =	342E+04	B =	_313E+06
C =	826E-+07	D =	.767E+08

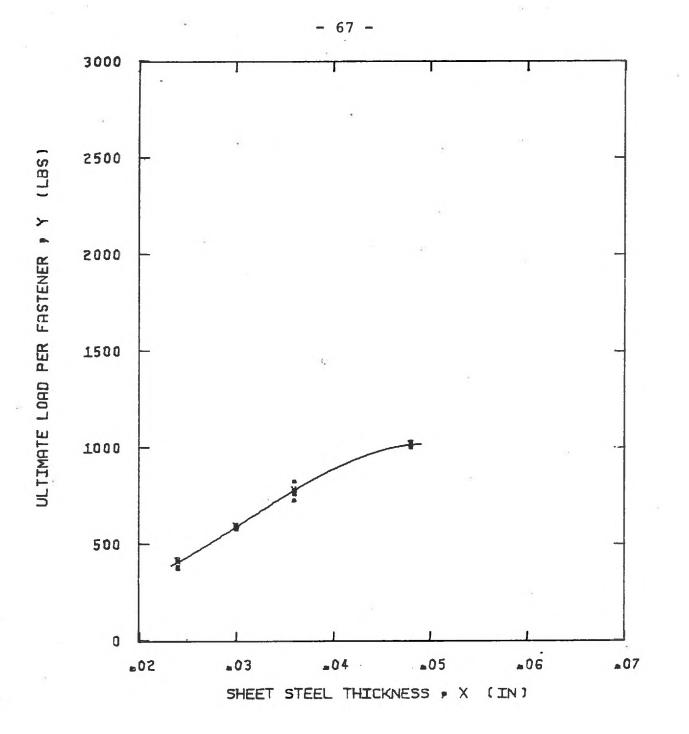
÷



NUMBER & TYPE A 15TPI THREAD FORMING FLAT METAL WASHER

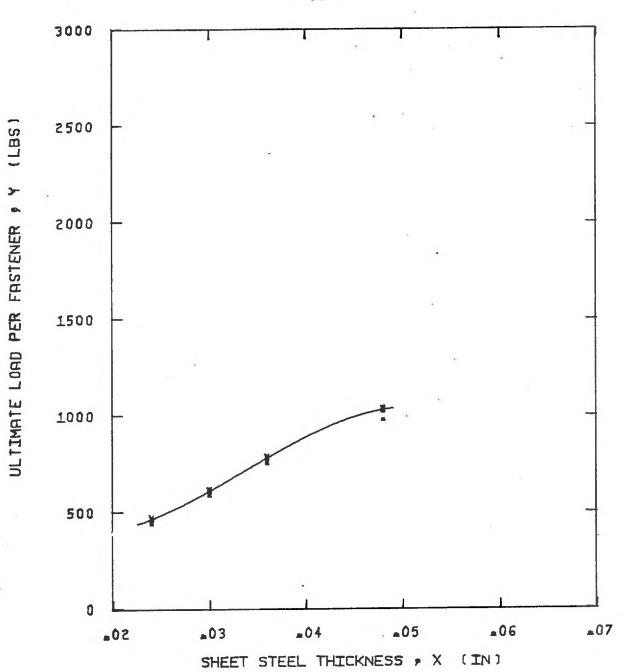
Y = A + B X + C (X++2) + D (X++3)A = -154F+04 B = -152F+06

F4	BLUTL.UT		STOFF.00
C =	371E+07	י≕ כו	∎351E+08


- 65 -

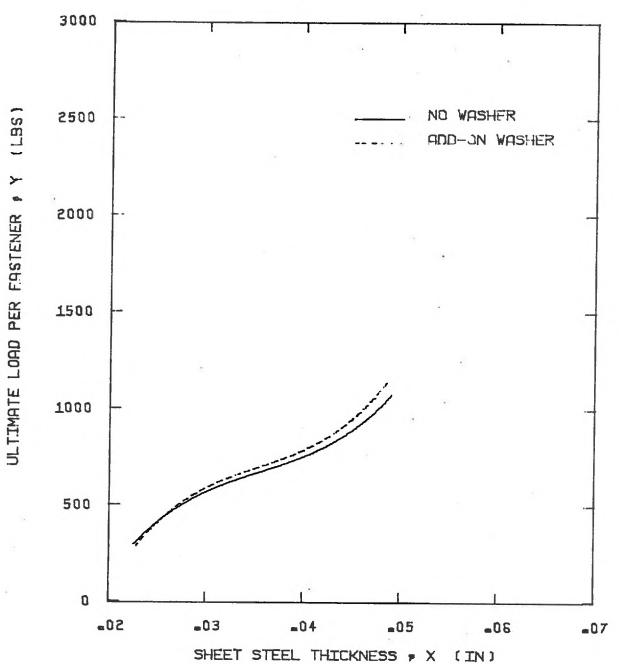
NUMBER & TYPE AB 18TPI THREAD FORMING

Y = A + B X + C [X++2] + D [X++3]


- 66 -

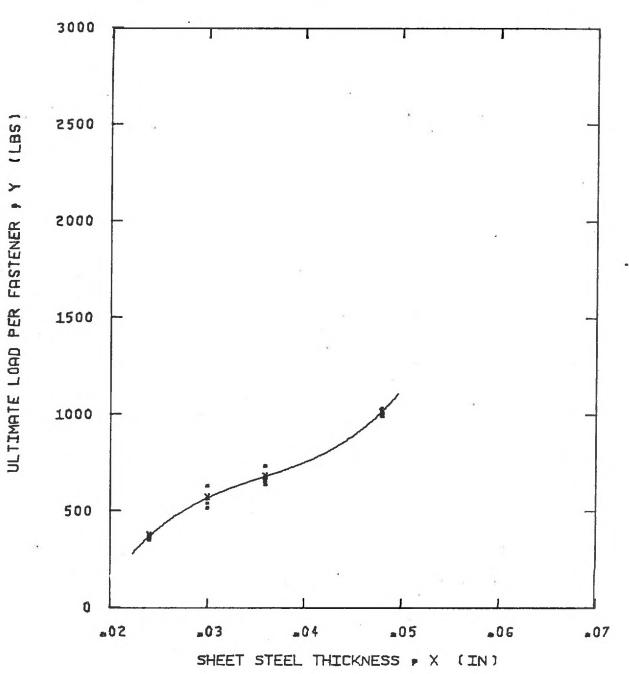
NUMBER & TYPE AB 18TPI THREAD FORMING NO WASHER

Y = A + B X + C [X++2] + D [X++3]


A	=	.562E+03	В	=	577E+05
C	=	289E+07	Ľ	-	311E+08

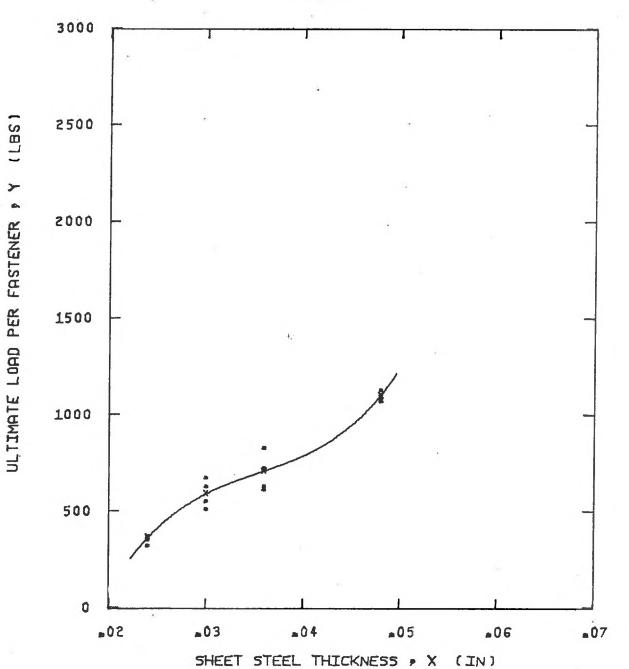
NUMBER & TYPE AB 18TPI THREAD FORMING FLAT METAL WASHER

Y = A + B X + C (X++2) + D (X++3) $A = _{a}979E+03 \qquad B = -_{a}911E+05$ $C = _{a}327E+07 \qquad D = -_{a}325E+09$


- 68 -

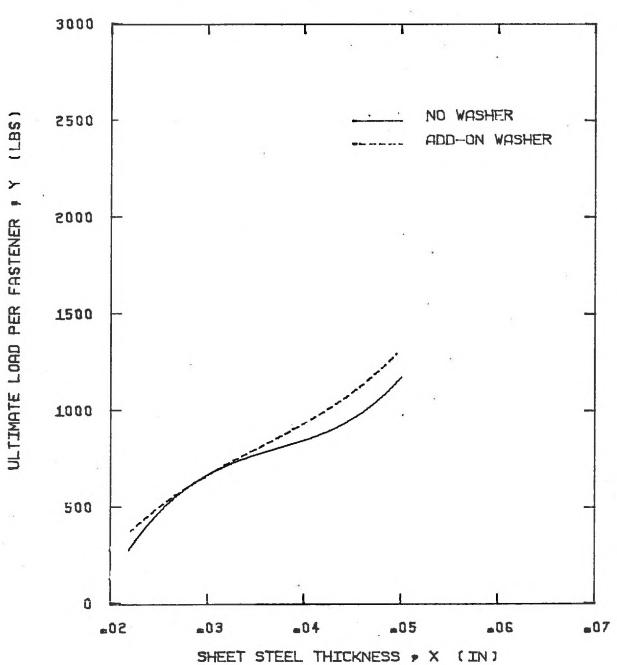
NUMBER & TYPE TEKS/2F 18TPI SELF DRILLING

Y = A + B X + C (X++2) + D (X++3)


- 69 -

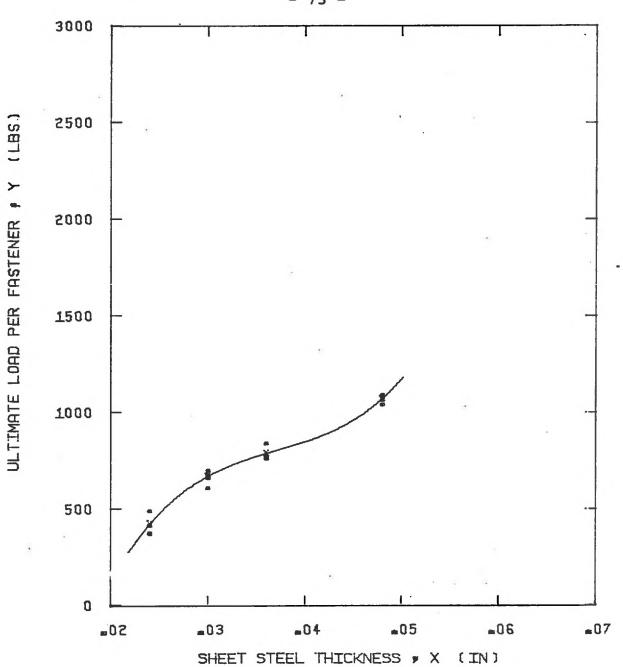
NUMBER 8 TYPE TEKS/2F 18TPI SELF DRILLING NO WASHER

Y = A + B X + C (X++2) + D (X++3) A = -a325E+04 B = a298E+06C = -a792E+07 D = a741E+08


- 70 -

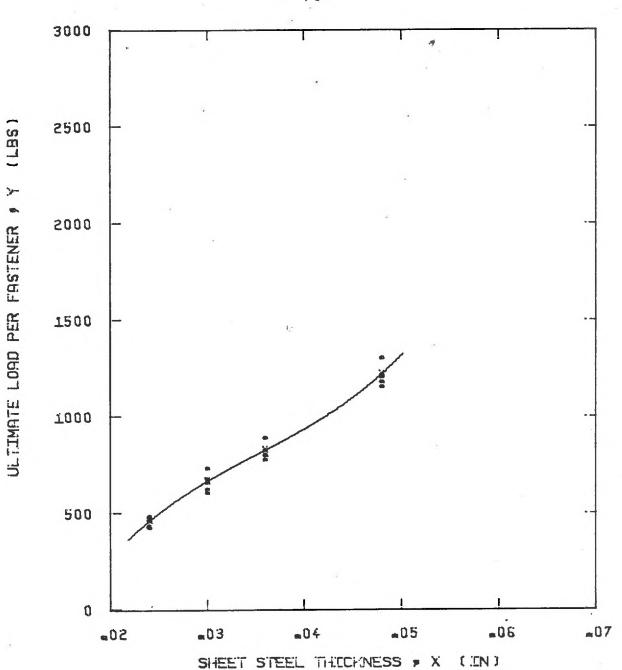
NUMBER & TYPE TEKS/2F 18TPI SELF DRILLING TWIN SEAL WASHER

Y = A + B X + C (X++2) + D (X++3) $A = - ... 416E+04 \qquad B = ... 377E+06$ $C = -.. 101E+08 \qquad D = ... 954E+08$


71 -

NUMBER 10 TYPE A 12TPI THREAD FORMING

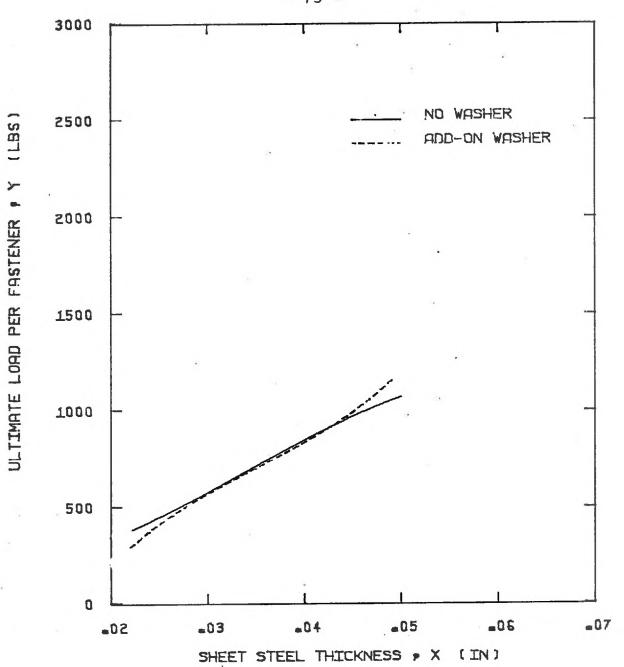
Y = A + B X + C (X++2) + D (X++3)


- 72 -

NUMBER 10 TYPE A 12TPI THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3) $A = -_{a}411E+04$ $B = _{a}368E+06$ $\cdot C = -_{a}953E+07$ $D^{2} = _{a}856E+08$

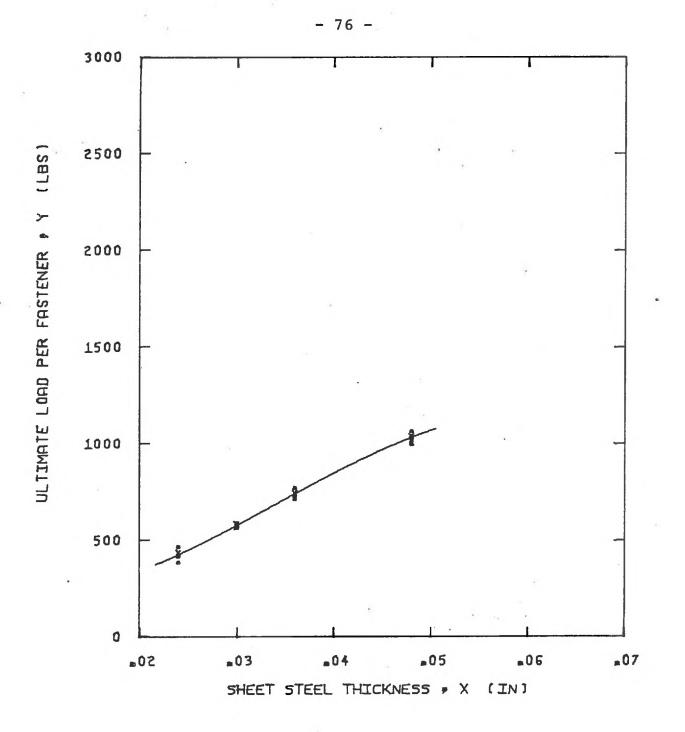
- 73 -



TYPE A 12TPI NUMBER 10 THREAD FORMENG FLAT METAL AND NEOPRENE WASHER

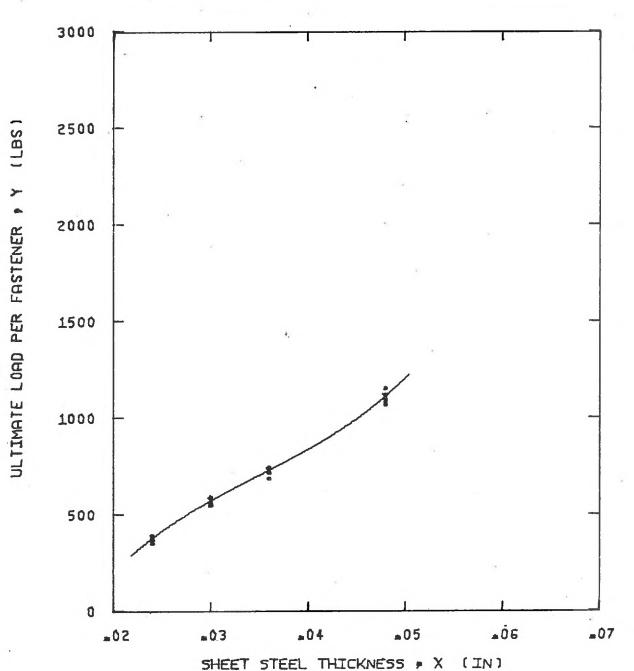
 $Y = \Pi + B X + C (X++2) + \Pi (X++3)$

A	:4	187E+0 4	B :=	e1775+06
C	1.2	429E+07	D :=	_406E+08


74 -

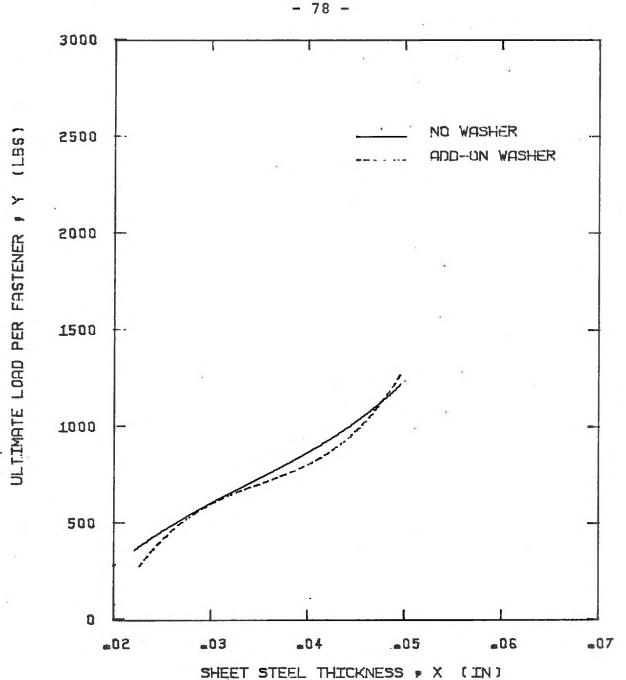
NUMBER 10 TYPE AB 16 TPI THREAD FORMING

Y = A + B X + C (X++2) + D (X++3)

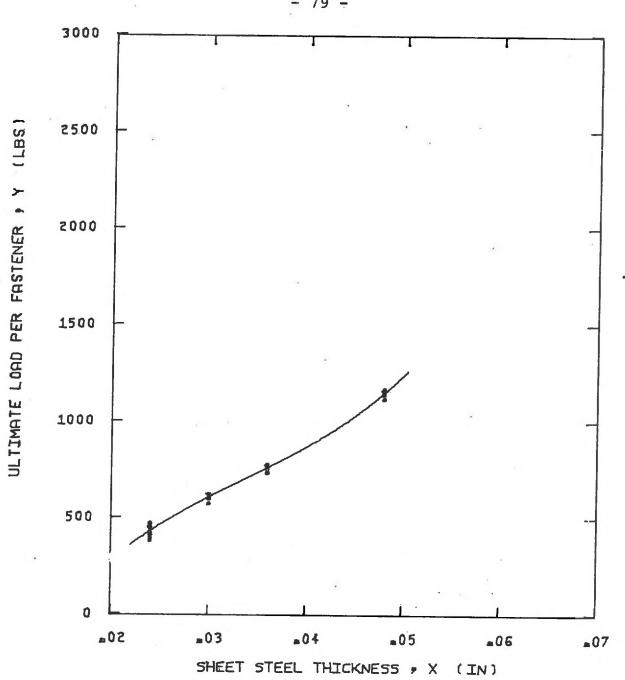

- 75 -

NUMBER 10 TYPE AB 16TPI THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3)

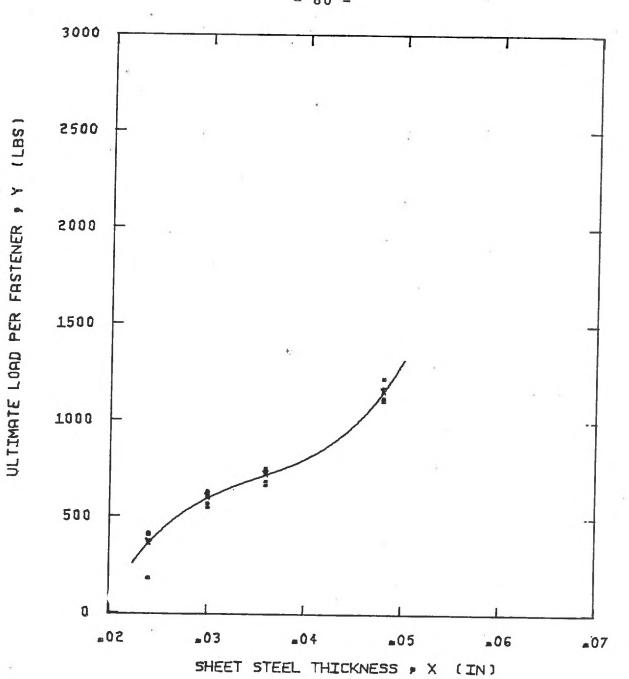

	A =	₽288E+03	B = -192E+05
•	C =	■137E+07	D ≐134E+08

NUMBER 10 TYPE AB 16TPI THREAD FORMING FLAT METAL AND NEOPRENE WASHER


Y = A + B X + C (X++2) + D (X++3) $A = -.164E+04 \qquad B = .150E+06$ $C = -.354E+07 \qquad D = .337E+08$

77 -

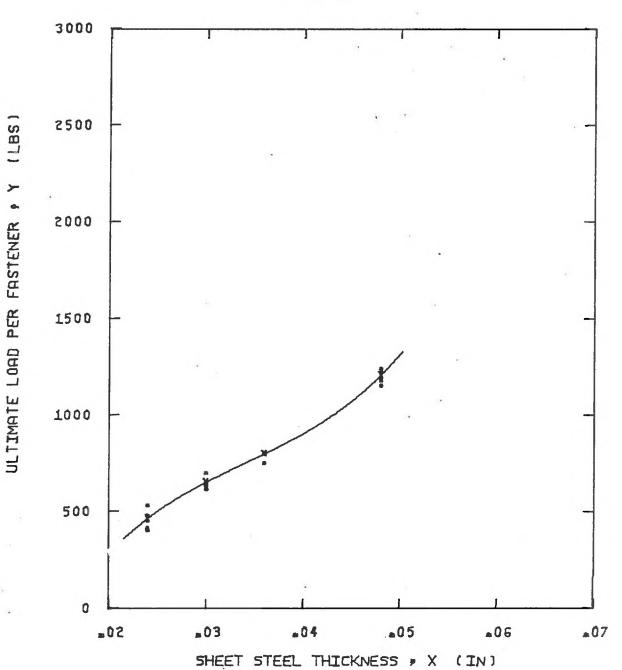
NUMBER 10 TYPE TEKS/1<STITCH 16 TPI SELF DRILLING


Y = A + B X + C [X++2] + D [X++3]

NUMBER 10 TYPE TEKS/1<STITCH 16TPI SELF DRILLING NO WASHER

= A + B X + C (X++2) + D (X++3) Y --130E+04 A = B = .127E+06 -.302E+07 .298E+08 С 0 =

79 -

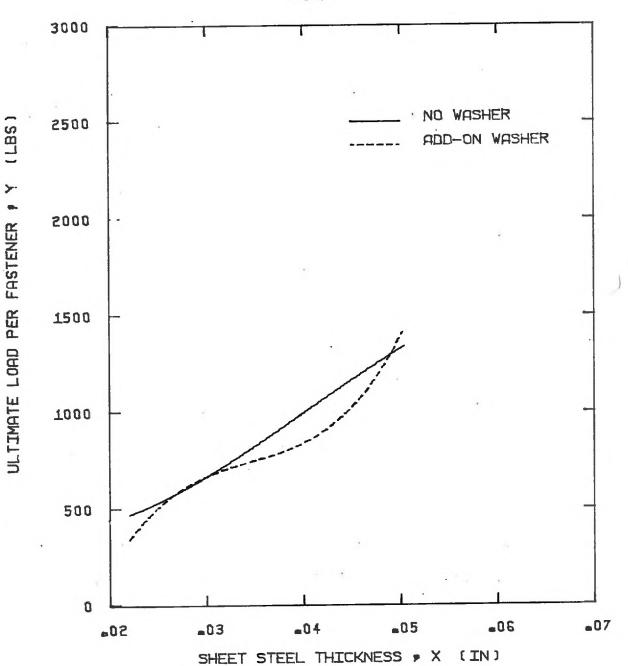


NUMBER 10 TYPE TEKS/1≤STITCH≤ 16TPI SELF DRILLING TWIN SEAL WASHER

Y = A + B X + C (X++2) + D (X++3)

H =	447E+04	B =	-407E+06
C =	111E+08	D =	-105E+09

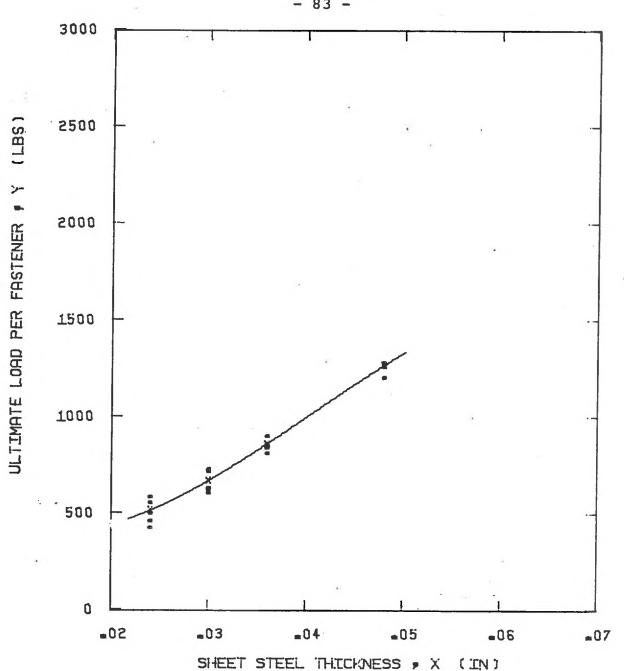
- 80 -



NUMBER 12 TYPE TEKS/2/MB/HT 14TPI SELF DR.TLLING TWIN SEAL WASHER

Y = A + B X + C (X + 2) + D (X + 3) $A = -a191E + 04 \qquad B = a186E + 06$ $C = -a474E + 07 \qquad D = a461E + 08$

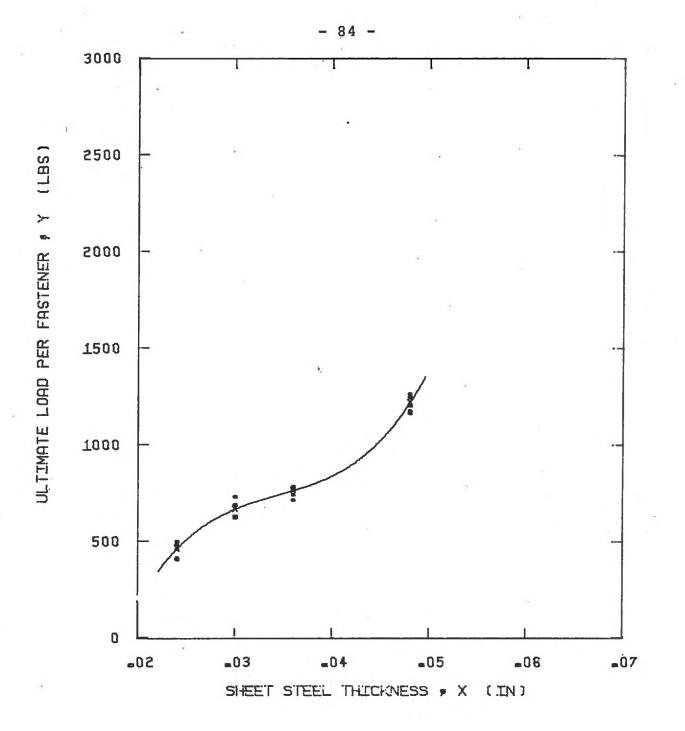
- 81 -


0.

NUMBER 14 TYPE A 10TPI THREAD FORMING

Y = A + B X + C (X++2) + B (X++3)

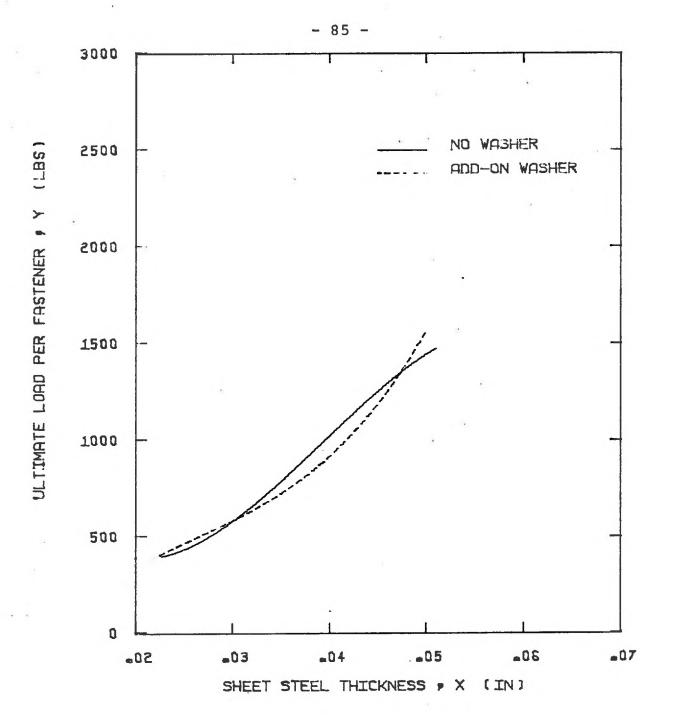
- 82 -



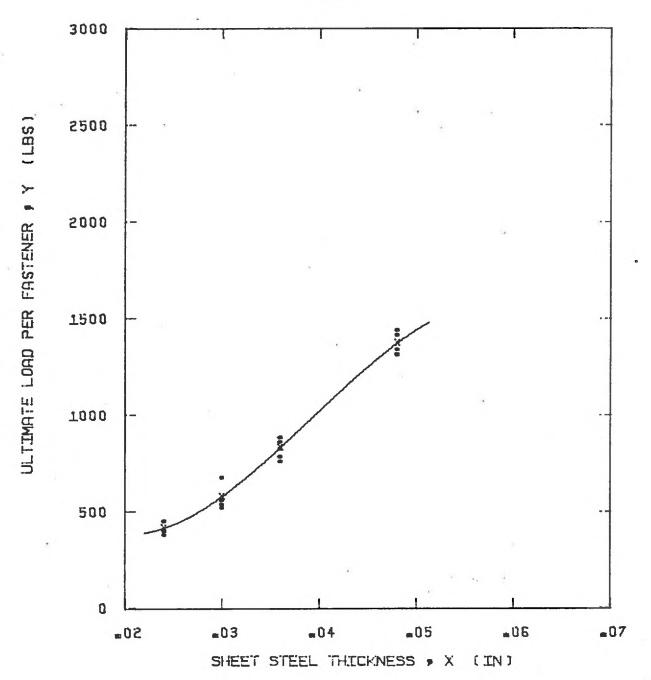
NUMBER 14 TYPE A 10TPI THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3)

Ħ	12	€52E+03	B = 422E+05
С	LE	-189E+07	D =155E+08


83

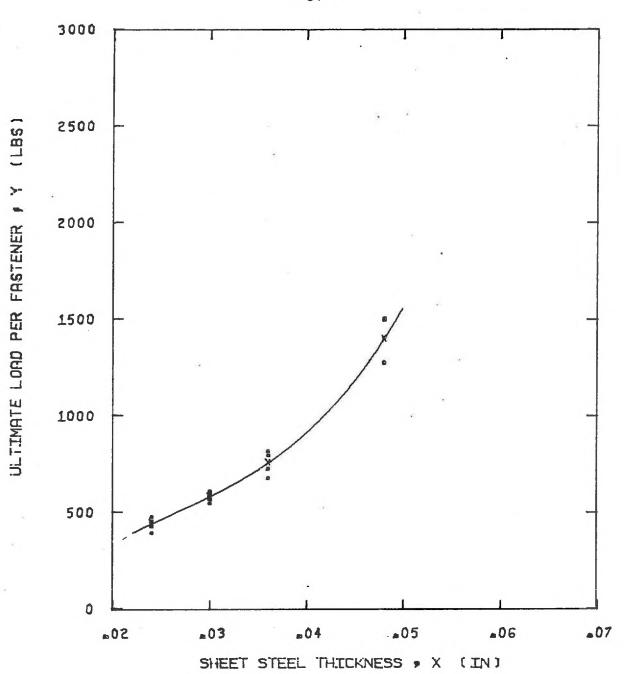
NUMBER 14 TYPE A 10 TPI THREAD FORMING GALVANIZED AND RUBBER WASHER


Y = A + B X + C (X++2) + B (X++3)

H =		D	84C/ E400
C =	1205+08	D =	-116E+09

NUMBER 14 TYPE AB 14TPI THREAD FORMING

Y = A + B X + C (X++2) + D (X++3)

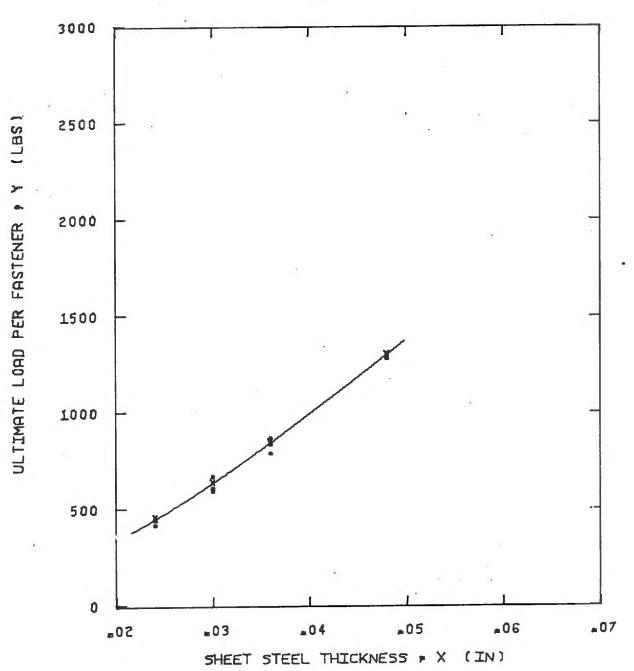


NUMBER 14 TYPE AB 14TPI H.H. THREAD FORMING NO WASHER

Y = A + B X + C (X++2) + D (X++3)

	A		-181E+04	B ==158E+06
•	С	F3	-526E+07	D = 447E+08

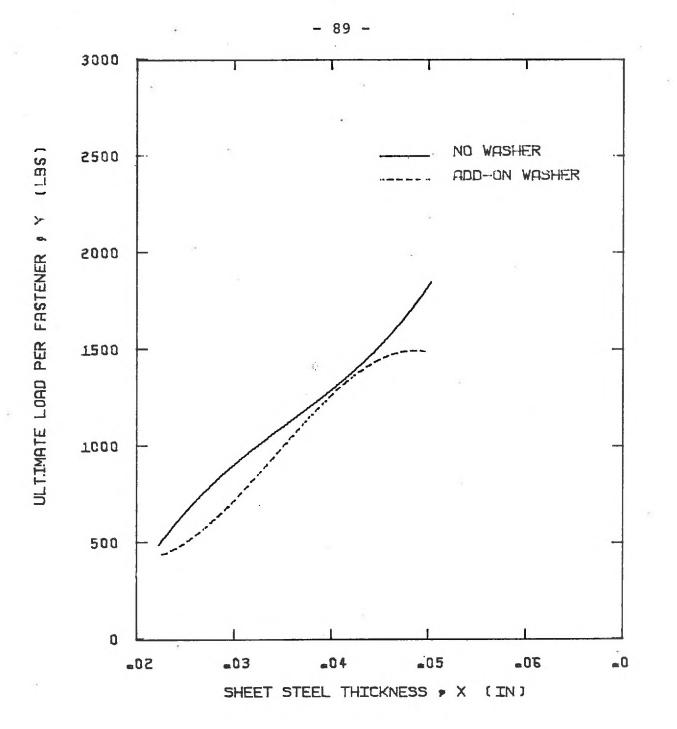
- 86 -



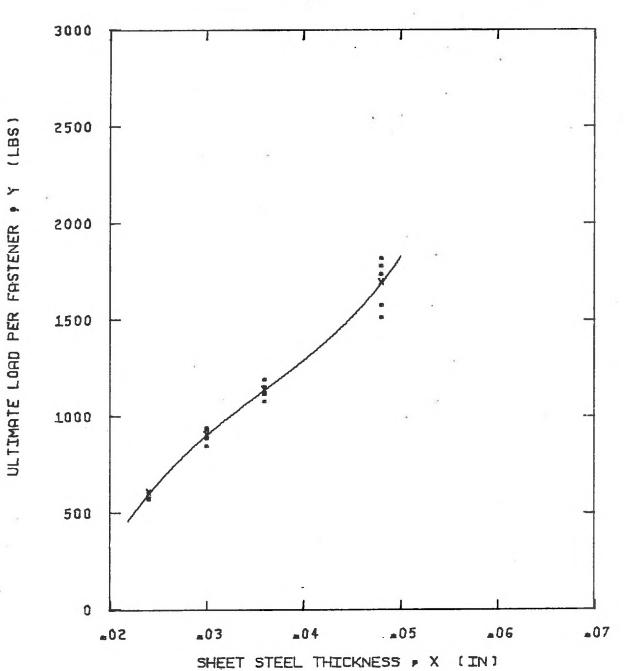
NUMBER 14 TYPE AB 14TPI H.H. THREAD FORMING GALVANIZED AND RUBBER WASHER

 $Y = \Omega + B X + C (X++2) + D (X++3)$ $A = -{}_{*}760E+03$ $B = {}_{*}986E+05$

-		El cor.op	-	
С	=	292E+07	D =	-375E+08

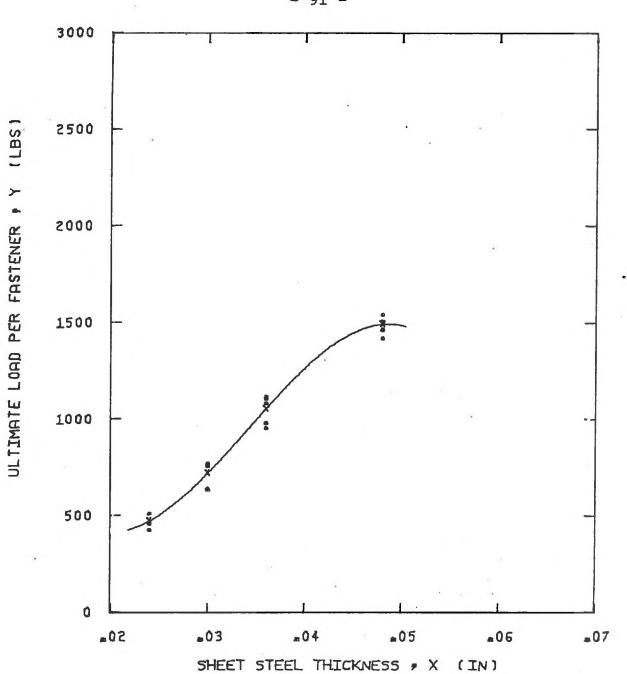

- 87 -

NUMBER 14 TYPE AB 14TPI H. W.H. THREAD FORMING NO WASHER


Y = A + B X + C (X+*2) + D (X+*3) $A = _{a}549E+02 \qquad B = _{a}139E+04$ $C = _{a}759E+06 \qquad D = -_{a}514E+07$

- 88 -

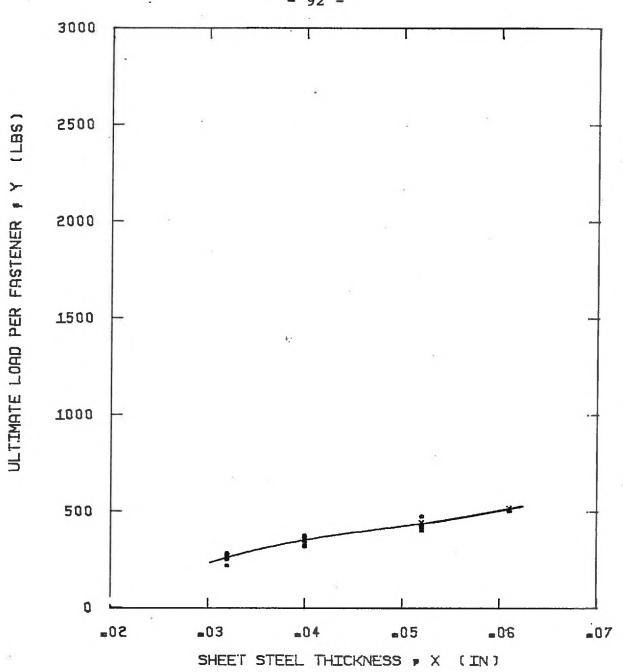
NUMBER 14 TYPE TEKS/1<STITCH 10TPI SELF DRILLING


Y = A + B X + C [X++2] + D [X++3]

NUMBER 14 TYPE TEKS/1<STITCH< 10TPI SELF DRILLING NO WASHER

Y = A + B X + C (X++2) + D (X++3) $A = -a283E+04 \qquad B = a259E+06$ $C = -a622E+07 \qquad D = a58LE+08$

- 90 -

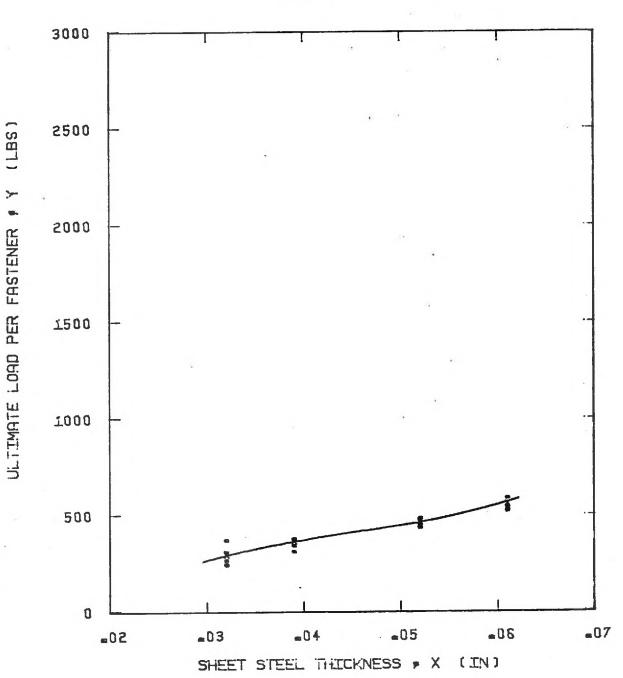


NUMBER 14 TYPE TEKS/1≤STITCH≤ 10TPI SELF DRILLING TWIN SEAL WASHER

Y == A + B X + C (X++2) + D (X++3)

A =	277E+04	B = -273E+06
C =	.963E+07	D ≒938E+08

- 91 -

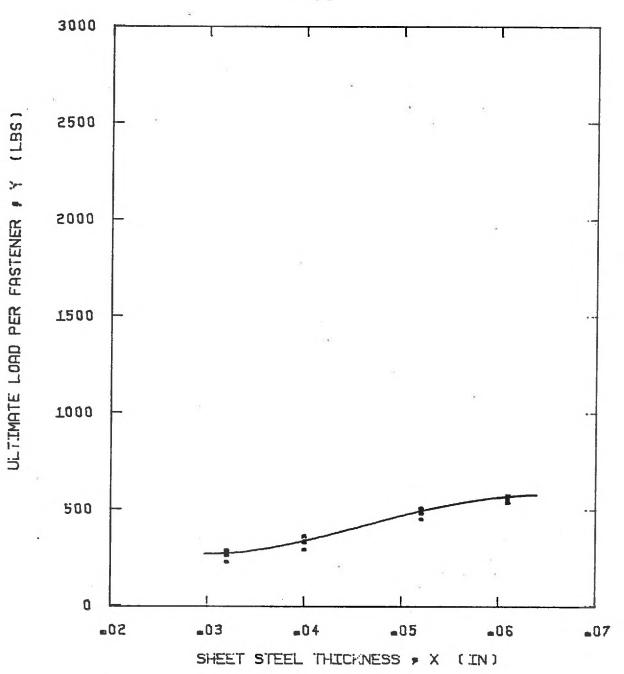

NUMBER 8 TYPE A 15TPI THREAD FORMING

Y = A + B X + C (X + 2) + D (X + 3)

A = -..961E+03B = ..714E+05C = -.132E+07D = ..897E+07

- 92 -

11

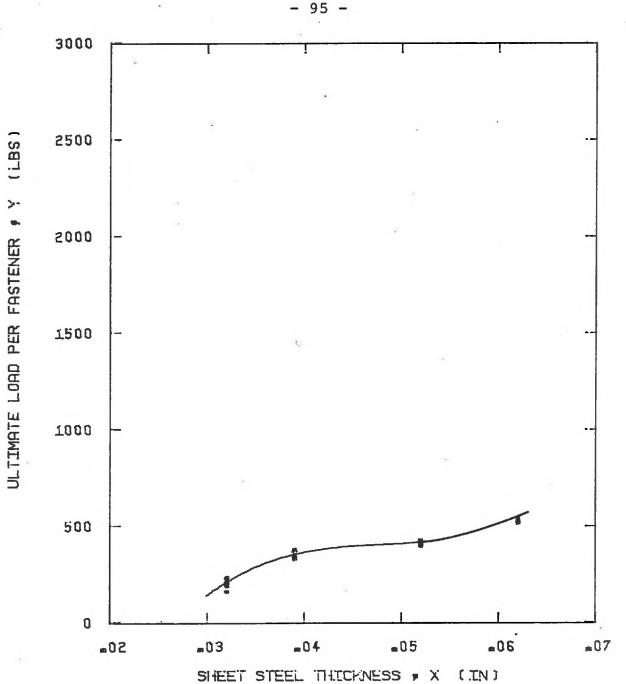


NUMBER 8 TYPE AB 18 TPI

Y = P + B X + C (X++2) + B (X++3)

14 14	-= 684E-HU3	- C	EDV CLIFUD
C ==	108E+07	D ==	e777E+07

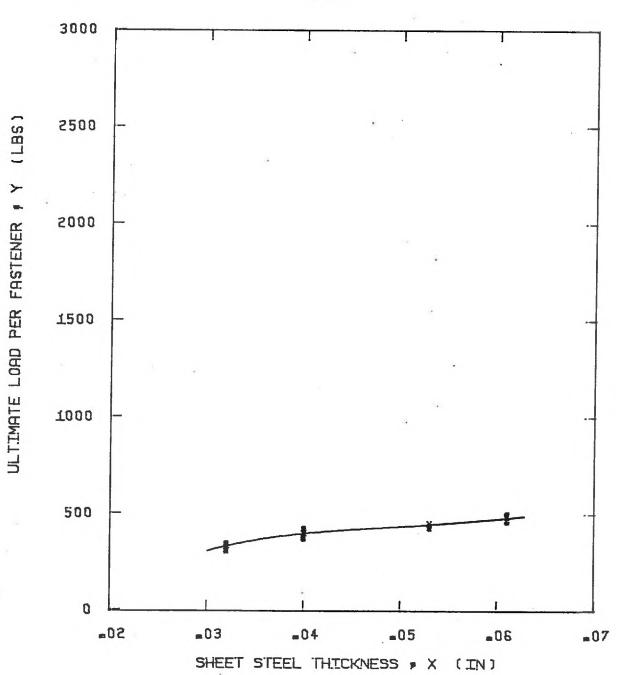
- 93 -



NUMBER & TYPE TEKS/21 18TPI SELF DRILLING

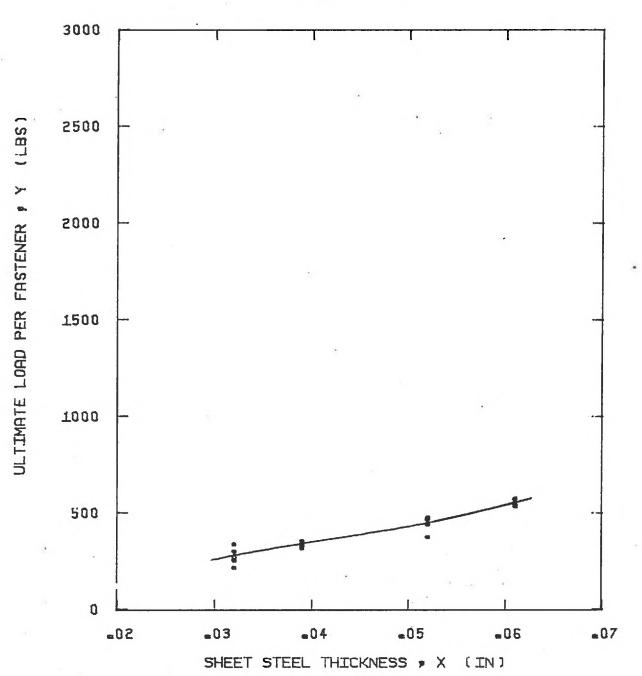
Y = A + B X + C (X++2) + D (X++3)

	A	 =144E+04	9 -	÷	" 943E+05
•	С	 -235E+07	י מ	=	170E+08


- 94 -

NUMBER 8 TYPE C 32 TP.I SELF DRILLING

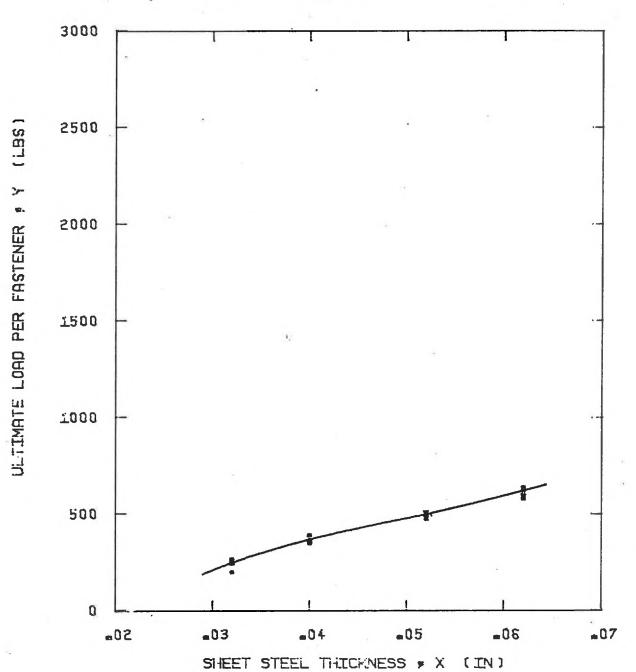
Y = A + B X + C (X++2) + D (X++3)


A :=	376E+04	8 ≔	-254E+06
C ==	522E+07	D ==	-361E+08

NUMBER 10 TYPE A 12TPI THREAD FORMING

Y = A + B X + C (X++2) + D (X++3) $A = -...885E+03 \qquad B = ...752E+05$ $C = -...148E+07 \qquad D = ...101E+08$

- 96 -

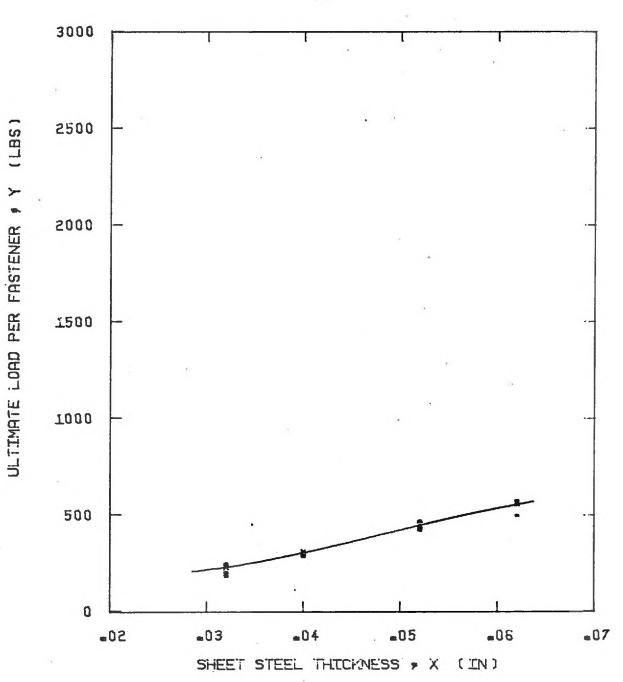


NUMBER 10 TYPE AB 16 TPI THREAD FORMING

Y = A + B X + C (X++2) + D (X++3)Q = --414E+03 B = -401E+05

	H .			D	#40TEL01
•	C	-	768E+06	Π ==	-609E+07
	-		Br GOL. GG		EGGOL

- 97 -

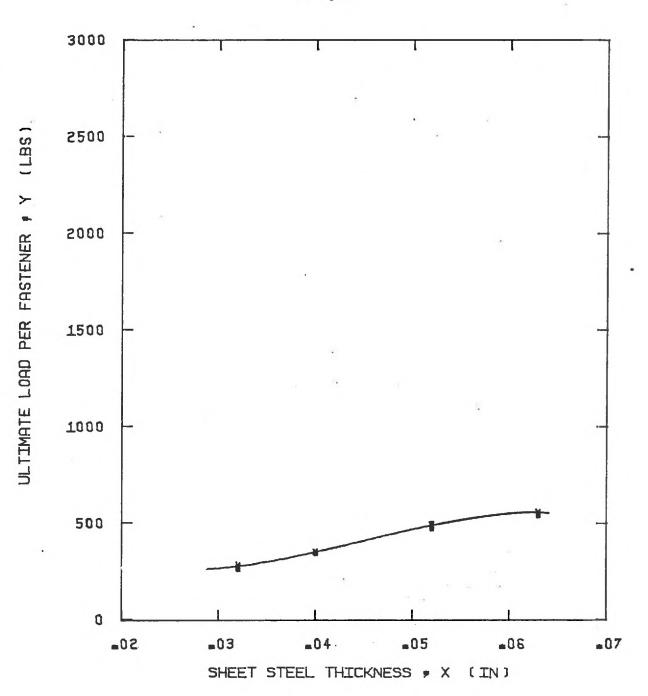


NUMBER 10 TYPE TEKS/2 16 TPI SELF DRILLING

Y = A + B X + C (X++2) + D (X++3) A = --.101E+04 B = .686E+05 C = --.116E+07 D = .762E+07

- 98 -

11

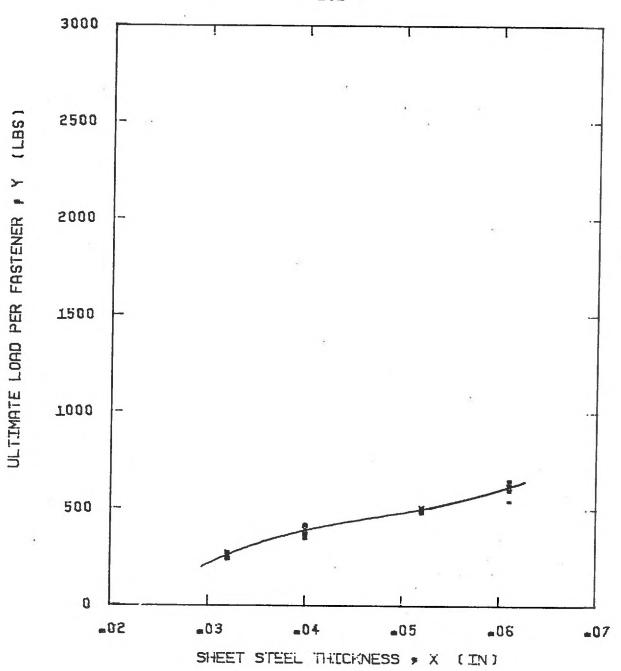


NUMBER 10 TYPE TEKS/3 16 TPT SELF DRILLING

Y = g + B X + C (X++2) + D (X++3)

A	:=	.469E+03	5	:2	279E+05
С	13	-918E+06	п		555E+07

- 99 -

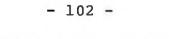


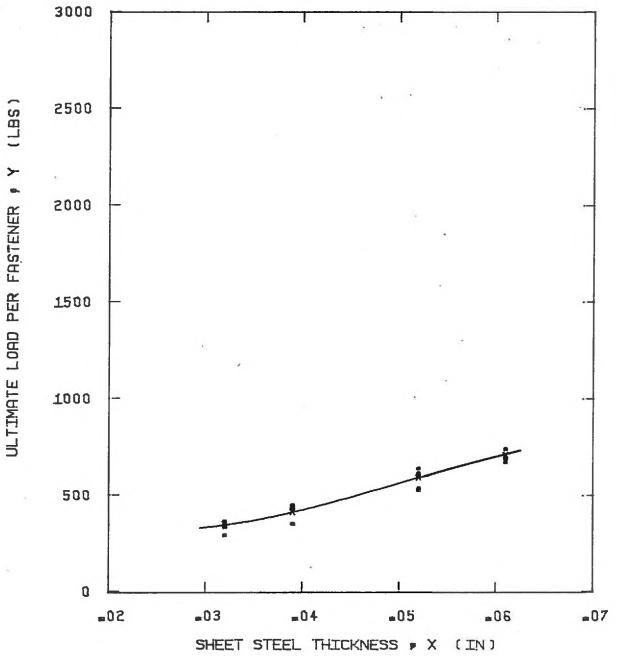
NUMBER 12 TYPE AB 14TPI THREAD FORMING

Y = A + B X + C (X*+2) + D (X*+3) $A = *919E+03 \qquad B = -*585E+05$ $C = *158E+07 \qquad D = -*118E+08$

- 100-

 $\int_{-\infty}^{\infty}$

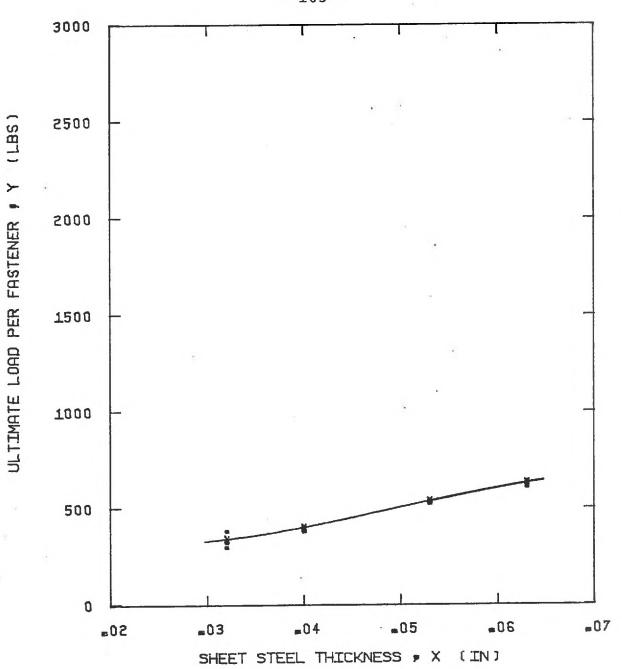



NUMBER 12 TYPE TEKS/2/MB/HT 14TPI SELF DRILLING

Y = A + B X + C (X++2) + D (X++3)

A	:=	e182E+04	5 ; =	-127E+06
С	=	2485+07	יים ת	-174E+08

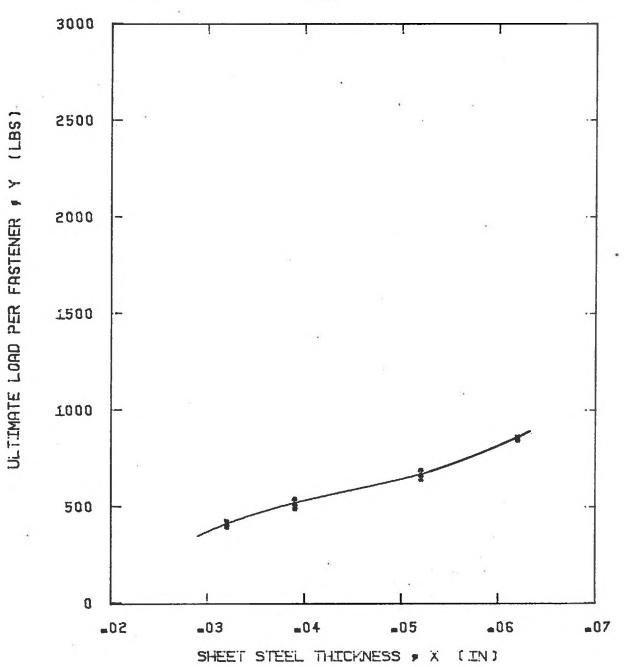
- 101 -



NUMBER 14 TYPE A 10 TPI THREAD FORMING

Y = A + B X + C (X++2) + D (X++3)

A =	.910E+03	B =515E+05
C =	-136E+07	D =931E+07

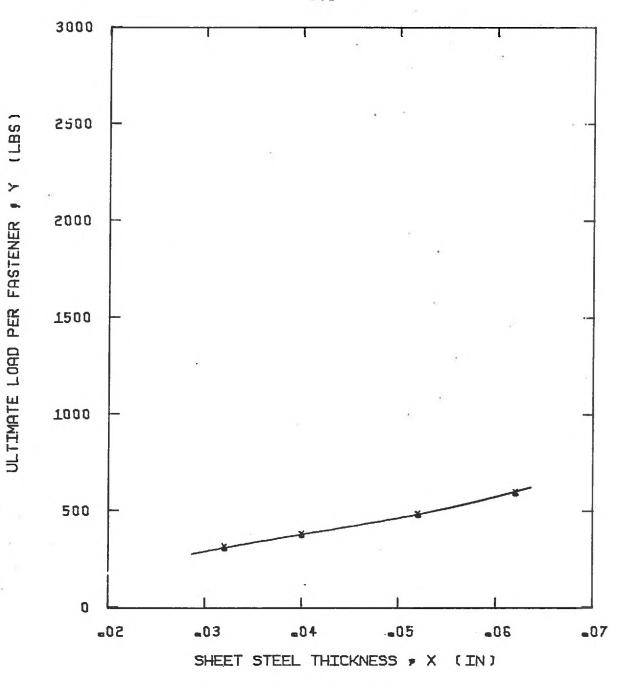


NUMBER 14 TYPE AB 14 TPI THREAD FORMING

Y = A + B X + C (X + 2) + D (X + 3)

A	=	"672E+03	B	=	323E+05
C	X3	.875E+06	ם	=	592E+07

- 103 -



NUMBER 14 TYPE TEKS/2/MB 14TPI SELF DRILLING

 $Y = \Omega + B X + C (X++2) + B (X++3)$

A =	144E+04	5, -	■1145+06
Ç =	231E+07	D ==	-171E+08

- 104 -

NUMBER 14 TEKS/3 14TPI SELF DRILLING

Y = A + B X + C [X++2] + D [X++3] A = B = C = -.222E+03 D = .282E+05 -.484E+06 .392E+07

- 105 -

1.74