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ABSTRACT 

 Atomic Force Microscopy is one of the most powerful tools for imaging, 

measuring and manipulating materials at nanometer scale. Among different modes of 

AFM, tapping mode, in which the oscillating tip touches the sample periodically, is most 

common mode. During the tip approach and retract, the tip interacts with sample and 

experiences different force regimes. This tip-sample interaction force contains information 

about the sample topology, material properties and tip geometry. However, quantitative 

measurement of the time-varying tip-sample interaction forcing function is challenging in 

the tapping mode because of the combined dynamic complexities of the cantilever and 

nonlinear complexity of the tip-sample force.  

 In first part of this research, an initial investigation of a neural-network approach 

to tip-sample interaction force estimation is studied. The tip-sample interaction is treated 

as an unknown force and a neural-network is used in a dynamic observer framework to 

approximate the unknown forcing function. Simulations are used to demonstrate 

plausibility of the approach and accuracy of the force model is evaluated for several 

scenarios.  

 In second part, an approach based on repetitive control is used to design a filter for 

execrating tip-sample force signal from noisy tip displacement measurements. Design of 

the filter parts and their parameters are explained and effect of each parameter on force 

estimation performance is discussed using simulations. Improvement in filter performance 

by using torsional harmonic cantilevers as the sensor is demonstrated. 

 

 



v 

 

ACKNOWLEDGMENTS 

 This would not have been done without helps and supports of many people. Here 

I would like to take this chance and thank them for their devoted help, time, and love.  

 First, I would like to thank my advisor Dr. Douglas Bristow who without his helps 

and ideas these works would not have been done. I would  like to specifically thank him 

for being patient with me and for all his efforts to guide me through different steps and I 

wish we could have achieved more. I also would like to express my gratitude to my other 

committee members Dr. S. N. Balakrishnan for his great helps and hints and Dr. Robert 

Landers for his invaluable supports during my study. 

 Next, I would like to express my thanks to all my friends for their being beside 

me during all these years and for their priceless helps. Although names and memories of 

all them will be always in my mind, I would like to name Dr. Mohammad A. Alibakhshi, 

Mr. Hassan Golpour, Dr. Sajjad Ale Mohammadi, Mr. Kossha Marashi, and Hessam 

Zomorrodi for motivating and encouraging me and for keeping hope alive in my heart.     

 Finally yet importantly, I would like to thank my family; my mother for her 

unconditional love, my father for his encouragement and support during all my studies 

until now and my sister Negar whose smiles, even though from far, made spending all 

these years far from home easier. This work is dedicated to all of them.   

  



vi 

 

TABLE OF CONTENT 

Page 

PUBLICATION DISSERTATION OPTION.................................................................... iii 

ABSTRACT ....................................................................................................................... iv 

ACKNOWLEDGMENTS .................................................................................................. v 

LIST OF ILLUSTRATIONS ........................................................................................... viii 

LIST OF TABLES .............................................................................................................. x 

SECTION 

 1. INTRODUCTION ................................................................................................. 1 

 1.1. ATOMIC FORCE MICROSCOPY BACKGROUND .................................... 1 

1.2. TIP-SAMPLE FORCE IMPORTANCE AND METHODS TO ESTIMATE 
THAT .............................................................................................................. 3 

   1.3. RESEARCH OBJECTIVE .............................................................................. 5 

         REFERENCES .......................................................................................................... 7 

PAPER 

I.    ESTIMATION OF TIP-SAMPLE INTERACTION IN TAPPING MODE AFM  
USING NEURAL-NETWORK APPROACH ............................................................. 9 

 ABSTRACT ............................................................................................................... 9 

 1. INTRODUCTION ............................................................................................... 10 

    2. AFM MODELING ............................................................................................... 12 

3. NEURAL NETWORK BASED ESTIMATION ................................................. 14 

 3.1. ESTIMATION PROCEDURE ...................................................................... 14 

 3.2. RADIAL BASIS FUNCTION NETWORK (RBF) ....................................... 15 

4. SIMULATION ..................................................................................................... 18 

 4.1. SENARIOE 1: NOMINAL PERFORMANCE ............................................. 18 

 4.2. SCENARIO 2: CHANGE IN OFFSET ......................................................... 19 

 4.3. SCENARIO 3: CHANGE IN SAMPLE MATERIAL .................................. 22 

 4.4. SCENARIO 4: MEASUREMENT NOISE ................................................... 22 

  5. CONCLUSIONS.................................................................................................. 25 

         REFERENCES ........................................................................................................ 26 



vii 

 

II.  ESTIMATION OF TIP-SAMPLE FORCE SIGNAL IN TAPPING MODE AFM 
USING A REPETITIVE CONTROL BASED FILTER ............................................ 29 

         ABSTRACT ............................................................................................................. 29 

         1. INTRODUCTION ............................................................................................... 31 

         2. MODELING OF AFM AND TIP-SAMPLE FORCE ......................................... 32 

         3. FILTER DESIGN USING REPETITIVE CONTROL METHOD ..................... 34 

         3.1. STRUCTURE OF FILTER .......................................................................... 34 

         3.2. DESIGN OF FILTER ................................................................................... 37 

         3.2.1. Design of F(s) ....................................................................................... 37 

         3.2.2. Design of Q(s) ....................................................................................... 38 

 3.2.3. Learning Rate Parameterα  ................................................................... 39   

         4. SUMULATION RESULTS ................................................................................. 40 

         4.1. EFFECT OF α  ON FILTER PERFORMANCE ......................................... 40 

         4.2. EFFECT OF Q(s)  CUTOFF FREQUENCY AND ORDER ....................... 41 

         5. IMPROVING RC PERFORMANCE USING THC ............................................ 45 

         5.1. MODELING OF TORSIONAL HARMONIC CANTILEVER .................. 45  

         5.2. RC FILTER PERFORMANCE IN COMBINATION WITH THC ............ 47 

         6. CONCLUSION .................................................................................................... 52 

 REFERENCES ........................................................................................................ 53 

SECTION 

         2. CONCLUSIONS AND FUTURE WORK .......................................................... 56 

VITA ................................................................................................................................. 58 

 

  



viii 

 

LIST OF ILLUSTRATIONS 

Figure               Page 

1.1 Schematic of an AFM.  .............................................................................................. 2 

1.2 Comparison of cantilever tip trajectory in contact and tapping mode AFM. ............ 2 

 

PAPER I 

2.1  SDOF model of AFM.. ............................................................................................ 13 

2.2 Schematic view of estimating a function by different basis functions. ................... 16 

2.3 Schematic view of implemented system. ................................................................. 17 

2.4 Simulation results for Si-Si interaction and sample offset xs=9.7nm. ..................... 20 

2.5 Estimated tip-sample force for different sample offsets. ......................................... 21 

2.6 Estimated tip-sample force for Si-Si and Si-PS interaction. .................................... 23 

2.7 Tip-sample force estimation under the effect of noise in states measurement for 
xs=9.5nm. ................................................................................................................. 24 

 

PAPER II 

3.1 SDOF model of AFM. ............................................................................................. 33 

3.2 Rearrangements of RC tracking problem to RC filter for force estimation. ............ 35 

3.3 An example of ( )H s  frequency response with learning rate of 0.01α =  and ( )Q s
having a cutoff at 25 normalized frequency. ........................................................... 36 

3.4 Force approximation using RC filter ( ( )Q s is 4th order Butterworth, 40Qω = and
0.02α = ) ................................................................................................................. 41 

3.5 Effect of changing Qω on force estimation performance ( ( )Q s is 4th  order 
Butterworth, and 0.02α = ). ..................................................................................... 42 

3.6 Effect of changing ( )Q s order on force estimation performance ( 40Qω = and
0.02α = ) ................................................................................................................. 43 

3.7 Performance of RC filter when Qω  is set around crossing frequencies .................. 44 

3.8 Schematic view of THC and simplified model of that by adding a massless torsional 
element. .................................................................................................................... 46 

3.9 Frequency spectrum for (top) THC (bottom) regular bending cantilever. ............... 48 

3.10  Bode plot of ( )L s using MATLAB’s “tustin”, “first order hold” and “matched” 
discretization methods ............................................................................................. 49 



ix 

 

3.11  Comparison of RC filter tip-sample force approximation using (a) regular bending 
cantilever (b) THC ( 0.1α = for both cases). ........................................................... 50 

3.12  Comparison of RC filter tip-sample force approximation using (a) regular bending 
cantilever (b) THC ( 0.01α = for both cases). ......................................................... 51 

 

  



x 

 

LIST OF TABLES 

Table               Page 

PAPER I 

2.1 AFM parameters. ........................................................................................................ 18 

 

PAPER II 

3.1 Effect of α  on RC filter force approximation performance. ..................................... 41 

3.2 Corresponding crossing frequencies (normalized) for various values ofα . .............. 44 

3.3 THC model parameters. ............................................................................................. 47 

 

 



1. INTRODUCTION 

1.1 ATOMIC FORCE MICROSCOPY BACKGROUND  

 The atomic force microscopy (AFM) is now an advanced and useful method for 

direct measurements with atomic-resolution and can be employed in a broad spectrum of 

applications. The applications of atomic force microscopy can be divided in three main 

areas of imaging, measuring properties and manipulating small structures which are all 

done at the nanometer scale. Having the capability of measurement and manipulation at 

atomic scale, nowadays atomic force microscopes are used in various areas such as semi-

conductors, materials, nanomechanics, polymers, biology and biomaterials [1]. AFM 

methods provide additional capabilities and advantageous relative to other microscopic 

methods (e.g., scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM)). While SEM and TEM provide 2D images for conductive samples, 

3D topography of semiconductors and biological samples in air or liquid medium can be 

obtained using AFM [2], [3]. Using AFM, high resolution imaging of DNA, proteins 

along with semiconductor and insulator surfaces have been acquired [4]. 

 The main component of a typical AFM system is a micro-cantilever probe. One 

end of the cantilever is clamped to a support, which can be excited by a piezoelectric 

(PZT) actuator, and the other end which has a sharp tip is in interaction with. Movement 

of the tip is obtained by a sensitive photo detector which senses a laser beam reflected 

back from the free end of the cantilever. Deflection and rotation of the tip changes the 

position of the reflected laser beam on the photo detector. These changes are transformed 

to electrical signals forming feedback measurements (Figure 1.1). The principle of AFM 

operation is to make the tip scanning the sample contour by moving the sample under the 

tip while maintaining tip and sample interaction. Interatomic interaction between tip and 

sample is a function of their distance from each other and tip will experience different 

regime as tip-sample separation changes. When the separation is high, there is very weak 

attractive force between tip and sample. As tip approaches the sample, attractive forces 

increase until tip and sample are so close that electron clouds start to repel each other 

electrostatically. The interaction force becomes zero when separation is a couple of 

Angstroms and becomes highly repulsive when tip and sample are in contact.  
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Figure 1.1 Schematic of an AFM. 

 

 

 

Different modes of AFM are determined basically by the regime in which the it is 

operated. In contact mode the tip is operated in repulsive regime of the interaction force 

and tip is in very close contact with sample. Surface topography of sample is generated 

by operating in constant height mode or constant force mode. In constant height mode, 

the probe scans the sample without moving in z-direction. Thus, cantilever deflection 

resulted from repulsive forces can be used to generate surface image. In constant force 

mode, a piezoelectric element (PZT) is used to move sample or probe such that the 

normal force between tip and sample remains constant. At first, the cantilever is lowered 

to bring tip and sample in contact and this initial deflection of cantilever is recorded as a 

set point. As tip scans the sample cantilever deflection changes from initial state. This 
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difference is compared with the set point value and error signal is used to actuate the PZT 

element to bring cantilever to its initial condition. This error signal hence can be used to 

measure the surface profile. The drawback of contact mode this is that it cannot be 

applied on soft materials since shear and dragging forces generated during scanning will 

damage the soft sample (specifically biological ones) and hence distort the image [1]. 

 The problems in contact mode are addressed in tapping mode which is one of the 

dynamic modes in AFM. In this mode, the cantilever is excited at a frequency near its 

resonant natural frequency using a PZT actuator at the support. When cantilever is far 

from the sample, there is no interaction force and cantilever tip oscillates at its free 

amplitude. When the tip is lowered, it starts to tap the surface lightly and will experience 

both attractive and repulsive regimes. Vibration amplitude of tip changes according to 

sample surface profile. If tip scans a bump on the sample, the amplitude will decrease due 

to lack of enough space. On the other hand, the amplitude will increase (up to free 

amplitude) as tip goes over a valley on the sample (Figure 1.2). During tapping mode 

operation, it is tried to keep oscillation amplitude constant using feedback control. The 

change is amplitude is sensed by optical sensor and fed back to control system. This 

amplitude is then compared with the set point value and the error signal is used to actuate 

the PZT element in the z-direction to adjust the tip-sample distance  such that oscillation 

amplitude remains constant. This error signal which is related to sample topography is 

used to generate the image.     

 

1.2 TIP-SAMPLE FORCE IMPORTANCE AND METHODS TO ESTIMATE 
THAT 

 Dynamic modes of operation in AFM are challenging since cantilever tip 

experiences various force regimes with different intensity in a short period of time. These 

complex forces may result in different stable trajectories cantilever or even chaotic 

behavior under certain operation conditions and set points [5]. Thus, understanding tip-

sample force profile is of great importance for stable high resolution imaging particularly 

for non-contact mode which operates the cantilever mostly on attractive regime [6]. In 

addition, having information about tip-sample force profile will result in design of high 

performance controllers which lead to faster scanning with lower measurement errors [7]. 
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Furthermore, tip-sample interactions are related to tip and sample material, charge, 

chemistry and geometry [8], [9] and extracting tip-sample force information can be used 

for material identification and determining tip damage and wearing [10], [11].  

 

 

 

 
Figure 1.2 Comparison of cantilever tip trajectory in contact and tapping mode AFM. 

 

 

 

 

 Many methods have been developed to obtain information on tip-sample 

interaction profile. Most of methods to determine these forces in tapping mode AFM are 

based on the fact that the amplitude, frequency and phase shift of the tip oscillation relate 

the cantilever dynamic to tip-sample interaction and they can be used to track back the 

sample topography and its interaction with tip. In one method, phase shift of the 

cantilever motion is used to determine the operating regime (attractive or repulsive) of tip 

[12]. Change of resonance frequency as function of resonance amplitude is used in other 
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approaches to create the tip-sample force function in high vacuum [13], [14]. This 

method is further improved to measure the force in the ambient condition also [15]. 

Another approach designs a torsional harmonic cantilever (THC) to couple tip-sample 

interactions with rotation in the probe [16], [17]. Many of the mentioned methods in 

tapping mode AFM use steady-state response of the tip to calculate tip-sample force. 

Although steady-state measurements simplifies correlation between cantilever and force 

and reduces sensitivity to noise, they cannot be efficient in practice due to slow response 

of probes with high quality factors [18]. In one non-steady-state method [19] uses an 

inverse dynamic model of the cantilever to reconstruct tip-sample forces from 

displacement measurements. However, direct dynamic inversion has a downfall of 

sensitivity to noise and uncertainty in the model.   

 

1.3 RESEARCH OBJECTIVE 

 Objective of this research, which is presented in two papers, is to explore methods 

to extract tip-sample force signal and profile from measured cantilever displacement. 

These methods can be used and implemented in real-time to provide tip-sample force 

profile and map the estimated force to the captured image.  

 In first paper, a Neural-Network (NN) approach is used for force estimation since 

they are known for their ability to approximate complex unknown functions. This will 

result in obtaining tip-sample force curves that can be used in design of high-performance 

adaptive controllers and material identification. Using the method developed in [20], the 

Neural-Network force estimator is evaluated in simulation using simple models for 

cantilever dynamics and tip-sample force. Effectiveness and ability of the technique is 

demonstrated by considering different scenarios. 

 In second paper, a method based on repetitive control (RC) is developed to 

reconstruct the tip-sample force signal. RC method is used since it is well-known to deal 

with systems having periodic references and disturbances [21], [22] and also they can 

address the problem of noise in the measurements. The goal in this part is using 

simulations to evaluate the performance of the presented RC based filter to extract tip-

sample force. In addition, considering advantages of utilizing higher harmonics in AFM 
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[23], [24], a solution based on torsional cantilever model is suggested to improve RC 

method performance.      
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PAPER 

I. ESTIMATION OF TIP-SAMPLE INTERACTION IN TAPPING MODE AFM 

USING NEURAL-NETWORK APPROACH  

ABSTRACT 

 In Atomic Force Microscopy, the tip-sample interaction force contains 

information about the sample topology, material properties and tip geometry. However, 

quantitative measurement of the time-varying tip-sample interaction forcing function is 

challenging in the tapping mode because of the combined dynamic complexities of the 

cantilever and nonlinear complexity of the tip-sample force. In this paper, an initial 

investigation of a neural-network approach to tip-sample interaction force estimation is 

studied. The tip-sample interaction is treated as an unknown position-dependent force on 

the cantilever. A modified radial basis function neural-network is used in a dynamic 

observer framework to approximate the unknown forcing function. Design of the 

observer gains is discussed and simulations are used to demonstrate plausibility of the 

approach. Accuracy of the force model is evaluated for several different tip-sample 

distances and materials and future direction are discussed. 
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1. INTRODUCTION 

 The atomic force microscope (AFM) is an important tool for imaging, measuring 

and manipulating small structures at the nanoscale. In particular, the AFM is a powerful 

tool for measuring sample topography and mechanical properties with atomic resolution 

[1]-[5]. When the tip of the AFM probe approaches the sample, atomic forces, such as 

van der Waals force, act on the tip affecting the motion of the AFM probe, which is 

detected, typically by an optical lever. The tip-sample forces depend on many parameters 

including the distance of the tip-sample separation, tip and sample materials, charge, 

chemistry, and tip geometry [6],[7]. Thus, the tip-sample forcing function contains a great 

deal of information about the sample and state of the probe. This information can be 

useful for high-performance controllers [8],[9] and better imaging [10], sample material 

identification [11],[12], and determining tip damage or contamination. 

 Many methods have been developed for extracting tip-sample force information.  

Many of the methods relevant to the tapping AFM mode are based on steady-state 

response of the probe. The steady-state simplifies the correlation between the detected 

motion and the tip-sample force, but can be inefficient or inaccurate in practice due to the 

slow response of high-Q probes. In one method, the steady-state phase shift of the 

probe’s oscillation is used to determine if the probe is in the repulsive region, very near 

the sample [13]. A “bimodal” imaging mode [14] excites the probe at its second 

resonance and uses the second resonance phase shift to determine material stiffness. In 

[15]-[17] amplitude and phase are measured as the tip-to-sample offset is varied to create 

a map of the tip-sample force.  Another approach utilizes a torsional harmonic cantilever 

to couple tip-sample forces to rotation in the probe [18], [19]. One non-steady-state 

method [20] uses an inverse dynamic model of the probe to construct tip-sample force 

estimates from displacement measurements. However, direct dynamic inversion is well 

known to be very sensitive to measurement noise and model accuracy and can be 

computationally expensive. Another non-steady-state method [10] constructs a nonlinear 

estimator to obtain the time-varying offset between the tip and sample. 
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 In this paper, we explore a method to obtain a model of the time-varying tip-

sample force from the measured probe displacement. The model can be used for 

development of high-performance adaptive controllers and measurement of the sample 

topography and material properties. Our approach utilizes a Neural-Network (NN) model 

because NNs are known for their ability to model complex and unknown functions, they 

have been successfully demonstrated in a wide variety of applications, and they can be 

solved in parallel, which is critical for real-time implementation [21], [22]. The objective 

of this paper is to evaluate the NN technique in simulation using simple models of the 

probe dynamics and tip-sample forces in order to determine potential efficacy for the 

AFM problem as well as identify key areas for future research and development. 

 The rest of article is organized as follows. In section 2, an AFM model is 

presented. The neural-network based estimator is introduced in section 3 which uses the 

simulated states from AFM as input and provides an estimation of tip-sample force as 

output. In Section 4 a variety of scenarios are studied in simulation to determine efficacy 

of the proposed approach. Conclusions are given in section 5. 
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2. AFM MODELING 

 The AFM dynamics are commonly modeled as a SDOF spring-mass-damper 

system [1],[8],[10],[23]. Using this model, the equation of motions which represent the 

tip position can be written as, 

 ( ) ( ) ( ) ( ) ( )dr tsmx t cx t kx t F t F x+ + = +  , (1)   

where m is the equivalent cantilever-tip mass, c is the equivalent viscous damping and k 

is the equivalent cantilever spring constant. x is the tip position and measured from the 

rest position (Figure 2.1). ( )drF t is the driving force which is typically from position 

excitation, ( )dru t , of piezo mounted at the base of the cantilever and can be represented 

by, 

 ( ) ( ) ( )drF t cu t ku t= + , (2)  

and the ( )tsF x is the tip-sample interaction force. For easier analysis and simulation, it is 

standard to normalize the dynamics using the dimensionless parameter tt ω= , where 

k mω =  is the natural frequency [23]. Defining the quality factor as Q m cω= , (1) can 

be written as, 

 ( )1 1( ) ( ) ( ) ( ) ( ) tsF xx x x u u
Q Q k

t t t t t+ + = + +   . (3) 

 There are different types of forces such as electrostatic and Van der Waals forces 

acting on an AFM tip [7],[9],[24],[25]. These forces are generally dependent on various 

parameters like tip-sample separation, sample material, tip configuration, etc. Different 

mathematical models such as Derjaguin-Muller-Toporov (DMT) [23] and Lennard-Jones 

[6],[24] have been used to represent the tip-sample interaction force and worked well to 

simulate/control the AFM [9]. Here, for the purposes of this work, it will be assumed that 
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the interaction force is based on the Lennard-Jones model [6],[24]. According to this 

model, the tip-sample force is given by, 

 1 2
8 2( )

180( ) 6( )ts
s s

A R A RF x
x x x x

= + −
+ +

, (1) 

where the coefficients 1 2,A A are the Hamaker constants of intermolecular pair potential 

for the tip and sample [24]. The gap between the sample and the nominal position of the 

tip (when x=0) is sx and R is the tip radius. The drive force drF  is typically a sine wave 

near the resonant frequency of cantilever. Using, (3), and considering base excitation 

( ),dru t  and ( )tsF x  as inputs, the state-space model of the AFM can be obtained as follows, 

 

( ) ( )1

1

2

1 1 01
, , ,1 1

1 0

dr dr ts ts

dr ts

X A X B u B F x

x
QX A B B

x
Q k

t= + +

−            = = = =         −        



, (2) 

where 1x x= , 2x x=   and differentiation is carried with respect to  normalized time.  

 

 

 

 
Figure 2.1 SDOF model of AFM. 
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3. NEURAL NETWORK BASED ESTIMATION 

3.1 ESTIMATION PROCEDURE  

 The goal of the neural-network estimation is to construct a model for the 

unknown function tsF  in (5). According to the universal function approximation property 

of neural networks [26] this function can be reconstructed by a set of optimal weight 

vectors W and basis function vectors 1( )xφ  with the accuracy level of ε , or, 

 1 1( ) ( )T
tsF x W xφ ε= + . (3)  

 By estimating weight vector W and eliminating the accuracy term the estimated 

unknown function 1( )tsF x  is obtained as, 

 1 1
ˆ ˆ( ) ( )T
tsF x W xφ= , (4) 

where Ŵ  is the estimated weight. Now, consider the observer model given by, 

 ( ) ( )1
ˆ ˆ ˆ ˆ( )dr tsX AX BF BF x K X Xt= + + + − , (5) 

where X̂  is the estimated state vector and K is the state-estimator gain. K can be chosen 

as a diagonal matrix with the inverse of time constants on its diagonal [21]. By defining 

the state-approximation-error as ˆ
ae X X= −  and weight-approximation-error as

ˆW W W= − , the state error dynamics can be expressed as, 

 1( )T
a ae W x Keφ ε= + −

 . (6) 

To ensure bounds on state error ae  and to also on the adaptive weight Ŵ , the stabilizing 

weight update rule given by [21], 

 1
ˆ ˆ( ) T

aW G x e G Wφ σ= − , (7) 
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will be used, where n nG R ×∈  and σ  are the adaptation rate and modification factor 

respectively. Estimation based on this method is based on the assumption that 

measurements for both states (position and velocity) are available. Although velocity 

measurements are not typically available in AFMs they can be estimated through position 

measurements. This point is discussed further in the conclusions in Section 5. 

 

3.2 RADIAL BASIS FUNCTION NETWORK (RBF) 

 Although it is well known that the type of basis function can play an important 

role in the effectiveness of the neural network estimator, generally, there is not a standard 

way to pick the best basis functions for a particular application. A good rule of thumb is 

to use basis functions that represent the nature of the unknown approximated function to 

some extent. Here we use the radial basis functions (RBFs)  

 
2

( ) exp
e

zRBF z δ
σ

  − = −    
, (8) 

where the parameters δ  and eσ  in can be adjusted to select the RBF center and width, 

respectively. In the application considered in this paper, z represents the position x. Thus, 

key properties of the RBF, that it has smooth derivatives and is highly localized, match 

the expected tip-sample forces which are also smooth and occur only when the tip is very 

near the sample.  

 In the AFM problem, proper scaling of the RBF is critical since the range of 

motion of x is small (typically 10s of nanometers) and the tip-to-sample forces occur over 

an even smaller range (typically 1-3 nanometers). As a result, without care in the scaling 

and shifting the parameters in (11) one can expect that ( ) 1RBF x ≈ , and so accurate 

estimation will require a large number of basis and may be sensitive to numerical errors. 

Proper scaling of the basis functions is therefore important. Furthermore, the slope of the 

repulse portion of the tip-to-sample force is significantly higher than the slopes in the 

attractive force region. Although it is possible to account for the variation with different 

RBF widths, we find that it is advantageous to also increase the power on the Gaussian 

function (11) to create a sharper peak. This is illustrated in Figure 2.2. 
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Figure 2.2 Schematic view of estimating a function by different basis functions. 

 

 

 

 

 The modified RBF set used here is given by, 

 ( ) exp
i

i
j

i j
e

p
x x

RBF x
δ

σ

  + + = −      

, (9) 

which includes several offsets jδ  and sharpnesses ( ),e ii
pσ . The constant  x  represents a 

best guess for the expected tip-to-sample distance where the force switches from 

attractive to repulsive. For Lennard-Jones model, the point at which the force switches 

from attractive to repulse in many materials is approximately 1nm from the offset, xs. 

Therefore, for example, if the tip-to-offset distance is expected to be in the range 9nm to 

10nm, and a spatial accuracy of 0.25nm is desired, then 8.5nmx =  and 

{ }0.5, 0.25,0,0.25,0.5jδ = − − nm for j=1,…,5, respectively. For sharpness, we find that 

the combinations,  
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 ( ) ( ) ( ) ( ) ( ){ }9 9 9 9, 10 ,2 , 2 10 ,2 , 0.75 10 ,4 , 0.5 10 ,6e ii
pσ − − − −= × × ×  (10) 

for i=1,..,4, work well. 

 Combining the equations of Section 3.1 and 3.2, a block diagram of the neural 

network estimator is shown in Figure 2.3. 

 

 

 

 

 
Figure 2.3 Schematic view of implemented system. 
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4. SIMULATIONS 

 In this section, the efficacy of the neural network estimator is examined in a 

number of scenarios via simulation. The Quality factor and cantilever stiffness for AFM 

modeling were chosen according to [23] and the parameters for tip-sample interaction 

and tip radius are obtained from [24] for two different tip and sample combinations, 

silicon tip on silicon sample (labeled Si-Si) and silicon tip on polystyrene (labeled Si-PS). 

The parameters are summarized in Table 2.1. All Simulations were performed in 

MATLAB using the ode4 solver with fixed step size of 0.0005 in t . 

 

 

Table 2.1 AFM parameters. 

Symbol Value 
Q 100 
k 7.5 Nm-1 
R 150 nm 

A1 ,Si-Si 
70 61.3596 10 J m−×  

A2, Si-Si 191.865 10 J m−×  

A1 ,Si-PS 70 60.838873 10 J m−×  

A2, Si-PS 191.15072 10 J m−×  
 

 

 

 

4.1 SENARIOE 1: NOMINAL PERFORMANCE 

 In this scenario, the tip and sample materials are assumed to be silicon. The drive 

signal is ( ) ( )sindrF tt =  resulting in a free amplitude (the tip amplitude when it is far 

from the sample) of 10.66nm. The sample offset is set to xs=9.7nm, which results in a 

relatively light tapping on the sample surface. The basis function centers were chosen as 

9nmx =  and 3 2 1 1 2 3, , ,0, , ,
6 6 6 6 6 6jδ

 = − − − 
 

nm. The four sharpnesses parameters in (13) 
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were used. Thus, the basis vector 1( )xφ  will consist of 4 sharpnesses ×  7 centers =28 

RBFs. A number of neural-network estimation gains, σ  and G were evaluated. As one 

may expect, larger gains resulted in better estimation error, but also tended to produce a 

persistent variation in the weighting gains. That is, while the state estimation and force 

estimation errors were smaller, the weights tended to converge to periodic, non-constant, 

solutions as the gains were increased. A final choice of gains of 1 15eσ = −  and G=1000I 

was selected, as this provided the best compromise between force estimation accuracy 

and constancy of the weights. 

 Simulation results, shown in Figure 2.4, demonstrate the ability of the neural-

network method to estimate the unknown force function. The estimated tip-to-sample 

force, both as a function of time and as a function of state (Figure 4.a and 4.b, 

respectively) shows very good agreement and errors in estimation are 0.4% and 1.3% for 

maximum and minimum force respectively. In addition, estimated weights Ŵ  converge 

to nearly constant values (there is some updating that continues to occur at the time of 

impact, located at τ=891 in Figure 4.d.). Convergence of the scheme occurs in 

approximately 800 normalized seconds, or about 120 tapping cycles. 

 

4.2 SCENARIO 2: CHANGE IN OFFSET 

 In imaging, the offset of the tip and sample is constantly changing as the sample 

profile changes. In most imaging, the changes are small, as the AFM feedback system 

continuously makes adjustments to keep it nearly constant. However, for the tip-to-

sample force estimation, even small changes require readjustment of the weighting 

parameters.  In this scenario, we examine the effect of a step change in the tip-to-sample 

offset. 

 In this scenario, the offset changes begins at xs=9.6nm and changes to xs=9.85nm 

at 900t = . All other parameters are kept the same as in the previous section. Results are 

shown in Figure 2.5. As it can be seen, there is very good agreement between the 

estimated and actual tip-to-sample force. Error in estimating of minimum force is 6.5% 

for xs=9.85nm and 1.9% for xs=9.6nm and error in estimating the maximum force is 

about 0.1% for both cases. In part (c), the convergence of weights can be seen also 
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sudden changes in weights updated at time 900t = , due to the step change in sample 

offset at that time are detectable. Convergence to the new weights occurs in about 400 

normalized seconds (~65 periods), although notably the convergence to new weights is 

smoother, showing smaller spikes than the initial convergence. 

 

 

 

 

 
Figure 2.4 Simulation results for Si-Si interaction and sample offset xs=9.7nm. Time is 
normalized with respect to cantilever’s natural frequency such that 2t π=  is one period 
of oscillation. (a) force vs. time zoomed in at the last full period. (b) force vs. tip 
displacement. (c) weight update over entire simulation time. (d) weight update zoomed in 
over last full period. 
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Figure 2.5 Estimated tip-sample force for different sample offsets. 

(a) force vs. tip position. (b) weight updates. 
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4.3 SCENARIO 3: CHANGE IN SAMPLE MATERIAL 

 In this scenario, we consider the problem of identifying the changing force profile 

as a result of scanning over a new material. The simulation uses a silicon sample for the 

first 900 simulation time and then changes to a polystyrene sample. The sample offset is 

held at xs=9.5 and the remainder of the parameters were the same as in Section 4.1. 

Estimation results are shown in Figure 2.6. It can be seen from Figure 6 that the method 

works well in estimating the tip-sample interaction force especially in repulsive regime 

where the force starts to enter the positive region with a sharp rate of change. 

 Estimating the maximum force is very good and the error is less than 0.1% for 

both cases. In addition, it estimates the minimum force with 10% of error for Si-Si 

interaction and 8.7% of error for Si-PS interaction. The sudden change in material is 

clearly observed by the sudden change in weights at time 900. Compared to the previous 

scenario, convergence with a material change occurs much faster, with most weights 

converging in about 300 normalized seconds (~50 periods). 

 

4.4 SCENARIO 4: MEASUREMENT NOISE 

 To simulate the effect of measurement noise, a white noise signal with a power of 

0.0003 nm2 is introduced in the measurement. The power of noise is selected such that 

the level of noise in simulated tip position ( 1x ) was close to the actual noise level that the 

authors have observed in the experimental measurements. An offset of xs=9.5nm and Si-

Si interaction were considered.  

 As already mentioned, large values of G result in faster weight update and better 

estimation but they are more sensitive to noise and small values of G although they are 

less sensitive to noise they result in slow weight updates. Thus, there is a tradeoff 

between noise sensitivity and accuracy in estimation. As a result, value of G lowered to 

G=100I for the case of noisy measurement which resulted in best compromise between 

force estimation and noise sensitivity. Simulation Results for this estimation under effect 

of noise are depicted in Figure 2.7. As it can be seen, although the estimation in time 

domain is noisy, the force-position profile gives good estimation about actual tip-sample 

interaction profile. 
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Figure 2.6 Estimated tip-sample force for Si-Si and Si-PS interaction. 

(a) force vs. tip position. (b) weight updates. 
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Figure 2.7 Tip-sample force estimation under the effect of noise in states measurement 

for xs=9.5nm. (a) noisy estimation in force vs. time. (b) force vs. tip position. 
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5. CONCLUSION  

 In this paper, a neural network estimation approach is studied to evaluate its 

potential for estimating the tip-sample interaction in tapping mode AFM. For the method 

to be applicable in an experimental situation, it should be able to provide good estimation 

under rapidly changing conditions such as changes in sample offset and material. 

Simulation results show that this method is plausible, but can be sensitive to the choice of 

basis functions and weight update parameters. By choosing radial functions with different 

centers and rates of change, the method was able to estimate the tip-sample force for 

different sample offsets and materials interactions in simulations.  

 The investigation revealed some limitations of the neural network approximation 

approach that must be addressed in future work before the approach can be applied in 

practice. Firstly, the approach requires full state measurement, but in practice only 

position is measured. The effect of estimating the velocity, such as with a Kalman filter 

[27], will be an area of future exploration. Secondly, there may be some challenges in 

real-time implementation, which will restrict sampling rate and computational 

complexity. However, the neural network approach is expected to be particularly well 

suited to these challenges, since neural network can be performed in a parallel processing 

setup. Finally, the effect of model errors, particularly in assuming a 2nd order oscillator 

for the cantilever, will need to be evaluated.       
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II. ESTIMATION OF TIP-SAMPLE FORCE SIGNAL IN TAPPING MODE AFM 

USING A REPETITIVE CONTROL BASED FILTER 

ABSTRACT 

 Atomic Force Microscopy is one of the most powerful tools for imaging, 

measuring and manipulating materials at nanometer scale. Among different modes of 

AFM, tapping mode, in which the oscillating tip approaches and retracts the sample 

periodically, is most common mode. In this mode, the tip experiences different force 

regimes, which contain information about the sample topology, material properties and 

tip geometry. However, measurement of the time-varying tip-sample force signal is 

challenging in the tapping mode because of the combined dynamic complexities of the 

cantilever and nonlinear complexity of the tip-sample force. In this paper, considering 

periodic feature of tapping mode, an approach based on repetitive control is used to 

design a filter for execrating tip-sample force signal from noisy tip displacement 

measurements. Design of the filter parts and their parameters are explained and effect of 

each parameter on force estimation performance is discussed using simulations. 

Improvement in filter performance by using torsional harmonic cantilevers as the sensor 

is also presented. 
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1. INTRODUCTION 

 The atomic force microscope (AFM) system is now an advanced and useful tool 

for direct measurements with atomic-resolution and can be employed in a broad spectrum 

of applications. The applications of atomic force microscopy can be divided in three main 

areas of imaging, measuring properties and manipulating small structures which are all 

done at the nanometer scale [1-5]. When the AFM tip scans the surface, it interacts with 

sample, and various force fields such as van der Waals, electrical, etc. act on the tip of 

cantilever. These forces, which depend on spatial, geometrical and physical   parameters 

of tip and sample [6], [7], alter the amplitude, frequency and phase of cantilever 

oscillation. As a result, obtaining these forces reveals good information about sample 

condition and state of the tip. These information will be of great usage for high-

performance controllers [8], [9], high-resolution imaging [10], sample identification and 

determining tip wearing or contamination [11], [12].  

 Many researchers have tried to extract tip-sample interaction especially in taping 

mode AFM. In [13-15] change of amplitude and phase as a function of tip-sample offset 

are measured to create the tip-sample force function. Utilizing benefits of higher 

harmonics to improve AFM performance have been a subject of recent works [16], [17]. 

In one approach utilizing higher harmonics in tip-sample interaction estimation, torsional 

harmonic cantilever (THC) is designed and torsional rotation of the probe is used to 

measure time-varying tip-sample forces [18], [19]. Most of the mentioned methods for 

force extraction relay on steady-state respond of cantilever and require offline or post 

processing to extract the tip-sample force. Although steady-state measurements may 

reduce sensitivity to noise, they cannot be efficient in practice due to slow response of 

probes with high quality factors [20]. One non-steady-state approach constructs tip-

sample force estimations from probe displacements applying inverse dynamic of the 

probe [21]. In another approach, authors try to develop an online estimator using ability 

of Neural-Network to model unknown functions [22]. However, mentioned non-steady-

state methods have the drawback of sensitivity to noise and model uncertainty.  

 



31 

 

In this paper, a method based on repetitive control (RC) is developed to reconstruct the 

tip-sample force. RC is well-known to deal with control problems having periodic 

references and disturbances [23], [24]. Treating the tip-sample force as a periodic 

disturbance makes force estimation in AFM a good case to utilize RC abilities. A 

periodic reference-tracking problem with RC is rearranged to a filtering problem where 

input of filter is probe displacement measurements and output is approximated tip-sample 

force. The goal of this study is using simulations to evaluate the performance of the 

presented RC filter to extract tip-sample force in AFM problem. In addition, it is tried to 

determine effective parameters in design of the filter, tune them, and suggest solutions for 

performance improvement. The rest of paper is organized as follows. In section 2, a brief 

AFM model along with assumed tip-sample force model is presented. RC filter structure, 

design parameters and tuning of them are described in section 3 which is followed by 

simulation results and discussion in section 4. Next, an improvement solution by applying 

the RC method on torsional harmonic cantilevers is presented in section 5 and 

conclusions are given in section 6. 
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2. MODELING OF AFM AND TIP-SAMPLE FORCE 

 The AFM dynamics can be modeled as a spring-mass-damper system [1], [8], 

[23]. Using this, equation of motions of the tip displacement can be obtained by, 

 ( , )mx cx kx F x t+ + =  , (1) 

where m is the equivalent cantilever-tip mass, c represents viscous damping and k is the 

equivalent cantilever spring constant. x is the tip position which is measured from the rest 

position ( Figure 3.1) . F(x,t) is the sum of all forces acting on the tip which are from a 

dither piezo at the base of cantilever and the tip-sample interaction force, 

 ( , ) ( ) ( )dr tsF x t F t F x= + . (2) 

 For enhancement in analysis and simulation, dynamics are normalized using the 

dimensionless parameter 2 tπt ω= , where k mω =   is the natural frequency. This 

makes time and frequency normalized with respect to natural frequency of cantilever 

such that unit of time is one period of oscillation and having frequency of unity means 

oscillating at natural frequency. Defining the quality factorQ m cω= , (1) can be written 

as,  

 ( )
2

22 (2 )( ) ( ) (2 ) ( ) ts drx x x F F
Q k
π πt t π t+ + = +  . (3) 

 Different models have been used to represent the tip-sample interaction force. 

Using Lennard-Jones model based on [6], [25], the tip-sample force is given by, 

 1 2
8 2( )

180( ) 6( )ts
s s

A R A RF x
x x x x

= + −
+ +

, (4) 
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 SDOF model of AFM. Figure 3.1

 
where coefficients 1A  and 2A  are the Hamaker constants and related to tip and sample 

material [25]. The gap between the sample and rest position of the tip is xs and R is the tip 

radius. The drive force Fdr is typically a sine wave near the resonant frequency of 

cantilever to provide maximum excitation. It should be noted that here we use Lennard-

Jones model only to represent the actual tip-sample force in simulations, and to extract 

the tip-sample force approximation no information from this model is used. 
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3. FILTER DESIGN USING REPETITIVE CONTROL METHOD 

3.1 STRUCTURE OF FILTER  

 In this section, design of a repetitive control (RC) based filter to extract the tip-

sample force in tapping mode AFM is presented. Repetitive control methods are well 

known to deal with systems with periodic behavior [23], [24]. The goal here is not to 

make the system to track a specific reference. The objective is to estimate the tip-sample 

force using information from measured tip position and AFM model. The basic concept is 

to feed the measured output to the inverse of AFM model to obtain the input force. 

However, the presence of noise in the output measurements and structure of the inverse 

model of AFM, which amplifies the effect of noise, makes extracting the force signal 

very difficult. 

 Here we rearrange the tracking structure to a filter structure such actual tip 

displacement can be extracted from noisy AFM measurements. Next, by feeding clean tip 

displacement to inverse model of AFM, the force can be obtained. A simple repetitive 

control structure corresponding to our problem has been presented in part (a) of  Figure 

3.2, where ˆ ( )G s represents the plant dynamics transfer function and ( )L s , ( )Q s are for 

enhancing the guarantee of stability of closed loop and will be designed [24]. X 

represents AFM measurement, n is measurement noise and sTe− is the time delay with T 

representing the period of the first harmonic in the reference. Again, one should note that 

our reference here is not a clean command signal like regular tracking problems. Here, 

X n+  forms our pseudo reference and X̂ forms the estimated or filtered output. Tracking 

structure has been rearranged to a filtering structure as shown in part (b), where ĥ  is the 

estimated force. Part (c) shows how the filter is implemented and part (d) shows the 

transfer function ( )H s or the RC filter. Here we consider ( )L s having the following form 

 1ˆ( ) ( ) ( ), 0 1L s G s F sα α−= < < , (5) 

where α is a learning rate and ( )F s  an appropriate lowpass filter. Using that, the transfer 

function for RC filter is given by, 
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( ) ( )( )

1 ( ) ( ) ( )

sT

sT sT

F s Q s eH s
F s Q s e Q s e
α

α

−

− −=
+ −

. (6) 

 
 
 
 

 

 Rearrangements of RC tracking problem to RC filter for force estimation. (a) Figure 3.2
tracking structure (b) filtering structure (c) implementing structure (d) RC filter 

transfer function. 
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 By designing ( )F s and ( )Q s as appropriate lowpass filters with magnitude close 

to unity before their cutoff frequency, response of ( )H s can be approximated as follow.  

- At harmonics: 

 2 , 0,1, 2,... 1, ( ) ( ) 1 ( ) 1sTs j k k e Q s F s H s
T
π −= = ⇒ = ≈ ≈ ⇒ ≈  (7) 

- Between harmonics: 

2 1( ), 0,1, 2,... 1, ( ) ( ) 1 ( )
2 2

sTs j k k e Q s F s H s
T
π α

α
−= + = ⇒ = − ≈ ≈ ⇒ ≈

−
 (8) 

This is desired since filter will pass signal at harmonics, which has good information, and 

attenuates signal between harmonics, which contains noise and has no information. An 

example frequency response of ( )H s with 0.01α = has been illustrated in  Figure 3.3 .  

 
 
 
 

 

 An example of ( )H s  frequency response with learning rate of 0.01α =  and ( )Q sFigure 3.3
having a cutoff at 25 normalized frequency. 
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3.2 DESIGN OF FILTER 

 In this section, main parts of RC filter, their parameters, and how to find the range 

of those parameters are discussed. It is tried to explain these such that one can understand 

how to change this parameters based on difference data acquisition devises, AFM 

cantilevers, and performance objectives (i.e. speed or accuracy). As shown in previous 

section, lowpass filters ( ), ( )F s Q s and the parameterα  are main tools for designing the 

RC filter. These can be designed and tuned, as long as stability of overall system is held. 

It can be shown by small gain theorem that the closed-loop system is stable if the 

following condition holds for all frequencies (in discrete-time domain it will be up to 

Nyquist frequency) [23], 

 ˆ( )(1 ( ) ( )) ( )(1 ( )) 1Q s G s L s Q s F sα
∞∞

− = − < . (9) 

 

3.2.1 Design of F(s). The main goal of ( )F s  is for implementation propose since 
the inverse of ˆ ( )G s  is not implementable alone. Thus, ( )F s  was chosen as a lowpass 
filter with cutoff of Fω  and same order of ˆ ( )G s  as below, 

 
2

2 2( ) , ( 0.7)
2

F

F F

F s
s

ω ς
ςω ω

= =
+ +

. (10) 

Damping ratio 0.7ς = is chosen to prevent any sharp pick in frequency response of ( )F s . 

To avoid interfering with ( )Q s , Fω  is set as high as possible but the limit for Fω  is 

determined by half of sampling frequency. To determine that limit, one should consider 

data acquisition system sampling rate and the AFM cantilever excitation frequency. In 

our case, data acquisition system has a sampling frequency of 100MHz and AFM 

cantilevers work below 300kHz. This, results in almost 330 samples per period. Since in 

dimension less domain our system has period of unity ( 1T = ), the sampling frequency 

(SF) in simulation must be 330 samples/period or 330Hz or lower. One the other hand, it 

should be picked such that integer multiples of time step (dt) can cover one period. Thus, 

sampling frequency of SF=250 (normalized) was selected for simulation which results in 
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time step of 0.004dt = in normalized domain. This determines that upper limit for Fω  can 

be 250 125
2

= . In our simulations, 80Fω =  was selected.  

 

3.2.2 Design of Q(s). ( )Q s is also a lowpass filter with cutoff of Qω which 

determines the cutoff of the filter H(s). In this paper, Butterworth filters were used for 

design of ( )Q s . However, they were not implemented directly and some modifications 

were applied to enhance the performance. Due to the phase in ( )Q s , applying that directly 

will introduce a phase shift between actual and extracted tip-sample force signal. To 

address this problem, zero-phase FIR filter was made using a Butterworth filter and 

following these steps: 

1. Using Q(z) (discrete form of Q(s)), calculate the impulse response [ ]q n

for ( 1, 2,..., )n N=  where N is the number of samples in one period T. 

2. convolve q[n] and its flipped backward version [ ]q n′  to obtain zero-

phase filter as  below, 

 [ ]* [ ]zpQ q n q n′= . (11) 

 Parameters effective in shaping ( )Q s are its cutoff Qω , filter type, and filter order. 

Generally, the cutoff for ( )Q s must be less than ( )F s  to provide stability. On the other 

hand, it should be high enough to cover appropriate number of harmonics to capture tip-

sample force. As a result, frequency content of the tip-sample force signal can be used to 

determine number of required harmonics to reconstruct the tip-sample force and hence 

select Qω . Frequency spectrum (FFT) of tip-sample force signal simulating free amplitude 

oscillations, soft tapping, and hard tapping showed 25-40 number of harmonics are 

required to capture tip-sample force. This suggests a range of 25-40 (normalized 

frequency) for Qω .  
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3.2.3 Learning Rate Parameter α . Effect of parameter α  on filter performance 

can be analyzed by considering the transfer function from the noise in measurement (n) to 

the error in force estimation due to noise ( he ) as given in by following equation 

 1( ) ( ) ˆ ( )
1 ( ) ( ) ( )

sT
h

sT sT

e F s Q s e G s
n F s Q s e Q s e

α
α

−
−

− −=
+ −

. (12) 

Assuming high bandwidth for ( )Q s and ( )F s  (i.e. ( ) ( ) 1Q s F s≈ ≈ ), poles of (12) can be 

approximated by setting denominator equal to zero. 

 * ln(1 ) 21 ( 1) 0 , 0,1,2,...sTe s j k k
T T
α πα − −

+ − = ⇒ = + = . (13) 

Thus, the time constant of filter will be 

 ( 1)
ln(1 )H

T T fort α
α α

= − ≈ <<
−

. (14) 

It can be seen from (12)-(14) that α  is a tradeoff between noise reduction and 

convergence time.  
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4. SIMULATION RESULTS  

 Having determined effective parameters and their range theoretically in previous 

section, performance of RC filter in tip-sample force approximation is investigated here 

using simulations. The objective is to study how performance of RC filter changes by 

changing design parameters. Furthermore, it is tired to see how these parameters should 

be changed with regard of each other, if there is an optimum value, and how the 

performance can be improved.    

 

4.1 EFFECT OF α ON FILTER PERFORMANCE 

 As it was shown in previous part, α is a trade of between noise reduction and 

conversance rate.  To check this effect, a zero mean Gaussian noise with variance of 
2(1 10)e −  was added to simulated position measurements. This variance was chosen such 

that it generates the similar level of noise in simulated measurements as authors have 

observed in experimental measurements. Simulations were run for 0.1,0.02,0.004α =  

while ( )Q s was selected as a 4th order Butterworth lowpass filter with cutoff 40Qω = . 

Norm of error between actual and approximated tip-sample force in last 10 cycles was 

used as a criteria to measure RC filter performance.  

 Results show the ability of RC filter in approximating the tip-sample force signal 

and it can captures maximum force with less than 10% error although it cannot 

approximate the minimum force ( Figure 3.4). In addition, confirms the idea that while 

smaller α reduces the noise effect (lower error norm), it increases the convergence time 

dramatically and this is almost proportional to inverse ofα as mentioned in(14). These 

have been summarized in  Table 3.1.   
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Table 3.1 Effect of α on RC filter force approximation performance. 

α  0.1 0.02 0.004 

Error norm (N) 2.18e-7 7.85e-8 6.41e-8 

Convergence duration (cycles) 140 620 3000 

  

 

 

 

 

 Force approximation using RC filter ( ( )Q s  is 4th order Butterworth, 40Qω =  andFigure 3.4
0.02α = ). 

4.2  EFFECT OF ( )Q s CUTOFF FREQUENCY AND ORDER 

 As mentioned, other parameters that can be changed in RC filter are Qω and order 

of ( )Q s . Effect of Qω was investigated by keeping the other parameters fixed and picking 

various values for Qω . Since FFT analysis showed up to 40 harmonics are required to 
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capture the tip-sample force, values of 30,35,40,45Qω =  were selected for simulation. 

For the next case, the order of ( )Q s was changed and 2nd, 4th, 6th , and 8th order 

Butterworth lowpass filters were chosen, while 40Qω =  and 0.02α = were kept 

unchanged. While it is expected that increasing the cutoff will allow filter to capture 

more harmonics and hence better force approximation, result in  Figure 3.5 shows that 

increasing the cutoff does not improve the performance necessarily and there is an 

optimal value for Qω . The same can be concluded for increasing the order of filter ( Figure 

3.6). One reason that can explain this is that although increasing cutoff will allow passing 

more harmonics, it will pass more noise also. As a result, if signal to noise ratio (SNR) of 

signal becomes less than unity for frequencies below Qω , filter will pass more noise 

rather than signal which decreases the performance in force estimation.  

  

 

 

 

 Effect of changing Qω on force estimation performance. ( ( )Q s  is 4th order Figure 3.5
Butterworth, and 0.02α = ). 
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 Effect of changing ( )Q s order on force estimation performance. ( 40Q Hzω =  andFigure 3.6
0.02α = ). 

 

 

 The assumed reason was verified by calculating the signal to noise ratio (SNR) at 

each frequency as below 

 
ˆˆ

k

k k

j
k

k j j
k k

a e
SNR

a e a e

φ

φ φ
=

−
, (15) 

where ˆˆ, , ,k k k ka aφ φ  represent magnitude and phase for FFT of simulated X̂  for actual 

(with noise) and modeled (without noise) AFM output respectively and k denotes the 

harmonic number. This was repeated for different values of α  and crossing frequencies 

at which SNR value fall below unity were recorded and tabulated in   Table 2 . This 

provides an idea for frequency at which the RC filter should start to roll off. Performance 

of RC filter with ( )Q s having cutoffs around crossing frequencies was studied in the next 

step. Results, illustrated in  Figure 7, show that setting the cutoff of ( )Q s at crossing 

frequencies does not provide the best performance. This is due to fact that ( )Q s starts 
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rolling off (magnitude becomes less that unity) about 5Hz before the cutoff. Thus, the Qω  

should be set 5-10 above the crossing frequency. This trend can be seen in  Figure 3.7. In 

addition, it illustrates an important fact that in design of RC filter, parameters α  and Qω

cannot be picked independently and as α is increased Qω  should be decreased to prevent 

passing noise. 

 

 

Table 3.2 Corresponding crossing frequencies (normalized) for various values ofα .   

α  0.1 0.05 0.01 

Crossing frequency  25 25 29 

 

 

 

 

 

 

 Performance of RC filter when Qω  is set around crossing frequencies (crossing Figure 3.7
frequencies according to  Table 1 are encircled).   
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5. IMPROVING RC PERFORMANCE USING THC 

 Utilizing higher harmonics in atomic force microscopy and engineering 

cantilevers for these purposes have been subject of various works [16-18]. Thus, authors 

believe using a sensor (cantilever) with enhanced higher harmonic excitation structure 

(i.e., THC) will address the problem of low SNR in bending cantilevers and improve the 

performance of RC filter. This idea is explored here by investigating performance of RC 

filter to approximate tip-sample force using THC as a sensor in AFM.   

 

5.1 MODELING OF TORSIONAL HARMONIC CANTILEVER  

 In THC, the tip is placed with an offset from the long axis of cantilever [18]. 

Here, THC was modeled by adding a massless torsional element with moment of inertia 

of J and torsional spring constant Kθ   to the previous mass-spring-damper as illustrated 

in  Figure 3.8. Considering the free body diagram and assuming no mass for the torsional 

element, the equation of motion will be 

 
( ) ( ) ( )

( ) ( ) ( )
ts dr

ts

mx t cx t kx t F F

J t c t k t F dθ θθ θ θ

+ + = +


+ + = ×

 

 

. (16) 

Using corresponding quality factors, angular frequencies, dimensionless time 2 tπt ω= , 

and  natural frequency ratio 
T

r ω
ω

= , equation (16) can be reformed as below, 

 

( )
2

2

2
2 2

2 (2 )( ) ( ) (2 ) ( )

2 (2 )( ) ( ) (2 ) ( )

ts dr

ts
T

x x x F F
Q k

rr F d
Q kθ

π πt t π t

π πθ t θ t π θ t


+ + = +



 + + = ×

 

 

. (17) 

 

 

 



46 

 

 

 

 Schematic view of THC and simplified model of that by adding a massless Figure 3.8
torsional element. 

 

By introducing scaled torsional spring constant 2T
kk
d
θ= , and displacement due to 

rotation x dθ θ= , second equation in (17) can be rearranged to have final set of equations 

of motion for THC as below, 

 

( )
2

2

2
2 2

2 (2 )( ) ( ) (2 ) ( )

2 (2 )( ) ( ) (2 ) ( )

ts dr

ts
T T

x x x F F
Q k

rr x x x F
Q kθ θ θ

π πt t π t

π πt t π t


+ + = +



 + + =

 

 

. (18) 

 

Here, we assumed that torsional displacement could be measured separately from 

bending displacement. In addition, to be close to values given in [18], we assumed 

numerical values given in  Table 3.3 for simulating THC model. 
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Table 3.3 THC model parameters. 

symbol value 

TQ  400 

Tk  550 N/m 

r 16.2 

 

 

 

5.2 RC FILTER PERFORMANCE IN COMBINATION WITH THC 

 Comparing frequency spectrum of THC and regular bending cantilever as shown 

in  Figure 3.9, confirms that torsional harmonic cantilever is a better candidate for tip-

sample force estimation using RC filter since it has stronger higher harmonic excitations. 

To verify that, THC model was considered as the model of AFM. Torsional cantilevers 

usually have higher quality factors which result in a sharper pick in their frequency 

response near the natural frequency. Thus, in selecting methods which are used to convert 

continuous-time models to discrete-time, one should select the one that provides the most 

similar frequency response to the continuous-time system.  Figure 3.10 shows bode plots 

of discretized ( )L s using different MATLAB methods which has been magnified near the 

torsional natural frequency. As it can be seen, only “matched” method provides the best 

match and “foh” and “tustin” methods do not match the continuous model in either 

magnitude or frequency. These mismatches will cause wrong harmonics to appear in 

approximated tip-sample force signal.  

 Performance of RC filter in torsional and bending mode was compared by 

considering same RC filter design and parameters. For considering more challenging 

scenario, the noise level was amplified by factor of three. Simulations were run for two 

cases of learning rate 0.1α = and 0.01α = . Results, as depicted in  Figure 3.11 and  Figure 

3.12, indicate significant improvement of RC filter performance in combination with 

torsional harmonics cantilevers and confirm the suggested idea of using torsional 

harmonic cantilevers. Looking at RC filter force approximation performance using 
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bending and torsional cantilever, and also considering the values of α , it can be 

concluded that using THC allows selecting higher values for α  without compromising 

the performance accuracy. This will also result in faster tip-sample force estimation.  

 

 

 

 

 

 Frequency spectrum for (top) THC (bottom) regular bending cantilever.  Figure 3.9
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 Bode plot of ( )L s using MATLAB’s “tustin”, “first order hold” and “matched” Figure 3.10
discretization methods (the plot is zoomed in near the resonance peak). 
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 Comparison of RC filter tip-sample force approximation using (a) regular bending Figure 3.11
cantilever (b) THC ( 0.1α = for both cases). 
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 Comparison of RC filter tip-sample force approximation using (a) regular bending Figure 3.12
cantilever (b) THC ( 0.01α = for both cases).  
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6. CONCLUSION 

 In this article, an approach based on repetitive control to extract the tip-sample 

force in taping mode AFM was presented. Filter design parameters and tuning them to 

satisfy stability and improving performance were explained. Simulation results for 

regular AFM cantilevers, where bending displacement of probe is measured, showed that 

there was a tradeoff between noise cancelation and the convergence time. In addition, it 

was found out that although in theory increasing filter cutoff frequency may allow better 

tip-sample force signal reconstruction, in practice and in presence of noise there is a limit  

and increasing the cutoff above that will pass more noise than signal.  

 To address that problem and improving the performance, utilizing a probe with 

better frequency content at higher harmonics (torsional harmonic cantilevers) was 

suggested. Results confirmed application of RC filter in combination with THC. 

Simulation results showed a significant improvement in tip-sample force estimation. 

These improvements were better accuracy in force approximation and faster convergence 

in comparison with the case of  using regular bending probes.  

 In addition, investigations revealed that in implementing the RC filter in discrete-

time domain, consideration must be taken to match the model and physical system as 

close as possible. This shows the sensitivity of this RC method to uncertainties in AFM 

model and more studies on dealing with uncertainties and estimating them adaptively will 

enhance RC filter performance. Challenges in implementing the RC filter digitally 

especially is systems with high sampling rates [26] must be explored before the approach 

can be applied in practice. Finally, combining advantages of RC filter in noise 

cancelation and abilities of neural-network methods in approximating unknown functions 

can be a subject of future researches to obtain tip-sample force profile. 
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SECTION 

2.  CONCLUSIONS AND FUTURE WORK 

 The objective of this research  was developing methods to extract tip-sample force 

profile in tapping mode AFM using different approaches. Modeling, analysis, and results 

of this research were presented in sections “Paper I” and “Paper II”.    

 In first part, a neural network estimation approach was studied to evaluate its 

potential for estimating the tip-sample interaction in tapping mode AFM. It was shown 

that is able to provide good estimation under rapidly changing conditions such as changes 

in sample offset and material which happen in real practical situations. Simulation results 

show that this method is plausible, but can be sensitive to the choice of basis functions 

and weight update parameters. By choosing radial functions with various centers and 

sharpnesses, the method was able to estimate the tip-sample force for different sample 

offsets and materials interactions in simulations.  

 The investigation revealed some limitations of the neural network approximation 

approach that must be addressed in before the approach can be applied in practice. 

Firstly, the approach requires full state measurement, but in practice, only position is 

measured. This problem can be addressed by either using Kalman filter or modified 

versions of the applied neural-network e, which uses only output measurement. Secondly, 

there may be challenges in real-time implementation, which will restrict sampling rate 

and computational complexity. However, the neural network approach is expected to be 

particularly well suited to these challenges, since neural network can be performed in a 

parallel processing setup.  

 In second part, an approach based on repetitive control to extract the tip-sample 

force in taping mode AFM was presented. It was shown periodic nature of signals in 

tapping mode AFM makes RC a good candidate to be applied in force approximation 

problem. Design of filter parameters and tuning them to satisfy stability and improving 

performance were explained. Simulation results for regular AFM cantilevers, where 

bending displacement of probe is measured, demonstrated that there was a tradeoff 

between noise cancelation and the convergence time of the filter. In addition, it was 
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found out that although in theory increasing filter cutoff frequency may allow better tip-

sample force signal reconstruction, in practice and in presence of noise there is link 

between the learning rate parameter α   and cutoff frequency of filter and they cannot be 

selected independently. Observations also revealed that using regular bending cantilevers 

as sensors prevent filter from fast force estimation due to low SNR at higher harmonics.  

 To address that problem and improving the performance, utilizing a probe with 

better frequency content at higher harmonics (torsional harmonic cantilevers) was 

suggested and results confirmed application of RC filter in combination with THC. 

Simulation results showed a significant improvement in tip-sample force estimation. 

These improvements showed themselves as better accuracy in force approximation and 

faster convergence in comparison with the case of using regular bending probes.  

 In addition, it was found out that in implementing the RC filter in discrete-time 

domain, consideration must be taken in discretizing method to match the model and 

physical system as close as possible. Challenges in implementing the RC filter digitally 

especially is systems with high sampling rates must be explored before the approach can 

be applied in practice. Both methods require accurate enough cantilever model to 

reconstruct the tip-sample force and considering SDOF models and other uncertainties in 

the AFM model and parameters need to be evaluated. 

 Finally, combining advantages of RC filter in noise cancelation and abilities of 

neural-network methods in approximating unknown functions can be a subject of future 

researches to obtain tip-sample force profile. 
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