
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Spring 2016 

Small sample confidence bands for the survival functions under Small sample confidence bands for the survival functions under 

proportional hazards model proportional hazards model 

Emad Mohamed Abdurasul 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Mathematics Commons 

Department: Mathematics and Statistics Department: Mathematics and Statistics 

Recommended Citation Recommended Citation 
Abdurasul, Emad Mohamed, "Small sample confidence bands for the survival functions under 
proportional hazards model" (2016). Doctoral Dissertations. 2640. 
https://scholarsmine.mst.edu/doctoral_dissertations/2640 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229128661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2640&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2640&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2640?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2640&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


SMALL SAMPLE CONFIDENCE BANDS FOR THE SURVIVAL FUNCTIONS

UNDER PROPORTIONAL HAZARDS MODEL

by

EMAD MOHAMED ABDURASUL

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

2016

Approved by:

Dr. Robert Paige, Advisor
Dr. V.A. Samaranayake

Dr. Xuerong Wen
Dr. Gayla Olbricht
Dr. Xiaoping Du



Copyright 2016

Emad Mohamed Abdurasul

All Rights Reserved



iii

ABSTRACT

In this work, a saddlepoint-based method is developed for generating small sam-

ple confidence bands for the population survival function from the Kaplan-Meier (KM),

the product limit (PL), and Abdushukurov-Cheng-Lin (ACL) survival function esti-

mators, under the proportional hazards model. In the process the exact distribution

of these estimators is derived and developed mid-population tolerance bands for said

estimators. The proposed saddlepoint method depends upon the Mellin transform of

the zero-truncated survival estimator which is derived for the KM, PL, and ACL esti-

mators. These transforms are inverted via saddlepoint approximations to yield highly

accurate approximations to the cumulative distribution functions of the respective cu-

mulative hazard function estimators and these distribution functions are then inverted

to produce saddlepoint confidence bands. The saddlepoint confidence bands for the

KM, PL and ACL estimators is compared with those obtained from competing large

sample methods as well as those obtained from the exact distribution. In the simulation

studies it is found that the saddlepoint confidence bands are very close to the confi-

dence bands derived from the exact distribution, while being much easier to compute,

and outperform the competing large sample methods in terms of coverage probability.
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1. INTRODUCTION

We develop methods for making small sample inference about the survival func-

tion, in the presence of right censoring, and under the proportional hazards model. We

let X1, X2, ..., Xn denote the independent and identically distributed (i.i.d.) survival

times with continuous cumulative distribution function (CDF) F (t) and survival func-

tion S (t) = 1−F (t). These survival times are censored at the right by i.i.d. continuous

random variables Y1,Y2,..., Yn, which are independent of the survival times with contin-

uous CDF FY (t) and survival function SY (t) = 1−FY (t). The right-censored data are

denoted as (Z1,Δ1), (Z2,Δ2), . . . , (Zn,Δn) where the time on study is Zi = min{Xi, Yi}
and the survival indicator function is Δi = I (Xi � Yi). The observed right-censored

data are denoted as (z1, δ1) , (z2, δ2) ,... , (zn, δn). The pair (X, Y ) follows a proportional

hazards or Koziol-Green model if there exists a real number β > 0 such that

SY (t) = S
β

(t).

An equivalent characterization of this model in terms of cumulative hazard functions is

HY (t) = − ln [SY (t)] = β (− ln [S(t)]) = βH (t)

which are proportional to one another. One well-known consequence of the proportional

hazards model is that Zi and Δi are independent for i = 1, . . . , n. Consider for instance

censoring times which are Weibull with survival function

SY (t) = e−(λt)
k
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then

HY (t) = − ln [SY (t)] = (λt)k =
β

β
(λt)k

= β

(
λt

β
1
k

)k

= β (− ln [S(t)]) = βH (t)

where

S (t) = e
−
(

λt

β
1
k

)k

= e−(λt)
k/β

and so

SY (t) = S
β

(t).

Kaplan and Meier (1958) define an estimator for S (t) as

Ŝ(t) =

nF̂Z(t)∏
i=1

c
δ(i)
in for t ≤ z(n)

where z(n) denotes the largest observed time on study, F̂Z(t) is the empirical CDF for

the times on study;

F̂Z(t) =
1

n

n∑
i=1

I(zi ≤ t),

where I(zi ≤ t) is the indicator function of event {zi ≤ t}, survival indicators

δ(1), δ(2), . . . , δ(n),

are associated with the complete set of ordered times on study which are

z(1) < z(2) < · · · < z(n)
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and the cin weights are defined as

cin =
n− i

n− i+ 1
= 1− 1

n− i+ 1
.

Estimator Ŝ(t) was not derived under the proportional hazards model, per se, and in fact

is the nonparametric maximum likelihood estimate of S(t) where one maximizes over

the class of all piecewise constant survival curves with break points at the non-censored

times on study, as shown in Kaplan and Meier (1958). One issue with estimator Ŝ(t)

is that it is used only when t ≤ z(n) and the reason for this is that estimator Ŝ(t) is

undefined for t > z(n). A number of tail completion methods have been proposed to

provide the estimator with a reasonable definition for t > z(n). The Product Limit (PL)

or Gill estimator is simply estimator Ŝ(t) used for all t > 0 so that

ŜPL(t) =

nF̂Z(t)∏
i=1

c
δ(i)
in for t ≥ 0

When largest time on study is censored, meaning that δ(n) = 0, then the PL estimator

has an infinite non-zero and constant tail for t > z(n) where the constant is

n−1∏
i=1

c
δ(i)
in .

Furthermore, when δ(n) = 1 then ŜPL(t) = 0 for t > z(n). In small samples the

PL estimator is shown to have smaller bias than estimators with tails which always

decrease to zero; see for instance Gill (1980) and Klein (1991). Note however that for

large samples estimators ŜPL(t) and Ŝ(t) are essentially equivalent. Moeschberger and

Klein (1985) present a number of tail completion methods for estimator Ŝ(t) which

do not result in infinite and constant tails. The methods they present fall into three

general categories. First, are the expected order statistic (EOS) methods in which

censored observations exceeding the largest observed failure time are replaced by their

expectations under a fitted Weibull model. Next, they consider a class of methods which

estimate the tail with a Weibull distribution fitted by least squares. The last class of
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methods involves estimating the tail with a fitted exponential distribution. Perhaps the

most common tail completion method for the Ŝ(t) estimator is due to Efron (1967).

Here, the Ŝ(t) estimator is set equal to zero for t > z(n). Its form is then given as

ŜKM(t) =

⎡⎣nF̂Z(t)∏
i=1

c
δ(i)
in

⎤⎦ I (t ≤ z(n)
)
.

We have chosen to simply refer to Efron’s tail-completed Ŝ(t) estimator as the Kaplan-

Meier (KM) estimator, and denote it as ŜKM(t) from this point forward, since ŜKM(t)

was originally proposed by Kaplan and Meier (1958) and is perhaps the most commonly

used estimator of S (t) with right censored data. In addition, ŜKM(t) satisfies the self-

consistency equations from Efron (1967) and is simple to implement in practice. Most

studies considering distributional results for the KM estimator assume a large sample.

Breslow and Crowley (1974) establish the consistency of the KM estimator and weak

convergence of

√
n
[
ŜKM(t)− S(t)

]
to a mean zero Gaussian process, under fairly general conditions. Identical results hold

for the PL estimator. The few studies which consider small sample settings, under the

proportional hazards model, include Chang (1996) and Chen, et al. (1982). In the

former, Chang (1996) shows that the exact distribution of the KM estimator under

the proportional hazards model is a weighted average of permutation distributions. He

however notes that exact computations with his expression are quite involved and only

feasible for very small samples. Chen, et al. (1982) obtains an exact expression for

the vth moment (v > 0) of the KM estimator under proportional hazards and use this

expression to study the bias of the KM estimator, and compare the exact variance of

the KM estimator with its asymptotic variance. Abdushukurov (1984), Hollander et al.

(1985), and Cheng and Lin (1987) independently proposed another estimator of survival

function S (t) under the proportional hazards assumption. This ACL (Abduskhurov,
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Cheng and Lin) survival function estimator is given as

ŜACL(t) =
[
ŜZ(t)

]δ̄
where

ŜZ(t) =
1

n

n∑
i=1

I(zi > t)

is the empirical survival function and

δ̄ =
1

n

n∑
i=1

δ(i).

This estimator is motivated by the fact that under the proportional hazards model

SY (t) = [S(t)]β

and since Z = min (X, Y ) then

SZ(t) = S(t)SY (t)

= [S(t)]β+1

and so

S(t) = [SZ(t)]
1

β+1 = [SZ(t)]
γ

where

γ = P (X ≤ Y ) .

The ACL estimator is asymptotically more efficient that the KM and PL estimators

under the proportional hazards model, as shown in Cheng and Lin (1987). They also

establish, under fairly general conditions, the consistency of the ACL estimator and
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weak convergence of

√
n
[
ŜACL(t)− S(t)

]
to a mean zero Gaussian process. As described above there are few studies which

consider the performance of survival function estimators under the proportional hazards

model in small sample settings. In this study we derive the exact distributions of

the KM, PL and ACL estimators and propose novel small sample confidence intervals

(CIs) for S (t), for fixed t, based on saddlepoint approximations which are generated

from the Mellin transform of the zero-truncated survival estimator in question. We

form pointwise confidence bands from these confidence intervals and find that they

outperform the classical large sample methods in terms of coverage probability. We also

find that our saddlepoint CDF approximations are quite close to the exact CDFs. The

remainder of this dissertation is organized as follows. The exact distributions of the KM,

PL and ACL estimators, under the proportional hazards model, are derived in Section 2.

The associated Mellin transforms for the zero-truncated KM, PL and ACL estimators,

that provide access to saddlepoint approximations for the three estimators, are derived

in Section 3. Pointwise confidence bands for S (t) from the KM, PL and ACL estimators

by way three methods; (i) exact distribution, (ii) saddlepoint CDF approximation, and

(iii) classical large sample methods are presented in Section 4. Simulation studies

comparing the performance of the various confidence bands are presented in Section

5. The exact values of the mean, bias, variance and mean squared error (MSE) of the

KM, PL and ACL estimators are presented in Section 6. Finally, concluding remarks

are made in Section 7.
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2. EXACT DISTRIBUTIONS OF THE SURVIVAL ESTIMATORS

In this section, we derive the exact distributions of the KM, PL and ACL estima-

tors under the proportional hazards model.

2.1. EXACT DISTRIBUTION OF THE KM ESTIMATOR

Chen, et al. (1982) obtained an exact expression for the vth moment of the KM

estimator, under the proportional hazards model, for v ≥ 0 as

E
[
Ŝv
KM(t)

]
=

n−1∑
r=0

b (r, FZ(t))
r∏

i=1

[γcvin + (1− γ)] (2.1)

where here, and in what follows,

b (r, FZ(t)) =

(
n

r

)
[FZ(t)]

r [SZ(t)]
n−r .

Note also that this expression which was used in Chen, et al. (1982) to compute positive

moments for the KM estimator is in fact valid for all −∞ < v < ∞. This is seen by

noting that since

0 < cin

for i = 1, . . . , n− 1 then

E
[
Ŝv
KM(t)

]
<∞

for any −∞ < v <∞.

To derive the exact distribution of the KM estimator we take v = 1 and consider

various the terms in the resulting expression for E
[
ŜKM(t)

]
. Note that this will work

for all possible values of ŜKM(t) except zero. This probability, however, is easy to



8

compute directly by noting that

P
(
ŜKM(t) = 0

)
= P (Z1 ≤ t, . . . , Zn ≤ t)

= [FZ(t)]
n .

For r = 0 we have

b (0, FZ(t))
0∏

i=1

[γcin + (1− γ)] = [SZ(t)]
n

= P
(
ŜKM(t) = 1, r = 0

)
.

For r = 1 we have one Zi such that Zi ≤ t and (n− 1) Zj such that Zj > t.

Without lack of generality assume that i = 1 so then Z1 ≤ t with probability (w.p.)

FZ(t) and Z2, Z3, . . . , Zn > t each w.p SZ(t). Furthermore, δ(1) = 0 w.p. (1− γ) in

which case

ŜKM(t) = c
δ(1)
1n = 1

or δ(1) = 1 w.p. γ in which case

ŜKM(t) = c
δ(1)
1n = c1n =

n− 1

n
.

There are
(
n
1

)
ways for one of the Zi to be less than t and the remainders to exceed t.

As a result,

b (1, FZ(t))
1∏

i=1

[γcin + (1− γ)] = b (1, FZ(t)) [γc1n + (1− γ)]

= γb (1, FZ(t)) c1n + (1− γ)b (1, FZ(t))

which means that we need to consider two cases as described in Table 2.1;
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Table 2.1. The Two Cases of Exact Distribution of the KM Estimator when r = 1.

δ(1) Probability ŜKM(t) = c
δ(1)
1n

0 1− γ 1

1 γ c1n

and which results in joint probabilities

P
(
ŜKM(t) = 1, r = 1

)
= (1− γ)b (1, FZ(t))

and

P
(
ŜKM(t) = c1n, r = 1

)
= γb (1, FZ(t)) .

For r = 2 there are two Zi ≤ t and (n− 2) Zj > t which means that we need to consider

four cases as described in Table 2.2;

Table 2.2. The Four Cases of Exact Distribution of the KM Estimator when r = 2.(
δ(1), δ(2)

)
Probability ŜKM(t) = c

δ(1)
1n c

δ(2)
2n

(0, 0) (1− γ)2 1

(0, 1) γ (1− γ) c2n

(1, 0) γ (1− γ) c1n

(1, 1) γ2 c1nc2n

There are
(
n
2

)
ways for two of the Zi to be less than t and the remainding ones to

exceed t. As a result,

P
(
ŜKM(t) = 1, r = 2

)
= (1− γ)2b (2, FZ(t)) ,
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P
(
ŜKM(t) = c1n, r = 2

)
= γ (1− γ) b (2, FZ(t)) ,

P
(
ŜKM(t) = c2n, r = 2

)
= γ (1− γ) b (2, FZ(t))

and

P
(
ŜKM(t) = c1nc2n, r = 2

)
= γ2b (2, FZ(t)) .

In a similar fashion, for r = 3 there are three Zi ≤ t and (n− 2) Zj > t which means

that we need to consider eight cases which are described in Table 2.3;

Table 2.3. The Eight Cases of Exact Distribution of the KM Estimator when r = 3.(
δ(1), δ(2), δ(3)

)
Probability ŜKM(t) = c

δ(1)
1n c

δ(2)
2n c

δ(3)
3n

(0, 0, 0) (1− γ)3 1

(1, 0, 0) γ (1− γ)2 c1n

(0, 1, 0) γ (1− γ)2 c2n

(0, 0, 1) γ (1− γ)2 c2n

(1, 1, 0) γ2 (1− γ) c1nc2n

(1, 0, 1) γ2 (1− γ) c1nc3n

(0, 1, 1) γ2 (1− γ) c2nc3n

(1, 1, 1) γ3 c1nc2nc3n

There are
(
n
3

)
ways for three of the Zi to be less than t and the remainding ones

to exceed t, meaning that

P
(
ŜKM(t) = 1, r = 3

)
= (1− γ)3b (3, FZ(t)) ,
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P
(
ŜKM(t) = c1n, r = 3

)
= P

(
ŜKM(t) = c2n, r = 3

)
= P

(
ŜKM(t) = c3n, r = 3

)
= γ (1− γ)2 b (3, FZ(t)) ,

P
(
ŜKM(t) = c1nc2n, r = 3

)
= P

(
ŜKM(t) = c1nc3n, r = 3

)
= P

(
ŜKM(t) = c2nc3n, r = 3

)
= γ2 (1− γ) b (3, FZ(t))

and

P
(
ŜKM(t) = c1nc2nc3n, r = 3

)
= γ3b (3, FZ(t)) .

This process continues in an analogous fashion until the final case where for r = n− 1

there are (n− 1) Zi ≤ t and one Zj > t which means that we need to consider 2n−1

cases as described in Table 2.4; There are
(

n
n−1
)
= n ways for (n− 1) of the Zi to be

Table 2.4. The 2n−1 Cases of Exact Distribution of the KM Estimator when r = n− 1.(
δ(1), δ(2), . . . , δ(n−1)

)
Probability ŜKM(t) = c

δ(1)
1n c

δ(2)
2n . . . c

δ(n−1)

(n−1)n
(0, 0, . . . , 0) (1− γ)n−1 1

(1, 0, . . . , 0) γ (1− γ)n−2 c1n
(0, 1, . . . , 0) γ (1− γ)n−2 c2n

...
...

...

(0, 0, 0, . . . , 1) γ (1− γ)n−2 c(n−1)n
(1, 1, 0, . . . , 0) γ2 (1− γ)n−3 c1nc2n
(1, 0, 1, . . . , 0) γ2 (1− γ)n−3 c1nc3n

...
...

...

(0, 0, . . . , 1, 1) γ2 (1− γ)n−3 c(n−2)nc(n−1)n
(1, 1, 1, . . . , 0) γ3 (1− γ)n−4 c1nc2nc3n

...
...

...

(0, . . . , 1, 1, 1) γ3 (1− γ)n−4 c(n−3)nc(n−2)nc(n−1)n
...

...
...

(1, 1, . . . , 1) γn−1 c1nc2n . . . c(n−1)n
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less than t and the remainding one to exceed t. As a result we have that

P
(
ŜKM(t) = 1, r = n− 1

)
= (1− γ)n−1b (n− 1, FZ(t)) ,

P
(
ŜKM(t) = c1n, r = n− 1

)
= · · · = P

(
ŜKM(t) = c(n−1)n, r = n− 1

)
= γ (1− γ)n−2 b (n− 1, FZ(t)) ,

P
(
ŜKM(t) = c1nc2n, r = n− 1

)
= P

(
ŜKM(t) = c1nc3n, r = n− 1

)
= · · · = P

(
ŜKM(t) = c(n−2)nc(n−1)n, r = n− 1

)
= γ2 (1− γ)n−3 b (n− 1, FZ(t))

and

P
(
ŜKM(t) = c1nc2n . . . c(n−1)n, r = n− 1

)
= γn−1b (n− 1, FZ(t)) .

Now we are able to compute marginal probabilities for ŜKM(t). We have that

P
(
ŜKM(t) = 1

)
=

n−1∑
r=0

P
(
ŜKM(t) = 1, r

)
=

n−1∑
r=0

(1− γ)r b (r, FZ(t))

= [(1− γ)FZ(t) + SZ(t)]
n − (1− γ)n [FZ(t)]

n

P
(
ŜKM(t) = c1n

)
=

n−1∑
r=1

P
(
ŜKM(t) = c1n, r

)
=

n−1∑
r=1

γ (1− γ)r−1 b (r, FZ(t))
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P
(
ŜKM(t) = c2n

)
=

n−1∑
r=2

P
(
ŜKM(t) = c2n, r

)
=

n−1∑
r=2

γ (1− γ)r−1 b (r, FZ(t))

P
(
ŜKM(t) = cqn

)
=

n−1∑
r=q

P
(
ŜKM(t) = cqn, r

)
=

n−1∑
r=q

γ (1− γ)r−1 b (r, FZ(t))

P
(
ŜKM(t) = c(n−1)n

)
=

n−1∑
r=n−1

P
(
ŜKM(t) = c(n−1)n, r

)
= γ (1− γ)n−2 b (n− 1, FZ(t))

and

P
(
ŜKM(t) = c1nc2n

)
=

n−1∑
r=2

P
(
ŜKM(t) = c1nc2n, r

)
=

n−1∑
r=2

γ2 (1− γ)r−2 b (r, FZ(t))

P
(
ŜKM(t) = c1ncqn

)
=

n−1∑
r=q

P
(
ŜKM(t) = c1nc2n, r

)
=

n−1∑
r=q

γ2 (1− γ)r−2 b (r, FZ(t))

P
(
ŜKM(t) = c1nc(n−1)n

)
=

n−1∑
r=n−1

P
(
ŜKM(t) = c1nc2n, r

)
=

n−1∑
r=n−1

γ2 (1− γ)r−2 b (r, FZ(t))

= γ2 (1− γ)n−3 b (n− 1, FZ(t))
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and

P
(
ŜKM(t) = c1nc2nc3n

)
=

n−1∑
r=3

P
(
ŜKM(t) = c1nc2nc3n, r

)
=

n−1∑
r=3

γ3 (1− γ)r−3 b (r, FZ(t))

P
(
ŜKM(t) = c1nc2n · · · c(n−1)n

)
=

n−1∑
r=n−1

P
(
ŜKM(t) = c1nc2n · · · c(n−1)n, r

)
= γn−1b (n− 1, FZ(t)) .

Finally, in summary, we have that

P
(
ŜKM(t) = c

δ(1)
1n c

δ(2)
2n · · · cδ(n−1)

(n−1)n, r
)
= γ

∑n−1
i=1 δ(i) (1− γ)r−

∑n−1
i=1 δ(i) b (r, FZ(t)) (2.2)

This result is then used to obtain

P

(
ŜKM(t) =

n−1∏
i=1

c
δ(i)
in

)
= P

(
ŜKM(t) = c

δ(1)
1n c

δ(2)
2n · · · cδ(n−1)

(n−1)n
)

=
n−1∑

r=rKM

P
(
ŜKM(t) = c

δ(1)
1n c

δ(2)
2n · · · cδ(n−1)

(n−1)n, r
)

=
n−1∑

r=rKM

γ
∑n−1

i=1 δ(i) (1− γ)r−
∑n−1

i=1 δ(i) b (r, FZ(t))

γ<1
=

(
γ

1− γ

)∑n−1
i=1 δ(i) n−1∑

r=rKM

(1− γ)r b (r, FZ(t)) (2.3)

where

rKM =

⎧⎨⎩ max1≤i≤n−1
{
i : δ(i) = 1

}
if
∑n−1

i=1 δ(i) > 0

0 if
∑n−1

i=1 δ(i) = 0

and

P
(
ŜKM(t) = 0

)
= [FZ(t)]

n .

In addition the KM estimator can assume at most 2n−1 + 1 distinct values.
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2.1.1. Example. The Table 2.5 presents the exact distribution of the KM

estimator for t = 1 and n = 5 when Xi and Yi are exponentially distributed with unit

rates so that γ = 0.5 and SZ(t) = e−2t and there are at most 24+1 = 17 distinct values

for KM estimator ŜKM(1);

Table 2.5. The Exact Distribution of the KM Estimator for t = 1 and n = 5.

ŜKM(1) P
(
ŜKM(1)

)
1 0.043844

0.8 0.043799
0.75 0.043074
0.667 0.038441
0.6 0.043074

0.533 0.038441
0.5 0.062081
0.4 0.062081

0.375 0.023640
0.333 0.023640
0.3 0.023640

0.267 0.023640
0.25 0.023640
0.2 0.023640
0 0.483324

Here the estimator takes on only 15 distinct values. This is because there are two

ways to get a value of 0.4, i.e.

(
δ(1), δ(2), δ(3), δ(4)

)
= (1, 1, 1, 0) or (1, 0, 0, 1)

and two ways to get a value of 0.5;

(
δ(1), δ(2), δ(3), δ(4)

)
= (0, 1, 1, 0) or (0, 0, 0, 1) .



16

As such we would say that we have a redundancy value of one for the value of 0.4

and for the value of 0.5. The Table 2.6 provides various characteristics for the exact

distribution of the KM estimator.

Table 2.6. Selected Characteristics of the Exact Distribution of the KM Estimator.
KM Exact Distribution: Selected Characteristics

n Number Binary Vectors Distinct Values (% of Total) Maximum Redundancy

5 24 = 16 14 (87.5%) 1
10 29 = 512 205 (40.0%) 10
15 214 = 16, 384 3, 531 (21.6%) 49
20 219 = 524, 288 33, 422 (6.4%) 278
25 224 = 16, 777, 216 65, 839 (0.4%) 2457

Given the astronomical increase in the number of distinct values as n increases,

computations involving the exact distribution are probably feasible for n values of at

most 15. Note that the number of distinct point mass values for KM exact distribution

is independent of t and changing the value of t will simply change the probabilities

associated with the distinct mass values.

A similar phenomenon is observed in Chang (1996) where it is noted that the

weighted average of permutation distributions representation for the KM estimator is

computationally infeasible for large samples.

2.2. EXACT DISTRIBUTION OF THE PL ESTIMATOR

The results of the previous section can be used to derive the exact distribution of

the PL estimator

ŜPL(t) =

nF̂Z(t)∏
i=1

c
δ(i)
in .
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Note that this estimator differs from KM estimator;

ŜKM(t) =

⎡⎣nF̂Z(t)∏
i=1

c
δ(i)
in

⎤⎦ I (t ≤ z(n)
)
.

in that the latter is, in effect computed, while ignoring the last product term

c
δ(n)
nn

due to the presence of the indicator function for the event

{
t ≤ z(n)

}
.

Therefore, in analogy with formula (2.2) and its development in the previous section,

we have that

P
(
ŜPL(t) = c

δ(1)
1n c

δ(2)
2n · · · cδ(n)nn , r

)
= γ

∑n
i=1 δ(i) (1− γ)r−

∑n
i=1 δ(i) b (r, FZ(t)) (2.4)

and

P

(
ŜPL(t) =

n∏
i=1

c
δ(i)
in

)
=

n∑
r=rPL

P
(
ŜPL(t) = c

δ(1)
1n c

δ(2)
2n · · · cδ(n)

nn , r
)

=
n∑

r=rPL

γ
∑n

i=1 δ(i) (1− γ)r−
∑n

i=1 δ(i) b (r, FZ(t))

γ<1
=

(
γ

1− γ

)∑n
i=1 δ(i) n∑

r=rPL

rPL (1− γ)r b (r, FZ(t)) (2.5)

where

rPL =

⎧⎨⎩ max1≤i≤n
{
i : δ(i) = 1

}
if
∑n

i=1 δ(i) > 0

0 if
∑n

i=1 δ(i) = 0
.
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Note in particular that

P
(
ŜPL(t) = 1

)
=

n∑
r=0

P
(
ŜPL(t) = 1, r

)
=

n∑
r=0

(1− γ)r b (r, FZ(t))

= [(1− γ)FZ(t) + SZ(t)]
n

and

P
(
ŜPL(t) = 0

)
= P

(
F̂Z(t) = 1,Δ(n) = 1

)
=

n−1∑
r=0

P
(
ŜPL(t) = 0, q

)
=

n−1∑
r=0

(
n− 1

r

)
γr (1− γ)n−1−r γ [FZ(t)]

n

= γ [FZ(t)]
n
n−1∑
q=0

(
n− 1

r

)
γr (1− γ)n−1−r

= γ [FZ(t)]
n

Computations involving the exact distribution of the PL estimator are probably

feasible for n ≤ 15 since the redundancies and distinct mass values for this distribution

are identical to those for the KM estimator as shown in Table 2.6 except that now there

are an additional 2n−1 ways to obtain a value of zero for ŜPL(t).

Finally, as was the case for the KM estimator, the PL estimator can assume at

most 2n−1 + 1 distinct mass values.

2.2.1. Example. We consider the same setting for the exact distribution

as those for the example in Section 2.1.1 so that t = 1, n = 5 when Xi and Yi are

exponentially distributed with unit rates so that again γ = 0.5 and SZ(t) = e−2t. The

exact distribution of the PL estimator under these settings is shown in Table 2.7.
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Table 2.7. The Exact Distribution of the PL Estimator for t = 1 and n = 5.

ŜPL(1) P
(
ŜPL(1)

)
1 0.058948

0.8 0.058903

0.75 0.058178

0.667 0.053545

0.6 0.058178

0.533 0.053545

0.5 0.092289

0.4 0.092289

0.375 0.038744

0.333 0.038744

0.3 0.038744

0.267 0.038744

0.25 0.038744

0.2 0.038744

0.0 0.241662

2.3. EXACT DISTRIBUTION OF THE ACL ESTIMATOR

The ACL (Abduskhurov, Cheng and Lin) survival function estimator has the

following form

ŜACL(t) =
[
ŜZ(t)

]δ̄
.

Note that when δ̄ = 0 and ŜZ(t) = 0 then the value or the ACL estimator is 00 which is

undefined. In this setting we adopt the convention that 00 = 0 since this always results



20

in a zero infinite tail for ŜACL(t) which seems to make more sense from a practical point

of view than an infinite unit tail.

With this convention

P
(
ŜACL(t) = 0

)
= P

(
ŜZ(t) = 0

)
= P (Z1 ≤ t, . . . , Zn ≤ t)

= [FZ(t)]
n .

Note more generally that

P

(
ŜZ(t) =

n− r

n

)
= b (r, FZ (t))

for r = 0, 1, . . . , n and

P
(
Δ̄ =

q

n

)
= b(q, γ)

for q = 0, 1, . . . , n so that

P

(
ŜACL(t) =

(
n− r

n

) q
n

)
= P

(
ŜZ(t) =

n− r

n

)
P
(
Δ̄ =

q

n

)
= b (r, FZ (t)) b(q, γ).

The exact distribution of the ACL estimator has at most

(n+ 1)2 − 2n− (n− 1) = (n+ 1)2 − 3n+ 1 (2.6)

= n2 − n+ 2

distinct mass values. To see this note that among the (n+ 1)2 possible ordered (r, q)

pairs there are n pairs, with q = 0, and an additional n (r, q) pairs, with r = 1, which

yield an estimator value of “1”. This means that there is a redundancy value of 2n− 1
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for “1”. With regards to an estimator value of “0” there are n + 1 (r, q) pairs, with

r = 0, yielding a redundancy value of n.

In fact,

P
(
ŜACL(t) = 1

)
= P

(
ŜZ(t) = 1

)
+ P

(
Δ̄ = 0

)− P
(
ŜZ(t) = 0, Δ̄ = 0

)
= b (0, FZ (t)) + b(0, γ)− b (n, FZ (t)) b(0, γ)

= [SZ (t)]n + (1− γ)n − [(1− γ)FZ (t)]n .

Furthermore, numerical experimentation showed that formula (2.6) provides the

number of distinct mass values for n = 5, 10 and 15. For n = 20, 25 and 30 there are

in fact very few redundancies beyond those already mentioned for estimator values “1”

and “0”.

Given the quadratic increase in the number of distinct mass values as n increases,

exact distributional computations for the ACL estimator are feasible even for very large

values of n.

2.3.1. Example. Here again we consider the setting for the exact distribution

that was adopted in Section 2.1.1. As such, t = 1, n = 5 when Xi and Yi are exponen-

tially distributed with unit rate, γ = 0.5 and SZ(t) = e−2t. These settings is shown in

Table 2.8.

Exact distributional computations for any one of the survival estimators we con-

sider are at best numerically intensive and at worse numerically infeasible. As such

we obtain highly accurate saddlepoint approximations to these exact distributions as

detailed in section 4. These approximations involve the inversion of Mellin transforms

for the zero-truncated KM, PL and ACL estimators. In the next section we derive these

Mellin transforms.
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Table 2.8. The Exact Distribution of the ACL Estimator for t = 1 and n = 5.

ŜACL(t) P
(
ŜACL(t)

)
1.000 0.016190

0.956 0.000227

0.915 0.000453

0.903 0.002896

0.875 0.000453

0.837 0.000227

0.833 0.018501

0.815 0.005791

0.8 0.000045

0.736 0.005791

0.725 0.059101

0.693 0.037001

0.665 0.002896

0.6 0.000579

0.577 0.037001

0.5253 0.118200

0.480 0.018501

0.4 0.003700

0.380 0.118200

0.276 0.059101

0.2 0.011820

0 0.483326
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3. MELLIN TRANSFORMS FOR THE ZERO-TRUNCATED ESTIMATORS

In this section, we briefly review Mellin transforms and derive these transforms

for our zero-truncated KM, PL and ACL estimators.

3.1. MELLIN TRANSFORM FOR THE ZERO-TRUNCATED KME

Recall that the Mellin transform for a positive random variable X is defined as

the finite vth moment of X, i.e.

MX (v) = E [Xv] =

∫ ∞

0

XvdF (x) <∞

where −ε < v < ε for some ε > 0. Mellin transform MX (v) is also the moment

generating function (MGF) of ln (X). The Mellin transform is useful in the study

products of independent random variables; see for instance Springer (1979) and Butler

(2007). Suppose that X and Y are independent positive random variables with Mellin

transforms MX (v) and MY (v), respectively. Then the Mellin transform of product

XY is simply the product of the Mellin transforms;MX (v)MY (v). Furthermore, from

Fourier inversion theory the Mellin transform of random variableX uniquely determines

its distribution. The moment expression for the KM estimator in (2.1) forms the basis

for a Mellin transform. If E
[
Ŝv
KM(t)

]
were the Mellin transform for the zero-truncated

KM estimate, which we denote as ŜKM+ (t) , then we would have that

E
[
Ŝ0
KM(t)

]
= E

[
e0 ln(ŜKM+(t))

]
= Mln(ŜKM+(t))(0) = 1

but from formula (2.1) we have that
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E
[
Ŝ0
KM(t)

]
=

n−1∑
r=0

b (r, FZ(t))
r∏

i=1

[
γc0in + (1− γ)

]
=

n−1∑
r=0

b (r, FZ(t))

= 1− [FZ(t)]
n .

In fact, this Mellin transform, which we shall denote asMKM+
Tr (v), is given in terms of

E
[
Ŝv
KM(t)

]
as

MKM+
Tr (v) = E

[
Ŝv
KM+ (t)

]
=

E
[
Ŝv
KM(t)

]
E
[
Ŝ0
KM(t)

] =
E
[
Ŝv
KM(t)

]
P
[
ŜKM(t) > 0

]

=

∑n−1
r=0 b (r, FZ(t))

r∏
i=1

[γcvin + (1− γ)]

1− [FZ(t)]
n . (3.1)

Note that

[FZ (t)]n = P (Z1 ≤ t, . . . , Zn ≤ t) = P
[
ŜKM(t) = 0

]
so then

E
[
Ŝ0
KM(t)

]
= P

[
ŜKM(t) > 0

]
.

FunctionMKM+
Tr (v) is the Mellin transform of the strictly positive part of KM estimator

ŜKM(t). Conditioning upon the KM estimator being strictly positive is important for

the use of saddlepoint approximations to reproduce the distribution of this estimator.

This is because the inversion of MKM+
Tr (v) to produce a saddlepoint density or CDF

approximation requires that there exists some ε > 0 such that MKM+
Tr (v) is finite
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for all −ε < v < ε. If one were to include the zero portion of KM estimator in the

computations, then the resulting transform would only be finite for 0 ≤ v.

3.2. MELLIN TRANSFORM FOR THE ZERO-TRUNCATED PLE

We use method of derivation for E
[
Ŝv
KM(t)

]
from Chen et al. (1982) with 0 ≤ v

to derive E
[
Ŝv
PL(t)

]
for 0 ≤ v. It turns out that

E
[
Ŝv
PL(t)

]
=

n−1∑
r=0

b (r, FZ(t))
r∏

i=1

[γcvin + (1− γ)]

+ (1− γ) [FZ(t)]
n
n−1∏
i=1

[γcvin + (1− γ)] (3.2)

= E
[
Ŝv
KM(t)

]
+ (1− γ) [FZ(t)]

n
n−1∏
i=1

[γcvin + (1− γ)] . (3.3)

To see why this is the case note that an equivalent expression for the PL estimator is

ŜPL(t) =
n∏

i=1

c
vδiI(zi≤t)
in .

From the double expectation formula we have that

E
[
Ŝv
PL(t)

]
= EZ

{
EΔ|Z

[
n∏

i=1

c
vΔiI(Zi≤t)
in

]}

where

Z = (Z1, . . . , Zn)

and

Δ = (Δ1, . . . ,Δn) .
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Under the proportional hazards model, Zi and Δi are independent for i = 1, . . . , n.

Therefore, we have that

EΔ|Z

[
n∏

i=1

c
vΔiI(Zi≤t)
in

]
=

n∏
i=1

EΔi|Zi

(
c
vΔiI(Zi≤t)
in

)

where for 1 ≤ i ≤ n− 1

EΔi|Zi

[
c
vΔiI(Zi≤t)
in

]
=

⎧⎨⎩ 1 if Zi > t

γcvin + (1− γ) if Zi ≤ t

= γc
vI(Zi≤t)
in + (1− γ) .

and for i = n we have that

EΔn|Zn

[
cvΔnI(Zn≤t)
nn

]
= (1− γ)I(Zn≤t)

since

cvΔnI(Zn≤t)
nn = 1

if and only if Δn = 0 or Zn > t.

This then yields

EΔ|Z

[
n∏

i=1

c
vΔiI(Zi≤t)
in

]
= (1− γ)I(Zn≤t)

n−1∏
i=1

[
γc

vI(Zi≤t)
in + (1− γ)

]

=

nF̂Z(t)∏
i=1

[γcvin + (1− γ)]

and finally

E
[
Ŝv
PL(t)

]
= EZ

{
EΔ|Z

[
n∏

i=1

c
vΔiI(Zi≤t)
in

]}
= EZ

⎧⎨⎩
nF̂Z(t)∏
i=1

[γcvin + (1− γ)]

⎫⎬⎭
=

n∑
r=0

b (r, FZ (t))
r∏

i=1

[γcvin + (1− γ)] .
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An equivalent expression which removes the troublesome cnn = 0 term is as follows

E
[
Ŝv
PL(t)

]
=

n−1∑
r=0

b (r, FZ(t))
r∏

i=1

[γcvin + (1− γ)]

+ b (n, FZ(t))
n∏

i=1

[γcvin + (1− γ)]

=
n−1∑
r=0

b (r, FZ(t))
r∏

i=1

[γcvin + (1− γ)] + [FZ(t)]
n

n∏
i=1

[γcvin + (1− γ)]

=
n−1∑
r=0

b (r, FZ(t))
r∏

i=1

[γcvin + (1− γ)]

+ (1− γ) [FZ(t)]
n
n−1∏
i=1

[γcvin + (1− γ)]

= E
[
Ŝv
KM(t)

]
+ (1− γ) [FZ(t)]

n
n−1∏
i=1

[γcvin + (1− γ)] .

This moment expression is easily seen to be valid for −∞ < v < ∞. When v = 0 we

have that

E
[
Ŝ0
PL(t)

]
= E

[
Ŝ0
KM(t)

]
+ (1− γ) [FZ(t)]

n
n−1∏
i=1

[
γc0in + (1− γ)

]
= 1− [FZ(t)]

n + (1− γ) [FZ(t)]
n

= 1− γ [FZ(t)]
n

Finally, the Mellin transform for the zero-truncated PL estimate, which we denote as

ŜPL+ (t), is given in terms of the E
[
Ŝv
PL(t)

]
as

MPL+
Tr (v) = E

[
Ŝv
PL+ (t)

]
=

E
[
Ŝv
PL(t)

]
E
[
Ŝ0
PL(t)

] =
E
[
Ŝv
PL(t)

]
P
[
ŜPL(t) > 0

]

=

E
[
Ŝv
KM(t)

]
+ (1− γ) [FZ(t)]

n
n−1∏
i=1

[γcvin + (1− γ)]

1− γ [FZ(t)]
n .
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3.3. MELLIN TRANSFORM FOR THE ZERO-TRUNCATED ACLE

Here again we use method of derivation from Chen et al. (1982) to derive E
[
Ŝv
ACL(t)

]
for 0 ≤ v. From the double expectation formula we have that

E
[
Ŝv
ACL(t)

]
= EZ

[
EΔ|Z

{[
Ŝv
Z(t)
]Δ̄}]

where

Z = (Z1, . . . , Zn)

and

Δ = (Δ1, . . . ,Δn) .

Due to the independence of Zi and Δi we have that

EΔ|Z

{[
Ŝv
Z(t)
]Δ̄}

=
n∏

i=1

EΔi|Z

([
Ŝ

v
n
Z (t)

]Δi

)

where

EΔi|Z

([
Ŝ

v
n
Z (t)

]Δi

)
=

⎧⎨⎩ γŜ
v
n
Z (t) + (1− γ) if ŜZ(t) > 0

0 if ŜZ(t) = 0
.

Therefore, we have that

EΔ|Z

{[
Ŝv
Z(t)
]Δ̄}

=

⎧⎨⎩
[
γŜ

v
n
Z (t) + (1− γ)

]n
if ŜZ(t) > 0

0 if ŜZ(t) = 0
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and finally

E
[
Ŝv
ACL(t)

]
= EZ

[
EΔ|Z

{[
Ŝv
Z(t)
]Δ̄}]

=
n−1∑
r=0

b (r, FZ (t))

[
γ

(
n− r

n

) v
n

+ (1− γ)

]n
.

This moment expression is easily seen to be valid for −∞ < v < ∞. Note that Zhang

et al. (2006) present an equivalent formula for E
[
Ŝv
ACL(t)

]
with v > 0. When v = 0 we

have that

E
[
Ŝ0
ACL(t)

]
=

n−1∑
r=0

b (r, FZ (t))

[
γ

(
n− r

n

) 0
n

+ (1− γ)

]n

=
n−1∑
r=0

b (r, FZ (t))

= 1− [FZ(t)]
n .

The Mellin transform for the zero-truncated ACL estimate, which we denote as ŜACL+ (t) ,

is of the form

MACL+
Tr (v) = E

[
Ŝv
ACL+ (t)

]
=

E
[
Ŝv
ACL(t)

]
E
[
Ŝ0
ACL(t)

] =
E
[
Ŝv
ACL(t)

]
P
[
ŜACL(t) > 0

]
=

∑n−1
r=0 b (r, FZ (t))

[
γ
(
n−r
n

) v
n + (1− γ)

]n
1− [FZ(t)]

n .
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4. POINTWISE CONFIDENCE BANDS FOR SURVIVAL FUNCTIONS

In this section, we review the existing confidence band methods which we will

consider in the simulations performed in section 5 and we develop novel confidence

band methods for the KM, PL and ACL estimators based upon the exact distributions

of these estimators and the saddlepoint approximations to these distributions.

4.1. EXISTING METHODS

The first classical method which we will compare with our confidence band meth-

ods for the KM and PL estimators is the exponential Greenwood confidence band.

While this method was developed for the KM estimator, it is a large sample method,

so given the asymptotic equivalence of the KM and PL estimators it will also be a good

comparator for the confidence band method we develop for the PL estimator.

Greenwood (1926) provides a formula for the (approximate) asymptotic variance

of ŜKM(t) as

V̂ ar
{
ŜKM(t)

}
= ŜKM(t)2

∑
t(i)≤t

d(i)

n(i−)
(
n(i−) − d(i)

)
where t(i) as the ith ordered time of “death”, d(i) is the number of deaths recorded at

time t(i) and n(i−) is the total number of individuals at risk of death an instant just

before time t(i).

A natural 95% pointwise confidence band for survival function S (t) is

ŜKM(t)± 1.96

√
V̂ ar

{
ŜKM(t)

}
.

This confidence band does not work well with small samples because the upper and

lower bands can easily fall outside of unit interval (0, 1) . Therefore, we opted to use the

95% exponential Greenwood confidence band (Kalbfleisch and Prentice, 1980). This



31

method has as its basis the following approximate variance result

V̂ ar
{
ln
(
− ln ŜKM(t)

)}
=

1[
ln ŜKM(t)

]2 ∑
t(i)≤t

d(i)

n(i−)
(
n(i−) − d(i)

)
which naturally leads to the following 95% confidence band for ln (− lnS (t))

ln
(
− ln ŜKM(t)

)
± 1.96V̂ ar

{
ln
(
− ln ŜKM(t)

)}
=
(
L̂B (t) , ÛB (t)

)
.

Now 95% confidence bands for S (t) is gotten by applying the

k (x) = exp {− exp (x)}

tranformation to the above confidence bounds to yield

(
exp
{
− exp

(
ÛB (t)

)}
, exp

{
− exp

(
L̂B (t)

)})
.

This confidence band has the advantage that its upper and lower bands are guaranteed

fall inside unit interval (0, 1) . Borgan and Leistøl (1990) found that this confidence

band method performed well for n ≥ 25 and when as much as 50% of observations have

been censored.

Jeong and Cho (2002) provide a large sample 95% confidence band for S(t) of the

form

ŜACL(t)± 1.96

√
V̂ ar

[
ŜACL(t)

]
where

V̂ ar
[
ŜACL(t)

]
= δ̄2

[
ŜZ(t)

]2δ̄−1
F̂Z (t) + δ̄

(
1− δ̄

) [
ŜZ(t)

]2δ̄
×
[
ln ŜZ(t)

]2
.

To the best of our knowledge little is known about the performance of this confidence

band in finite samples. Jeong and Cho (2002) only mention it in passing and consider



32

the performance of their proposed confidence band for the median survival time in their

simulation studies.

4.2. PROPOSED METHODS

To generate a (1− α) 100% confidence bands for survival function S (t), which are

denoted as
(
ŜL(t), ŜU(t)

)
, from a some survival estimator Ŝ(t), we solve equations

P̂
(
Ŝ(t) ≤ ŜL(t)

)
= α/2

P̂
(
Ŝ(t) ≤ ŜU(t)

)
= 1− α/2

where the probabilities are estimated with the sample data. As such, confidence bounds

ŜL(t) and ŜU(t) represent (α/2)th and (1− α/2)th quantiles, respectively, of the boos-

trap distribution for survival estimator Ŝ(t).

For any fixed value of t, the KM, PL and ACL estimators have estimated dis-

tributions which are discrete and non-lattice. As a result, one typically cannot solve

the above equations exactly. One approach is to use linear interpolation to obtain an

approximate solution. When this is done, one is in fact computing a mid-quantile, as

defined in Parzen (2008), and the resulting CI will correspond to a mid-p-value CI.

Agresti (1992) and Routledge (1994) advocated the use of mid-p-values when forming

CIs based on discrete distributions.

Parzen (2008) posits that a theoretical justification mid-p-value inference is that

inversion formulas for a univariate discrete probability mass function (PMF) or CDF

from their associated characteristic function. These inversion formulas are valid in the

convex hull of a random variable’s support; meaning that these formulas work at the

mass points as well as all points between the mass points.

However, characteristic function inversion integrals for probability density func-

tions (PDF) or CDFs of a random variable X can rarely be evaluated in closed-form; see

for instance Billingsley (1986). When the complex-valued integrand of these inversion

integrals has a single saddlepoint then one may apply the classical method of steepest

descent for complex-valued integrals to the inversion intergrals to obtain highly accurate
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saddlepoint PDF and CDF approximations; see Butler (2007) for further elaboration.

Saddlepoint approximations were first proposed in Daniels (1954) where it is also shown

the characteristic function inversion integrals have a single saddlepoint exactly when

MX (v), the MGF of X, exists.

In such a case, the saddlepoint PDF approximation from Daniels (1954) is of the

form

f̂ (x) =
1√

2πK
′′
X (v̂)

exp {KX (v̂)− v̂x}

where KX (v) = ln [MX (v)] is the cumulant generating function (CGF) for X, K
′
X (v)

andK
′′
X (v) are the first and second derivatives of the CGF, respectively, and saddlepoint

v̂ solves the saddlepoint equation

K ′
X (v̂) = x.

Luganani and Rice (1980) (LR) provide a saddlepoint CDF approximation of the

form

F̂ (x) =

⎧⎨⎩ Φ(ŵ) + φ(ŵ) [ŵ−1 − û−1], if x �= E (X)

1
2
+K

′′′
X (0)

[
72πK

′′
X(0)

3
]−1/2

, if x = E (X)
(4.1)

where Φ (·) and φ (·) are the standard normal CDF and normal PDF, respectively,

K
′′′
X (v) is the third derivative of the CGF KX (v),

ŵ = sgn (v̂)
√
2 (v̂x−KX(v̂))

and

û = v̂
√
K ′′

X(v̂).

Davison and Wang (2002) show that for the problem in which a PMF is replaced

by a saddlepoint approximation is continuous and provides a p-value which is a good
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approximation to the mid-p-value. In addition, Butler (2007) shows that saddlepoint ap-

proximations generally perform very in terms of accurately approximating non-normal

distributions and offering substantial improvements over existing methods even in very

small samples. We shall see in the simulations Section 5 that saddlepoint approxima-

tions perform remarkably well in approximating the exact distributions of KM, PL and

ACL estimators and the resulting confidence bands are very close to confidence bands

one would obtain from an exact distribution directly.

4.2.1. Pointwise Population Tolerance Intervals. For concreteness, we

consider the classical and mid-p-value definitions of population quantiles for KM es-

timator ŜKM(1), with n = 5, based on unit exponential survival and censoring times

whose exact PMF was derived in Section 2.1 and associated exact CDF is shown in

Table 4.1;

Table 4.1. The exact distribution of the KM estimator with associated exact CDF for
t = 1 and n = 5.

ŜKM(1) PMF CDF

1 0.043844 1.000000

0.8 0.043799 0.956155

0.75 0.043074 0.912356

0.667 0.038441 0.869282

0.6 0.043074 0.830842

0.533 0.038441 0.787768

0.5 0.062081 0.749327

0.4 0.062081 0.687246

0.375 0.023640 0.625165

0.333 0.023640 0.601525

0.3 0.023640 0.577885

0.267 0.023640 0.554245

0.25 0.023640 0.530604

0.2 0.023640 0.506964

0 0.483324 0.483324
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More specifically, we consider the calculation of interval
(
Ŝpop
KM,L(1), Ŝ

pop
KM,U(1)

)
which satisfies equations

P
(
ŜKM(1) ≤ Ŝpop

KM,L(1)
)
= α/2

P
(
ŜKM(1) ≤ Ŝpop

KM,U(1)
)
= 1− α/2

under the exact distribution for ŜKM(1). Note that
(
Ŝpop
KM,L(1), Ŝ

pop
KM,U(1)

)
is in fact

the (1− α) 100% two-sided symmetric population tolerance interval for ŜKM(1) since

P
(
Ŝpop
KM,L(1) ≤ ŜKM(1) ≤ Ŝpop

KM,U(1)
)
≥ 1− α.

Also, previously mentioned the sample version of this tolerance interval, in which

F̂Z (1) replaces FZ (1) and γ̂ replaces γ in the PMF formulas for ŜKM(1), would be

denoted as
(
ŜKM,L(1), ŜKM,U(1)

)
and corresponds to the (1− α) 100% bootstrap CI

for E
[
ŜKM(1)

]
.

Under the classical definition of population quantile xp, the pth quantile for dis-

crete random variable X, is any number which satisfies equations

P (X ≤ xp) ≥ p

P (X ≥ xp) ≥ 1− p.

If for instance we consider the exact distribution of the KM estimator from above and

let p = 0.025 then

P
(
ŜKM(1) ≤ 0

)
= 0.48332 ≥ 0.025,

P
(
ŜKM(1) ≥ 0

)
= 1 ≥ 1− 0.025,
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and for p = 0.975 we have

P
(
ŜKM(1) ≤ 1

)
= 1 ≥ 0.975

P
(
ŜKM(1) ≥ 1

)
= 0.04384 ≥ 1− 0.975

which yields a fairly non-informative 95% two-sided population tolerance interval for

ŜKM(1) of (0, 1) .

If instead we consider a tolerance interval based upon a mid-p correction we find

that

Ŝpop
KM,L(1) = 0

since

P
(
ŜKM(1) = 0

)
= 0.483324 > 0.025

and

Ŝpop
KM,U(1) = 0.8 + (0.975− 0.956)

1.0− 0.8

1− 0.956
= 0.886.

Note that with regards to 95% tolerance intervals for other values of t if

P
(
ŜKM(t) = 1

)
≥ 0.975

then

Ŝpop
KM,U(t) = 1.

If, on the other hand,

P
(
ŜKM(t) = 0

)
≥ 0.975
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then

(
Ŝpop
KM,L(t), Ŝ

pop
KM,U(t)

)
= (0, 0) .

Finally, if

0.025 ≤ P
(
ŜKM(t) = 0

)
≤ 0.975

then

Ŝpop
KM,U(t) = 0.

Note also that, in lieu of working with the exact distributions of our KM, PL and ACL

estimators to obtain population tolerance intervals, which can be quite cumbersome

when these distributions have a large number of distinct point mass values, one could

consider the highly accurate LR saddlepoint CDF approximation, instead.

The first step in this method is to note that the CDF for ŜKM(t) maybe written

as

P
(
ŜKM(t) ≤ x

)
= P

(
ŜKM(t) ≤ x|ŜKM(t) > 0

)
P
(
ŜKM(t) > 0

)
+ P

(
ŜKM(t) ≤ x|ŜKM(t) = 0

)
P
(
ŜKM(t) = 0

)
= P

(
ŜKM(t) ≤ x|ŜKM(t) > 0

)
{1− [FZ(t)]

n}+ [FZ(t)]
n

= P
(
ln
(
ŜKM(t)

)
≤ ln (x) |ŜKM(t) > 0

)
{1− [FZ(t)]

n}+ [FZ(t)]
n .

Then a saddlepoint approximation to this CDF is obtained by replacing

P
(
ŜKM(t) ≤ x|ŜKM(t) > 0

)
= P

(
ln
(
ŜKM(t)

)
≤ ln (x) |ŜKM(t) > 0

)
with

P̂
(
ln
(
ŜKM(t)

)
≤ ln (x) |ŜKM(t) > 0

)
= P̂

(
ŜKM(t) ≤ x|ŜKM(t) > 0

)
,
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its LR saddlepoint approximation generated from Mellin transform MKM+
Tr (v). The

resulting saddlepoint approximation is of the form

P̂
(
ŜKM(t) ≤ x

)
= P̂

(
ŜKM(t) ≤ x|ŜKM(t) > 0

)
{1− [FZ(t)]

n}+ [FZ(t)]
n .

When determining a (1− α) 100% two-sided symmetric population tolerance interval

for ŜKM(t) one would solve the equations

P̂
(
ŜKM(t) ≤ x|ŜKM(t) > 0

)
=

{
α/2− [FZ(t)]

n

1− [FZ(t)]
n

}
[0,1]

P̂
(
ŜKM(t) ≤ x|ŜKM(t) > 0

)
=

{
1− α/2− [FZ(t)]

n

1− [FZ(t)]
n

}
[0,1]

where the two-sided rounding function {·}[0,1] is defined as

{x}[0,1] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

.

One issue which arises in using our saddlepoint approximations is that the LR sad-

dlepoint CDF approximation is not defined on boundary of the support for a random

variable. For instance with random variable ŜKM(t)|ŜKM(t) > 0 saddlepoint v̂ = ∞
for x = 1 and v̂ = −∞ for x = 1

n
. In our computations we can avoid the boundary

since one can always compute the exact probabilities for x = 1 and x = 1
n
. This is

because, for each of these values, there is only one product of fractions, in each case,

which correspond to their values. This is also the case for x = n−1
n

and x = 1
n−1 , the

next two support points which are closest to the support boundary points. Recall that

P
(
ŜKM (t) = 1

)
= [(1− γ)FZ(t) + SZ(t)]

n − [(1− γ)FZ(t)]
n ,

P

(
ŜKM (t) =

1

n

)
= γn−1b (n− 1, FZ(t)) ,

P

(
ŜKM (t) =

n− 1

n

)
=

n−1∑
r=1

γ (1− γ)r−1 b (r, FZ(t))
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and

P

(
ŜKM (t) =

1

n− 1

)
= γn−2 (1− γ) b (n− 1, FZ(t)) .

Now we can obtain exact (interpolated) mid-p CDF values over the intervals

1

n
≤ x <

1

n− 1

and

n− 1

n
≤ x < 1

and use the LR saddlepoint CDF approximation over the interval

1

n− 1
≤ x <

n− 1

n
.

This results in an adjusted LR saddlepoint CDF approximation of the form

P̂
(
ŜKM (t) ≤ x|ŜKM (t) > 0

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 1
n

[n(n−1)(x− 1
n−1)]P(ŜKM (t)= 1

n−1)+P(0<ŜKM (t)≤ 1
n−1)

1−[FZ(t)]n
if 1

n
≤ x < 1

n−1

Φ (ŵ) + φ (ŵ)
(
1
ŵ
− 1

û

)
if 1

n−1 ≤ x < n−1
n

n(x−1)P(ŜKM (t)=1)
1−[FZ(t)]n

+ 1 if n−1
n
≤ x < 1

1 if x ≥ 1

.

Note that the adjusted LR saddlepoint CDF approximation for the PL estimator will

have same form as that above with exception that “KM” is replaced with “PL” through-

out and the term

P
(
ŜKM (t) > 0

)
= 1− [FZ (t)]n
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is replaced by a

P
(
ŜPL (t) > 0

)
= 1− γ [FZ (t)]n .

In a similar fashion we can define a saddlepoint CDF approximation for the ACL esti-

mator for use in approximating population tolerance intervals. This approximation is

of the form

P̂
(
ŜACL(t) ≤ x

)
= P̂

(
ln
(
ŜACL(t)

)
≤ ln (x) |ŜACL(t) > 0

)
{1− [FZ(t)]

n}+[FZ(t)]
n .

where

P̂
(
ln
(
ŜACL(t)

)
≤ ln (x) |ŜACL(t) > 0

)
= P̂

(
ŜACL(t) ≤ x|ŜACL(t) > 0

)
its LR saddlepoint CDF approximation based on Mellin transform MACL+

Tr (v). Here,

as was the case for the KM and PL estimators, we determine a (1− α) 100% two-sided

symmetric population tolerance interval for ŜACL(t) by solving equations

P̂
(
ŜACL(t) ≤ x|ŜACL(t) > 0

)
=

{
α/2− [FZ(t)]

n

1− [FZ(t)]
n

}
[0,1]

P̂
(
ŜACL(t) ≤ x|ŜACL(t) > 0

)
=

{
1− α/2− [FZ(t)]

n

1− [FZ(t)]
n

}
[0,1]

.

Also, as before, the LR saddlepoint CDF approximation for ŜACL(t)|ŜACL(t) > 0 will

not exist on the support boundary for this random variable. Fortunately, it is possible

to compute, in closed-form, probabilites for the two mass points closest to the upper

bound of the conditional support;

P
(
ŜACL(t) = 1

)
= [SZ (t)]n + (1− γ)n − [(1− γ)FZ (t)]n
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and

P

(
ŜACL(t) =

(
n− 1

n

) 1
n

)
= b (1, FZ (t)) b(1, γ),

and for the two mass points closest to the lower bound of the conditional support;

P

(
ŜACL(t) =

1

n

)
= b (n− 1, FZ (t)) b(n, γ)

and

P

(
ŜACL(t) =

(
1

n

)n−1
n

)
= b (n− 1, FZ (t)) b(n− 1, γ).

Now, in a fashion similar to what was done for the KM and PL estimators, we can

obtain exact (interpolated) mid-p CDF values over the intervals

1

n
≤ x <

(
1

n

)n−1
n

and

(
n− 1

n

) 1
n

≤ x < 1

and use the LR saddlepoint CDF approximation, generated from Mellin transform

MACL+
Tr (v), over the interval

(
1

n

)n−1
n

≤ x <

(
n− 1

n

) 1
n

.
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This results in an adjusted LR saddlepoint CDF approximation of the form

P̂
(
ŜACL (t) ≤ x|ŜACL (t) > 0

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 1
n

n

(
x−( 1

n)
n−1
n

)
P

(
ŜACL(t)=( 1

n)
n−1
n

)
( n√n−1)(1−[FZ(t)]n)

+
P

(
0<ŜACL(t)≤( 1

n)
n−1
n

)
1−[FZ(t)]n

if 1
n
≤ x <

(
1
n

)n−1
n

Φ (ŵ) + φ (ŵ)
(
1
ŵ
− 1

û

)
if
(
1
n

)n−1
n ≤ x <

(
n−1
n

) 1
n

[
1−(n−1

n )
1
n

]−1

(x−1)P(ŜACL(t)=1)
1−[FZ(t)]n

+ 1 if
(
n−1
n

) 1
n ≤ x < 1

1 if x ≥ 1

.

Below we have graphs of the 95% two-sided symmetric population tolerance bounds

for the KM, PL and ACL estimators obtained from the exact interpolated CDFs and

from the adjusted LR saddlepoint CDF approximations.

Here Xi and Yi are exponentially distributed with rates 1 and β, respectively, so

that

γ =
1

1 + β

where β = 0.5, 1.0, 1.5 and 2.0. In addition for each one of these β settings we consider

samples of size n = 5, 10, 15, 20, 25 and 30. Note however that for the KM and PL

estimators we only consider exact interpolated CDF computations when n ≤ 15 since

for larger values of n it is numerically very burdensome, if at all possible, to perform

these computations. However, for the ACL estimator we were able to perform exact

interpolated CDF computations for all values of n. Similarly, we are able to generate

population tolerance bands from adjusted LR saddlepoint CDF approximations for any

value of n. In addition, note that in our plots we restrict ourselves to time t ∈ [0.05, 3.0].

The reason for this is that for values of t less than 0.05 the tolerance intervals are very
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often the trivial [1, 1] interval. We restrict ourselves to t values less than 3.0 since the

− ln (0.05) � 3.0

is the 95th quantile on the true survival distribution.

Finally our decision to only consider exponentially distributed survival and cen-

soring times follows what is commonly done in studies of the KM, PL and ACL survival

function, see for instance Chen, et al. (1982), Chang and Cheng (1985) and Chang

(1996). The argument for only considering exponentially distributed data was origi-

nally given in Chen, et al. (1982). The idea is that calculations under exponentially

distributed survival and censoring times apply to general proportional hazards models

after appropriate transformation of the data. If

SY (t) = S
β

(t)

then

S(X) ∼ U

where U is a standard uniform random variable and so

− ln [1− S(X)] ∼ − ln [S(X)]

has an exponential distribution with unit rate. From this, one finds that − ln [S(Y )]

has an exponential distribution with rate β since

− ln [S(Y )] = − 1

β
ln [SY (Y )] ∼ − 1

β
ln [U ] .

With this in mind, Chen, et al. (1982) define

R−1 (t) = inf {z : − ln [S (z)] > t}
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and note that R (X) and R (Y ) are exponentially distributed with rate parameters 1

and β, respectively. They then define the resulting right-censored data

Zi,R = min {R (Xi) , R (Yi)}

Δi,R = Δi = I (R (Xi) � R (Yi))

for i = 1, . . . , n and note that ordered samples

{
(R
(
Z(1)

)
,Δ(1)), (R

(
Z(2)

)
,Δ(2)), . . . , (R

(
Z(n)

)
,Δ(n))

}
and

{
(Z(1),R,Δ(1),R), (Z(2),R,Δ(2),R), . . . , (Z(n),R,Δ(n),R)

}
have the same joint distributions. Finally, they note that if we let Ŝ (t)R denote a

survival function estimator computed from the transformed sample

{
(Z(1),R,Δ(1),R), (Z(2),R,Δ(2),R), . . . , (Z(n),R,Δ(n),R)

}
then processes

{
Ŝ (R (t))R : 0 ≤ t <∞

}
and

{
Ŝ (t) : 0 ≤ t <∞

}
have the same distributions.

The Figures 4.1 - 4.12 show that the 95% two-sided symmetric population toler-

ance bounds for the KM, PL and ACL estimators obtained from the exact interpolated

CDFs and from the adjusted LR saddlepoint CDF approximations are nearly identical
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for the KM and PL estimators when n ≤ 15 and are also nearly identical for the ACL

estimator for all values of n.

Each of the Figures 4.1 - 4.12 below show the 95% population tolerance bands for

the given survival estimator, with t ∈ (0.05, 3.0) , and sample size n = 5, 10, 15, 20, 25

and 30 where the bands from the exact CDF, when available, are shown as black dotted

curves and the bands from the adjusted LR saddlepoint CDF approximation are shown

as gold solid curves.

Figure 4.1. The 95% population tolerance bands for the KM estimator with β = 0.5.

4.2.2. Pointwise Bootstrap Confidence Bands.

Bootstrap confidence bands for S (t) from the KM, PL and ACL estimators, with

confidence (1− α) 100%, are obtained by replacing γ with its γ̂ and replacing FZ (t) by

F̂Z (t) and computing the 95% two-sided population tolerance interval for the survival

estimators from either the from the exact interpolated CDFs or from the adjusted LR

saddlepoint CDF approximation.

The performance of these confidence band methods is compared with that of the

common competing confidence band methods in the next section.
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Figure 4.2. The 95% population tolerance bands for the KM estimator with β = 1.

Figure 4.3. The 95% population tolerance bands for the KM estimator with β = 1.5.
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Figure 4.4. The 95% population tolerance bands for the KM estimator with β = 2.

Figure 4.5. The 95% population tolerance bands for the PL estimator with β = 0.5.
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Figure 4.6. The 95% population tolerance bands for the PL estimator with β = 1.

Figure 4.7. The 95% population tolerance bands for the PL estimator with β = 1.5.
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Figure 4.8. The 95% population tolerance bands for the PL estimator with β = 2.

Figure 4.9. The 95% population tolerance bands for the ACL estimator with β = 0.5.
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Figure 4.10. The 95% population tolerance bands for the ACL estimator with β = 1.

Figure 4.11. The 95% population tolerance bands for the ACL estimator with β = 1.5.



51

Figure 4.12. The 95% population tolerance bands for the ACL estimator with β = 2.



52

5. SIMULATION STUDIES

In this section, we perform simulation studies to compare the performance of our

bootstrap confidence band methods for the KM, PL and ACL estimators, from the

exact interpolated CDF or the adjusted LR saddlepoint CDF approximation, with that

of traditional confidence band methods.

As was the case in section we restrict ourselves to exponentially distributed sur-

vival times, with unit rate, and exponential censoring times with rate β = 0.5, 1.0, 1.5

and 2.0. We also consider samples of size n = 5, 10, 15, 20, 25 and 30 but only consider

exact interpolated CDF computations when n ≤ 15 for the KM and PL estimators

while we are able to do exact computations for the ACL estimator at all sample sizes.

For each (β, n) combination we simulate 10, 000 random samples of n (X, Y ) pairs, e.g.

(X1, Y1) , (X2, Y2) , ..., (Xn, Yn) .

From each sample we compute 95% confidence bands for a survival estimator Ŝ (t)

(KM, PL or ACL) from the exact interpolated CDF (when possible), the adjusted LR

saddlepoint CDF approximation and a classical competing method and construct 95%

confidence bands, from each method, for S (t). Here we let time t range from 0.05 to 3.0

in steps of size 0.05 for a total of 60 confidence intervals in each confidence band. For

each of the two or three confidence bands, we compute empirical coverage probabilities

which are defined as

P̂
(
ŜL(t) ≤ S (t) ≤ ŜU(t)|ŜL (t) �= ŜU(t)

)
=

∑10,000
i=1 I

(
ŜL(t)i ≤ S (t) ≤ ŜU(t)i

)
∑10,000

i=1 I
(
ŜL (t)i �= ŜU(t)i

)
where

(
ŜL(t)i, ŜU(t)i

)
denotes the confidence interval computed from the ith random

at time t where t = 0.05, 0.10, 0.15, 0.20, ... or 3.

The Figures 5.1 - 5.12 compare coverage probabilities for the various methods. In

each graph, the coverage probabilities of a particular bootstrap confidence band method
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(KM, PL or ACL) are presented where the adjusted LR saddlepoint CDF approximation

coverage is shown as a gold solid curve and the exact distribution coverage (when

available) is shown as a black dotted curve. Each graph also has a red dashed 95%

reference line and coverage probabilities for the exponential Greenwood method (the

comparator for the KM and PL estimators) or the large sample ACL confidence bands

(the comparator for the ACL estimator) are shown as a green dash-dot-dotted curve.

In each instance we find that generally coverage probabilities from the adjusted

LR saddlepoint CDF approximation are quite close to those computed from the exact

distribution. In additional, both of these methods generally outperform the traditional

confidence band methods by a wide margin.

Figure 5.1. Coverage probabilities for various pointwise confidence band methods based
on the KM estimator with β = 0.5.
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Figure 5.2. Coverage probabilities for various pointwise confidence band methods based
on the KM estimator with β = 1.

Figure 5.3. Coverage probabilities for various pointwise confidence band methods based
on the KM estimator with β = 1.5.
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Figure 5.4. Coverage probabilities for various pointwise confidence band methods based
on the KM estimator with β = 2.

Figure 5.5. Coverage probabilities for various pointwise confidence band methods based
on the PL estimator with β = 0.5.
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Figure 5.6. Coverage probabilities for various pointwise confidence band methods based
on the PL estimator with β = 1.

Figure 5.7. Coverage probabilities for various pointwise confidence band methods based
on the PL estimator with β = 1.5.
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Figure 5.8. Coverage probabilities for various pointwise confidence band methods based
on the PL estimator with β = 2.

Figure 5.9. Coverage probabilities for various pointwise confidence band methods based
on the ACL estimator with β = 0.5.



58

Figure 5.10. Coverage probabilities for various pointwise confidence band methods
based on the ACL estimator with β = 1.

Figure 5.11. Coverage probabilities for various pointwise confidence band methods
based on the ACL estimator with β = 1.5.
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Figure 5.12. Coverage probabilities for various pointwise confidence band methods
based on the ACL estimator with β = 2.
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6. THE MEAN, BIAS, VARIANCE AND MSE FOR SURVIVAL ESTIMATORS

In this section we compare the exact mean, bias, variance and MSE of the KM,

PL and ACL estimators, from their Mellin transforms, for β = 0.5, 1, 1.5 and 2, sample

sizes n = 5, 10, 15, 20, 25 and 30, and times t = 0.5, 1.0, 1.5, 2.0 as is shown in Tables

6.1 - 6.4;

Table 6.1. The mean, bias, variance and MSE of the three survival estimators when
t = 0.5 .

Mean, Bias, Variance and MSE for Survival Estimators with t = 0.5, S (t) = 0.6065

KM PL ACL

β n μ (t) −b (t) σ2 (t) MSE μ (t) −b (t) σ2 (t) MSE μ (t) −b (t) σ2 (t) MSE

0.5 5 0.5784 0.0281 0.0653 0.0661 0.5835 0.0230 0.0617 0.0622 0.5946 0.0119 0.0517 0.0518

10 0.6059 0.0007 0.0283 0.028 3 0.6060 0.0005 0.0281 0.028 1 0.6025 0.0040 0.0235 0.0235

15 0.6065 0.0000 0.0185 0.0185 0.6065 0.0000 0.0185 0.0185 0.6040 0.0026 0.0154 0.0154

20 0.6065 0.0000 0.0138 0.0138 0.6065 0.0000 0.0138 0.0138 0.6046 0.0019 0.0115 0.0115

25 0.6065 0.0000 0.011 0.0110 0.6065 0.0000 0.0110 0.0110 0.6050 0.0015 0.0092 0.0092

30 0.6065 0.0000 0.0092 0.0092 0.6065 0.0000 0.0092 0.0092 0.6053 0.0013 0.0077 0.0077

1 5 0.5776 0.0289 0.0843 0.0851 0.6025 0.0041 0.0696 0.0696 0.5745 0.0320 0.0701 0.0711

10 0.6048 0.0017 0.0348 0.0348 0.6066 −0.0001 0.0334 0.033 4 0.5988 0.0078 0.0279 0.0280

15 0.6064 0.0001 0.0219 0.021 9 0.6065 0.0000 0.0218 0.0218 0.6024 0.0041 0.0174 0.0174

20 0.6065 0.0000 0.0162 0.0162 0.6065 0.0000 0.0162 0.0162 0.6036 0.0029 0.0128 0.0128

25 0.6065 0.0000 0.0129 0.0129 0.6065 0.0000 0.0129 0.0129 0.6042 0.0023 0.0102 0.0102

30 0.6065 0.0000 0.0107 0.0107 0.6065 0.0000 0.0107 0.0107 0.6046 0.0019 0.0085 0.0850

1.5 5 0.5483 0.0582 0.1110 0.111 0 0.6120 −0.0055 0.0797 0.079 7 0.5402 0.0664 0.0964 0.100 8

10 0.5981 0.0014 0.0461 0.0461 0.6072 −0.0006 0.0400 0.0400 0.6072 0.0161 0.0376 0.0379

15 0.6052 0.0002 0.0271 0.027 1 0.6066 −0.0001 0.0260 0.026 0 0.5905 0.0067 0.0214 0.0214

20 0.6063 0.0000 0.0194 0.0194 0.6065 0.0000 0.0192 0.0192 0.5999 0.0041 0.0151 0.0151

25 0.6065 0.0000 0.0152 0.0152 0.6065 0.0000 0.0152 0.0152 0.6024 0.0030 0.0118 0.0118

30 0.6065 0.0000 0.0126 0.0126 0.6065 0.0000 0.0126 0.0126 0.6035 0.0025 0.0098 0.0098

2 5 0.5014 0.1051 0.1371 0.148 2 0.6210 −0.0144 0.0896 0.0898 0.4927 0.1138 0.1228 0.135 8

10 0.5815 0.025 0.0639 0.0645 0.6087 −0.0022 0.0478 0.0478 0.5728 0.0337 0.0540 0.0551

15 0.6002 0.0063 0.0359 0.0359 0.6069 −0.0004 0.0313 0.031 3 0.5934 0.0131 0.0288 0.0290

20 0.6049 0.0017 0.0242 0.0242 0.6066 −0.0001 0.0229 0.022 9 0.5997 0.0068 0.0189 0.0189

25 0.6061 0.0004 0.0184 0.018 4 0.6065 0.0000 0.0181 0.0181 0.6021 0.0044 0.0142 0.0142

30 0.6064 0.0001 0.0150 0.015 0 0.6065 0.0000 0.0149 0.0149 0.6032 0.0034 0.0115 0.0115

From the Tables 6.1 - 6.4 we see that for fixed β and n, the bias increases as

t increases for all methods which is to be expected since it is harder to estimate the
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Table 6.2. The mean, bias, variance and MSE of the three survival estimators when
t = 1.

Mean, Bias, Variance and MSE for Survival Estimators with t = 1, S (t) = 0.3679
KM PL ACL

β n μ (t) −b (t) σ2 (t) MSE μ (t) −b (t) σ2 (t) MSE μ (t) −b (t) σ2 (t) MSE
0.5 5 0.3401 0.0278 0.0758 0.0766 0.3754 −0.0075 0.0665 0.0666 0.3335 0.0344 0.0662 0.0674

10 0.3625 0.0054 0.0361 0.0361 0.3688 −0.0009 0.0334 0.0334 0.3568 0.0111 0.0313 0.0314
15 0.3667 0.0012 0.0226 0.0226 0.3680 −0.0002 0.0219 0.021 9 0.3626 0.0053 0.0197 0.0197
20 0.3676 0.0003 0.0164 0.016 4 0.3679 0.0000 0.0163 0.0163 0.3645 0.0033 0.0143 0.0 43
25 0.3678 0.0001 0.013 0.0130 0.3679 0.0000 0.0129 0.0129 0.3654 0.0024 0.0113 0.0113
30 0.3679 0.0000 0.0107 0.0107 0.3679 0.0000 0.0107 0.0107 0.3659 0.0019 0.0094 0.0940

1 5 0.2798 0.0881 0.0990 0.106 8 0.3987 −0.0308 0.0881 0.0890 0.2727 0.0952 0.0873 0.0964
10 0.3340 0.0339 0.0589 0.0600 0.3752 −0.0073 0.0474 0.0475 0.3258 0.0421 0.0503 0.0521
15 0.3538 0.0141 0.0378 0.0380 0.3701 −0.0022 0.0318 0.0318 0.3462 0.0217 0.0315 0.0320
20 0.3618 0.0061 0.0265 0.0265 0.3686 −0.0008 0.0236 0.0236 0.3552 0.0127 0.0218 0.0220
25 0.3652 0.0027 0.0200 0.0200 0.3682 −0.0003 0.0186 0.018 6 0.3597 0.0082 0.0163 0.0164
30 0.3667 0.0012 0.0160 0.0160 0.3680 −0.0001 0.0154 0.015 4 0.3620 0.0058 0.0130 0.0130

1.5 5 0.2087 0.1592 0.1006 0.125 9 0.4332 −0.0653 0.1068 0.111 06 0.2035 0.1644 0.0907 0.117 7
10 0.2790 0.0889 0.0794 0.0873 0.3911 −0.0232 0.0632 0.0637 0.2711 0.0968 0.0691 0.078 5
15 0.3157 0.0522 0.0596 0.0623 0.3781 −0.0102 0.0445 0.0446 0.3067 0.0612 0.0503 0.0540
20 0.3365 0.0314 0.0450 0.0460 0.3728 −0.0049 0.0340 0.0340 0.3273 0.0405 0.0370 0.038 6
25 0.3487 0.0191 0.0348 0.0352 0.3704 −0.0025 0.0273 0.0273 0.3400 0.0279 0.0280 0.0288
30 0.3561 0.0118 0.0276 0.0277 0.3692 −0.0013 0.0226 0.0226 0.3479 0.0199 0.0218 0.0222

2 5 0.1458 0.2221 0.0859 0.135 2 0.4731 −0.1052 0.1206 0.131 7 0.1424 0.2255 0.0787 0.129 6
10 0.2130 0.1549 0.0852 0.109 2 0.4164 −0.0485 0.0779 0.0803 0.2069 0.1609 0.0756 0.101 5
15 0.2565 0.1114 0.0755 0.0879 0.3946 −0.0268 0.0580 0.0587 0.2484 0.1195 0.0651 0.079 4
20 0.2865 0.0814 0.0648 0.0714 0.3839 −0.0160 0.0462 0.0465 0.2772 0.0907 0.0545 0.0627
25 0.3078 0.0601 0.0550 0.0586 0.3779 −0.0100 0.0382 0.038 3 0.2979 0.0700 0.0452 0.050 1
30 0.3232 0.0447 0.0465 0.0485 0.3744 −0.0065 0.0324 0.0324 0.3131 0.0548 0.0375 0.0405

tails of the survival function than for smaller values of t. The bias and variance also

increases, for fixed t and n, as β the increases since larger values of β correspond to

greater amounts of censoring. Finally, we see that the PL estimator has smaller bias

than the KM or ACL estimators for all values of t, β and n.
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Table 6.3. The mean, bias, variance and MSE of the three survival estimators when
t = 1.5 .

Mean, Bias, Variance and MSE for Survival Estimators with t = 1.5, S (t) = 0.2231
KM PL ACL

β n μ (t) −b (t) σ2 (t) MSE μ (t) −b (t) σ2 (t) MSE μ (t) −b (t) σ2 (t) MSE
0.5 5 0.1783 0.0448 0.0578 0.0598 0.2499 −0.0267 0.0596 0.0603 0.1737 0.0494 0.0508 0.053 2

10 0.2040 0.0191 0.0340 0.0344 0.2301 −0.0070 0.0303 0.0303 0.1987 0.0244 0.0293 0.0299
15 0.2141 0.0090 0.0227 0.0228 0.2256 −0.0024 0.0202 0.0202 0.2090 0.0141 0.0194 0.0196
20 0.2187 0.0045 0.0165 0.016 5 0.2241 −0.0010 0.0151 0.0151 0.2141 0.0090 0.0141 0.0142
25 0.2209 0.0023 0.0127 0.0127 0.2235 −0.0004 0.0120 0.0120 0.2169 0.0063 0.0109 0.0109
30 0.2219 0.0012 0.0103 0.01030 0.2233 −0.0002 0.0099 0.0099 0.2185 0.0046 0.0088 0.0882

1 5 0.1147 0.1084 0.0561 0.0679 0.3054 −0.0823 0.0880 0.0948 0.1114 0.1117 0.0499 0.0624
10 0.1521 0.0710 0.0466 0.0516 0.2579 −0.0347 0.0488 0.0500 0.1469 0.0762 0.0399 0.0457
15 0.1741 0.0490 0.0380 0.04040 0.2413 −0.0182 0.0340 0.0343 0.1676 0.0555 0.0316 0.034 7
20 0.1884 0.0347 0.0311 0.0323 0.2336 −0.0104 0.0261 0.0262 0.1813 0.0418 0.0253 0.0270
25 0.1982 0.0250 0.0257 2. 632 0.2295 −0.0064 0.0211 0.0211 0.1908 0.0323 0.0206 0.0216
30 0.2050 0.0181 0.0216 0.0220 0.2272 −0.0040 0.0176 0.0176 0.1976 0.0255 0.0171 0.0178

1.5 5 0.0652 0.1580 0.0398 0.0648 0.3710 −0.1479 0.1112 0.133 1 0.0634 0.1597 0.0360 0.0615
10 0.0958 0.1274 0.0421 0.0583 0.3040 −0.0809 0.0684 0.0749 0.0925 0.1307 0.0369 0.0540
15 0.1177 0.1055 0.0410 0.052 1 0.2755 −0.0523 0.0503 0.0530 0.1129 0.1102 0.0347 0.0468
20 0.1346 0.0886 0.0387 0.0466 0.2597 −0.0365 0.0402 0.0415 0.1287 0.0944 0.0320 0.0409
25 0.1481 0.0750 0.0361 0.0417 0.2498 −0.0267 0.0335 0.0342 0.1413 0.0818 0.0293 0.0360
30 0.1592 0.0639 0.0335 0.0376 0.2432 −0.0201 0.0288 0.0292 0.1518 0.0714 0.0267 0.03180

2 5 0.0346 0.1885 0.0239 0.0594 0.4341 −0.2110 0.1263 0.170 8 0.0337 0.1894 0.0220 0.0579
10 0.0543 0.1688 0.0295 0.0580 0.3575 −0.1343 0.0847 0.102 7 0.0525 0.1706 0.0263 0.05549
15 0.0699 0.1533 0.0322 0.0557 0.3213 −0.0981 0.0657 0.0753 0.0672 0.1560 0.0278 0.05219
20 0.0830 0.1401 0.0335 0.0531 0.2994 −0.0763 0.0544 0.0602 0.0794 0.1437 0.0283 0.0490
25 0.0944 0.1287 0.0340 0.0506 0.2846 −0.0615 0.0468 0.0506 0.0900 0.1331 0.0282 0.04599
30 0.1045 0.1186 0.0340 0.0481 0.2739 −0.0507 0.0412 0.043 8 0.0994 0.1237 0.0278 0.04319
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Table 6.4. The mean, bias, variance and MSE of the three survival estimators when
t = 2.

Mean, Bias, Variance and MSE for Survival Estimators witht = 2, S (t) = 0.1353

KM PL ACL

β n μ (t) −b (t) σ2 (t) MSE μ (t) −b (t) σ2 (t) MSE μ (t) −b (t) σ2 (t) MSE

0.5 5 0.0888 0.0466 0.0343 0.0365 0.1855 −0.0501 0.0516 0.0541 0.0862 0.0491 0.0302 0.0326

10 0.1069 0.0285 0.0238 0.0246 0.1546 −0.0193 0.0254 0.0258 0.1033 0.0320 0.0203 0.0213

15 0.1165 0.0188 0.0178 0.0182 0.1449 −0.0095 0.0169 0.0170 0.1125 0.0229 0.0149 0.0154

20 0.1225 0.0129 0.0140 0.0142 0.1406 −0.0053 0.0127 0.0127 0.1182 0.0172 0.0116 0.0119

25 0.1263 0.0090 0.0113 0.0114 0.1384 −0.0031 0.0101 0.0101 0.1220 0.0133 0.0093 0.0095

30 0.1289 0.0064 0.0094 0.0094 0.1373 −0.0019 0.0084 0.0084 0.1248 0.0106 0.0077 0.0078

1 5 0.0440 0.0913 0.0242 0.0325 0.2684 −0.1330 0.0859 0.1036 0.0427 0.0927 0.0215 0.0301

10 0.0611 0.0742 0.0232 0.0287 0.2076 −0.0723 0.0470 0.0522 0.0588 0.0766 0.0199 0.0258

15 0.0731 0.0623 0.0216 0.0255 0.1825 −0.0472 0.0327 0.0349 0.0698 0.0656 0.0179 0.0222

20 0.0822 0.0532 0.0200 0.0228 0.1688 −0.0335 0.0252 0.0263 0.0781 0.0572 0.0162 0.0195

25 0.0895 0.0458 0.0185 0.0206 0.1602 −0.0249 0.0205 0.0211 0.0849 0.0505 0.0146 0.0172

30 0.0955 0.0398 0.0171 0.0187 0.1544 −0.0191 0.0174 0.0178 0.0904 0.0449 0.0133 0.0153

1.5 5 0.0191 0.1162 0.0125 0.0260 0.3521 −0.2168 0.1119 0.1589 0.0186 0.1167 0.0113 0.0249

10 0.0290 0.1063 0.0145 0.0258 0.2759 −0.1406 0.0690 0.0888 0.0279 0.1074 0.0127 0.0242

15 0.0367 0.0987 0.0154 0.0251 0.2404 −0.1051 0.0511 0.0621 0.0351 0.1003 0.0130 0.0231

20 0.0431 0.0922 0.0158 0.0243 0.2191 −0.0837 0.0410 0.0480 0.0410 0.0943 0.0131 0.0220

25 0.0488 0.0866 0.0160 0.0235 0.2045 −0.0692 0.0346 0.0394 0.0462 0.0892 0.0130 0.0210

30 0.0538 0.0815 0.0161 0.0227 0.1939 −0.0586 0.0300 0.0334 0.0508 0.0846 0.0128 0.0200

2 5 0.0078 0.1275 0.0056 0.0219 0.4251 −0.2898 0.1274 0.2114 0.0076 0.1277 0.0052 0.0215

10 0.0125 0.1228 0.0073 0.0224 0.3432 −0.2079 0.0861 0.1293 0.0121 0.1233 0.0065 0.0217

15 0.0163 0.1190 0.0083 0.0225 0.3027 −0.1674 0.0672 0.0952 0.0157 0.1196 0.0072 0.0215

20 0.0197 0.1156 0.0091 0.0225 0.2772 −0.1419 0.0560 0.0761 0.0188 0.1165 0.0077 0.0213

25 0.0228 0.1125 0.0097 0.0224 0.2591 −0.1238 0.0485 0.0638 0.0217 0.1137 0.0081 0.0210

30 0.0257 0.1097 0.0102 0.0222 0.2455 0.1101 0.0431 0.0552 0.0243 0.1110 0.0083 0.0206
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7. CONCLUSIONS

We developed a saddlepoint-based method for generating small sample confidence

bands for the S (t) from KM, PL and ACL survival function estimators, under the pro-

portional hazards model. As part of this development we derived the exact distribution

of these estimators and developed mid-p population tolerance bands for said estimators.

In our simulation studies, for the KM, PL and ACL estimators we compared our sad-

dlepoint confidence bands with those obtained from competing large sample methods

as well as those obtained from the exact distributions. We found that the saddlepoint

confidence bands are very close to the confidence bands derived from the exact distribu-

tion, while being much easier to compute, and outperform the competing large sample

methods in terms of coverage probability.
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The Mellin transform for the zero-truncated KM estimate, KM+, is given as

MKM+
Tr (v) =

∑n−1
r=0 b (r, FZ(t))

r∏
i=1

[γcvin + (1− γ)]

1− [FZ(t)]
n .

The CGF of ln (KM+) is given as

Kln(KM+) (v) = ln
[MKM+

Tr (v)
]

= ln

{
n−1∑
r=0

b (r, FZ(t)) gr(v)

}
− ln {1− [FZ(t)]

n}

where

gr(v) =
r∏

i=1

[γcvin + (1− γ)]

The first derivative of the CGF is given as

K ′
ln(KM+) (v) =

∑n−1
r=0 b (r, FZ(t)) g

′
r(v)∑n−1

r=0 b (r, FZ(t)) gr(v)
=

B′(v)
B (v)

=
{1− [FZ(t)]

n}MKM+
Tr (v)′

{1− [FZ(t)]
n}MKM+

Tr (v)

where MKM+
Tr (v)′ denotes the first derivative of Mellin transform MKM+

Tr (v),

g′r(v) = gr(v)hr(v)

and

hr(v) =
r∑

i=1

γcvin ln (cin)

γcvin + (1− γ)
.
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The second derivative of the CGF is

K ′′
ln(KM+) (v) =

B(v)B′′(v)− [B′(v)]2

[B(v)]2

where

B′′(v) =
n−1∑
r=0

b (r, FZ(t)) g
′′
r (v),

g′′r (v) = g(v)h′ (v) + g′(v)h (v)

and

h′ (v) =
r∑

i=1

{
γcvin [ln (cin)]

2

γcvin + (1− γ)
−
[

γcvin ln (cin)

γcvin + (1− γ)

]2}
.

These results follow from the fact that

gr(v) =
r∏

i=1

[γcvin + (1− γ)]

so that

ln [gr(v)] = ln

{
r∏

i=1

[γcvin + (1− γ)]

}
=

r∑
i=1

ln [γcvin + (1− γ)] .

Let

hr(v) =
d ln [gr(v)]

dv
=

g′r(v)
gr(v)

=
r∑

i=1

γcvin ln (cin)

γcvin + (1− γ)
=

r∑
i=1

ji(v)

which means that

g′r(v) = gr(v)
r∑

i=1

γcvin ln (cin)

γcvin + (1− γ)

=

{
r∏

i=1

[γcvin + (1− γ)]

}
r∑

i=1

γcvin ln (cin)

γcvin + (1− γ)
= gr (v)hr (v) .
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Note that

ln [ji (v)] = ln

[
γcvin ln (cin)

γcvin + (1− γ)

]
= ln (γ) + v ln (cin) + ln [ln (cin)]− ln [γcvin + (1− γ)]

so then

j′i (v)
ji (v)

= ln (cin)− γcvin ln (cin)

γcvin + (1− γ)

which means that

j′i (v) = ji (v) [ln (cin)− ji (v)] .

Also since

g′r(v) = gr(v)hr (v)

then

g′′r (v) = gr(v)h
′
r (v) + g′r(v)hr (v)

= gr(v)h
′
r (v) + gr(v) [hr (v)]

2

= gr(v)
[
h′r (v) + h2

r (v)
]
.
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The Mellin transform for the zero-truncated PL estimate, PL+, is given as

MPL+
Tr (v) =

E
[
Ŝv
KM(t)

]
+ (1− γ) [FZ(t)]

n
n−1∏
i=1

[γcvin + (1− γ)]

1− γ [FZ(t)]
n

=
1− [FZ(t)]

n

1− γ [FZ(t)]
nMKM+

Tr (v) +
(1− γ) [FZ(t)]

n gn−1(v)
1− γ [FZ(t)]

n

and the CGF of ln (PL+) is given as

Kln(PL+) (v) = ln
[{1− [FZ(t)]

n}MKM+
Tr (v) + (1− γ) [FZ(t)]

n gn−1(v)
]

− ln {1− γ [FZ(t)]
n}

and as such we will use results from the previous section in our derivations.

The first derivative of this CGF is given as

K ′
ln(PL+) (v) =

{1− [FZ(t)]
n}MKM+

Tr (v)′ + (1− γ) [FZ(t)]
n g′n−1(v)

{1− [FZ(t)]
n}MKM+

Tr (v) + (1− γ) [FZ(t)]
n gn−1(v)

=
B′(v) + (1− γ) [FZ(t)]

n g′n−1(v)
B (v) + (1− γ) [FZ(t)]

n gn−1(v)

and the second derivative of the CGF is

K ′′
ln(KM+) (v)

=

{B(v)+(1−γ)[FZ(t)]ngn−1(v)}{B′′(v)+(1−γ)[FZ(t)]ng′′n−1(v)}
[B(v)+(1−γ)[FZ(t)]ngn−1(v)]

2

− [B′(v)+(1−γ)[FZ(t)]ng′n−1(v)]
2

[B(v)+(1−γ)[FZ(t)]ngn−1(v)]
2

.
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The Mellin transform for the zero-truncated ACL estimate is of the form

MACL+
Tr (v) =

∑n−1
r=0 b (r, FZ (t))

[
γ
(
n−r
n

) v
n + (1− γ)

]n
1− [FZ(t)]

n

=

∑n−1
r=0 b (r, FZ (t)) gr (v)

1− [FZ(t)]
n

which is identical in form to the Mellin transform for the zero-truncated KM estimate

with the exception that in the latter

gr(v) =
r∏

i=1

[γcvin + (1− γ)] .

As a result, it suffices to determine expressions for the first and second derivatives of

gr (v) =

[
γ

(
n− r

n

) v
n

+ (1− γ)

]n
.

Note that

gr(v) = [hr(v)]
n

where

hr(v) = (1− γ) + γ
( r
n

) v
n
.

From this we obtain

g′r(v) = n [hr(v)]
n−1 h′r (v)

where

h′r (v) =
γ

n

( r
n

) v
n
ln
( r
n

)
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and furthermore

g′′r (v) = n [hr(v)]
n−1 h′′r (v) + n(n− 1) [hr(v)]

n−2 [h′r (v)]
2

where

h′′r (v) =
[γ
n
ln
( r
n

)] [ 1
n

( r
n

) v
n
ln
( r
n

)]
= γ

[
1

n
ln
( r
n

)]2 ( r
n

) v
n
.
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