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ABSTRACT 

 

This dissertation is divided into two papers. The first paper is related to 

developing a closed-form approximation for single-channel multiple-server queues with 

generally distributed inter-arrival and service times, which are often found in numerous 

settings, e.g., airports and manufacturing systems. Unfortunately, exact models for such 

systems require distributions for the underlying random variables. Further, data for fitting 

distributions is sometimes not available, and one only has access to means and variances 

of the underlying input random variables. Under heavy traffic, excellent approximations 

already exist for this purpose. In the first paper, a new approximation method for medium 

traffic is presented. Encouraging numerical evidence for gamma distributed inter-arrival 

times, often found in many settings, and double-tapering distributions, such as normal, 

triangular, and gamma, for the service time, is found with the new approximation. In the 

second paper, a new approximation technique is studied for modeling a two-stage 

queueing network (QN) in which the first stage contains a multiple-server (G/G/k) queue 

and the second is composed of multiple single-server queues (G/G/1) in parallel. Airport 

terminals and other service areas, such as sports stadiums and manufacturing systems, are 

examples of systems where such two-stage QNs are encountered. The new approximation 

is rooted in approximating the variance of the service time in a G/G/k queue and leads to 

encouraging numerical behavior.   
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SECTION 

 

1. INTRODUCTION 

 

Queuing theory has attracted a great deal of research interest in the last 60 years. 

Applications in manufacturing, airports, supply chain management and many other areas 

have driven the need for mathematical closed-form models that are both accurate and 

easy to execute as predictive models.  

The history of queuing theory starts in the early 1900s with the transition from 

manual to automatic telephony (Myska, 1995), when Dutch scientist Agner Krarup 

Erlang developed a series of measurements to evaluate a telephone circuit: traffic 

intensity, the B Formula, which determines the probability to lose a call, and the C 

Formula – also known as the D Formula for “Delay”, which determines the probability 

that a customer has to wait in a queue. He also developed a mathematical proof of the 

fact that arrival processes in telephone traffic often follow a Poisson distribution. Indeed, 

he was keenly aware that distributions were significant in determining the performance 

of a queue. His ultimate goal was to determine how many servers are required in order 

to satisfy users without wasting resources. 

Queuing theory did evolve from the work of Erlang as other numerous 

contributors built upon his work and created new formulas for additional applications. 

One of such is the Pollaczek-Khinchine formula that ties the performance measure of a 

queue (queue length and wait times) to the service time distribution for the M/G/1 queue 

(Haigh, 2002). Conny Palm made significant contributions to the field of queuing theory 
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in the 1930s and 1940s, with work primarily focused on queuing abandonment, traffic 

with intensity variations and equilibrium points, where he proved that queues behave in 

a predictable, stable way in the long-term; this is of particular use in the study of 

stochastic produces and steady-state probabilities. During World War II, the field of 

operations research and stochastic processes, which includes queuing theory, were 

widely used by military planners to aid in the decision process for logistics, scheduling, 

and training. In 1953, David Kendall brought some standardized notation  to the field of 

queuing theory and introduced what is now known as Kendall’s notation commonly used 

to describe a queue: A/S/c/K/N/D, where “A” is the distribution for the inter-arrival time, 

“S” is the distribution for the service time, “c” is the number of servers in the queue, “K” 

is the capacity of the queue, “N” is the size of the population of jobs to be served, and 

“D” is the queuing disciple (i.e. First-In, First-Out). In 1954, John Little developed a 

theorem that says: in a stable system, the number of customers in a system is equal to the 

arrival rate multiplied by the time a customer spends in the system, or L = λW (Little, 

1961). In 1958, the book “Queues, Inventory and Maintenance” by Phillip Morse was 

published and is now considered to be one of the first text books on queuing. 

In 1961, John Kingman began the study of generally distributed queues with an 

approximation for the mean waiting time in heavy traffic (Kingman, 1961). This led to 

the development of approximations for multi-server queues which have general 

distributions (G/G/k queue) in medium traffic. Older models such as those of Marchal 

(1976) and Kraemer and Langenbach-Belz (1976) continue to be useful for G/G/1 

queues, but there is a need for additional research on G/G/k queues in the airline, 

manufacturing and service industries and in queuing networks. Since then, other work, 
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which will be covered in the literature review later in this dissertation, has occurred in 

the advancement of this model, but for specific cases, and there are still wide gaps in the 

literature. 

Finally, the use of simulations is a common approach to study these systems. 

While advances in computing power have helped simulations remain relevant and 

powerful, simulation models have major drawbacks because they require distributions 

of the input random variables and take a significant amount of computational time. 

 This dissertation is presented in two papers. The first paper demonstrates a new 

approximation for G/G/k queues that outperforms past models for gamma distributed 

inter-arrival times and double-tapering distributions (e.g., normal, triangular) for service 

times. The second paper presents a new approximation procedure for queueing networks 

in which the queue in one stage is G/G/k and the set of parallel queues in the second 

stage are G/G/1.  
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PAPER 

 

I: AN APPROXIMATION FOR MULTI-SERVER QUEUES WITH GAMMA-
DISTRIBUTED INTER-ARRIVAL TIMES AND DOUBLE TAPERING SERVICE 

TIMES IN MEDIUM TRAFFIC 
 

ABSTRACT 
 

Single-channel multiple-server queues with generally distributed inter-arrival and 

service times (referred to as G/G/k in the literature) are found in numerous settings such as 

airports and manufacturing systems. Unfortunately, exact models for such systems require 

distributions for the underlying random variables. Often, data for fitting distributions is not 

available and one must determine estimates for mean waiting times and queue lengths on 

the basis of the means and variances of the underlying random variables. Under heavy 

traffic, excellent approximations already exist for this purpose. The researcher presents a 

new approximation method for medium traffic, which is based on an appropriate scaling 

of the coefficient of variation of the service time in the G/G/k queue, as well as on existing 

single-server approximations for G/G/1 queues from the past work of Kraemer and 

Langenbach-Belz and that of Marchal. This research finds numerical evidence for gamma 

distributed inter-arrival times, often found in many settings, and double-tapering 

distributions, such as normal, triangular, and gamma, for the service time. 
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1. INTRODUCTION 
 

There is a significant amount of interest among engineers in developing closed-

form approximations for queuing systems because one can plug in values into closed-form 

formulas to obtain estimates for the performance metrics of interest like mean waiting times 

and queue lengths.  In the context of a manufacturing system, such closed-form formulas 

can be integrated into computerized MRP (Materials Requirements Planning) systems 

where the manager may be interested in estimating lead times, which in turn can help 

determine the optimal number of kanbans needed in a production line.  Closed-form 

formulas are also of significant interest to airport managers seeking to optimize an airport 

queue because they can use such formulas to easily quantify performance measures in the 

airport system and plug those values into a linear programming model or some other form 

of optimization model. Lastly, closed-form formulas that are devoid of integrations and 

work with minimal assumptions have a special appeal in performance evaluation because 

of their ease of use and white-box nature. Exact and accurate analytical results often require 

integral calculus, which can be time-consuming and may require specialized software. An 

alternative is discrete-event simulation, which can also be time-consuming and dependent 

on specialized software.    Also, the approximations that only require two moments, means 

and variances, of the input random variables are especially beneficial because they can be 

used with minimal amounts of data, whereas identifying distributions usually requires a 

significant volume of data.  Further, if the approximation error from the formula is within 

25% of the actual value, in practice, the estimate often suffices the need of the manager – 

especially when the estimate is used in combination with factors of safety, for instance, in 

kanban calculations (Askin and Goldberg, 2002), or in optimization and performance 



6 

 

evaluation in an airport setting (Hafizogullari et al., 2003; Manataki and Zografos, 2009). 

Often, if the approximation is accurate up to the first place after the decimal point in 

minutes (for waiting times), it meets the demands of managers.  As such, there is a need to 

develop formulas that work for generally distributed inter-arrival times and service times.  

For a single-server, single-channel queue with generally distributed inter-arrival 

times and service times (GI/G/1 or G/G/1 queue) there are accurate approximations 

available (see any standard text on queuing e.g., Medhi, 2003) when traffic intensity is 

heavy (the server utilization is close to 1).  In the case of low-traffic queues, there are some 

accurate approximations such that in Bloomfield and Cox (1972). In medium traffic, these 

heavy-traffic and low-traffic approximations are not very accurate, and yet many systems 

operate under medium traffic.  For medium traffic, two important closed-form 

approximations have been developed by Kraemer and Langenbach-Belz (1976) and 

Marchal (1976) for the G/G/1 queue. When multiple, identical servers exist for the single-

channel queue, the analysis becomes more involved due to the process by which those 

approximations are computed; the process will be discussed in detail in section 2.4.  The 

most general case is the G/G/k queue in which there are k servers and the inter-arrival and 

the service times have any given distribution. It turns out that the multiple-server setting is 

commonly experienced in a manufacturing system where there are multiple parallel 

machines in a flow shop or airport with multiple servers (check-in agents, TSA to check 

identification document (ID), etc).  When the arrival process is Poisson, one has the M/G/k 

queue for which numerous approximations have been developed, which will be discussed 

later.  
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In this paper, the researcher considered the case of a multiple-server queue for inter-

arrival times that have (i) the hump shape of gamma distributions and (ii) service times of 

which the probability density function tapers at both ends (“double tapering,” but not 

necessarily symmetric), such as the normal distribution, the triangular distribution, and the 

gamma distribution.   This case cannot be modeled via the M/G/k queue.  For a large 

number of systems, including in the airport and the manufacturing setting, the conditions 

described above apply frequently.  For instance, in manufacturing systems, the inter-arrival 

time for a job is often gamma distributed (Benjafaar et al., 2004), while the service time 

may have the normal distribution in case of automation, which typically leads to low 

variability, or the gamma distribution in case the machine is failure-prone, which leads to 

high variability (Das and Sarkar, 1999) .  In an airport setting, empirical evidence suggests 

that inter-arrival times often have the gamma distribution (Khadgi, 2009).  For the ID check 

queue, TSA security line or other service counters, one typically encounters a human 

server, whose service time is often modeled via the triangular distribution that 

approximates the beta distribution well (Johnson, 1997).   

The approximation model presented in this paper is based on the single-server 

approximations of Kramer and Langenbach-Belz (1976) and Marchal (1976) in 

combination with an aggregation scheme that the researcher developed.  The name of the 

model is MAGGIE (Multiple-server AGGregation Index for Expected Values).  The 

underlying idea of the model is to use an aggregation of the servers in order to develop an 

indexing mechanism that transforms the multiple-server system with k servers into an 

equivalent, fictitious, single-server system with the same utilization, but subsequently 

divides the expected value of the length (or waiting time) of the fictitious queue by k to 
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obtain an estimate for the multiple-server queue. In other words, the k servers are combined 

into one fictitious server, which has the same utilization as the original multiple-server 

queue, but the estimate obtained for this imaginary single-server queue is divided by k to 

obtain the appropriate estimate for the original multiple-server queue. The expected queue 

length of the fictitious queue is obtained from the selected single-server approximation.   

MAGGIE was developed while keeping in mind the gamma distributed inter-arrival 

times and the double-tapering distributions described above. Most approximations in the 

literature for G/G/k or M/G/k systems have relied on scaling factors (Lee & Longton, 1957, 

Kimura, 1984; Shore, 1988) that serve as coefficients to an existing (possibly exact) 

formula, where the latter works for a more specific system, less general, than the one for 

which the approximation is proposed.  For instance, approximations for M/G/k systems 

have used the formulas of M/M/k systems, while the same approximations for G/G/k 

systems have used the formulas for M/G/k systems. In the same spirit, the researcher uses 

the G/G/1 approximations of Kraemer and Langenbach-Belz (K-L) and Marchal (MAR) in 

the formulation, along with specific scaling factors dependent on the variability in the inter-

arrival and service times, as well as the aggregation approach, alluded to above.  

The rest of this report is organized as follows.  Section 2.3 provides a detailed 

literature review for the problem domain. Section 2.4 shows the methodology of the 

research behind the MAGGIE model. Section 2.5 presents the numerical results of the 

mathematical model and compares them to the simulation results. Finally, Section 2.6 

presents the conclusion of this research as well as directions for future research. 
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2. LITERATURE REVIEW 
 

A good source for the key papers on closed-form approximations to compute the 

means of queue lengths (and waiting times) of G/G/k queues is the extensive review of 

Kimura (1994).  Some other excellent sources of relevant material include Whitt (1993) 

and Medhi (2003), both papers do thorough analysis of single-server a multiple-server 

queues and the shortcomings of the existing models along with the shortcoming of their 

own approximations. Most of these approximations rely on the exact and well-known 

formulas for the mean queue length (and waiting time) for the M/M/k queue, which can be 

found in any standard undergraduate text on operations research (Hillier & Lieberman, 

2001).   

There is a body of work on heavy traffic approximations, which originated from 

the seminal work of Kingman (1962) that was adapted for G/G/k queues by Kimura (1996). 

There are also numerous other approximations for M/G/k queues: Lee and Longton (1957), 

Page (1982), and Kimura (1986).  Psounis et al. (2005), presented a novel and significantly 

accurate approximation procedure for the M/G/k queue, along with an extensive review of 

approximations by other researchers for the M/G/k queue. Shore (1988) presented an 

approximation for the G/G/k queue that showed promise as a simple, yet accurate, model.  

However, his approximation requires the third and the fourth moment of the inter-arrival 

times and service times, while in this study the focus is on approximations based on the 

first and the second moments. Finally, note that “even when exact numerical procedures 

are available, it is helpful to have simple approximations as concise summaries” (Whitt, 

1993).   
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Two critical papers in the area of generally-distributed inter-arrival and service 

times are Kraemer and Langenbach-Belz (1976) and Marchal (1976), where two different 

closed-form approximations for G/G/1 queues have been developed.  Kraemer and 

Langenbach-Belz and Marchal (1985) and used their respective approximations for the 

G/G/1 queue in combination with the exact formula for the M/M/k queue to develop 

approximations for G/G/k queues. These M/M/k-based models used by Kraemer and 

Langenbach-Belz and Marchal (1985) will be used, in addition to simulation, to benchmark 

the model formulated in this paper. The empirical work this research shows that these 

M/M/k-based models work occasionally, but not consistently enough for the specific 

conditions that  are focus in this paper (gamma distributed inter-arrival times and double-

tapering distributions for the service times) which are encountered frequently in the real 

world.  As such, there is a need to develop new approximations for the G/G/k queue.  This 

paper seeks to fill this gap in the literature. 

Finally, a relevant area to discuss from the literature is the use of distributions. For 

example, in an airport setting, the inter-arrival times often have the gamma distribution 

(Suryani et al. 2010) and in the ID check queue or the queue where the bags are checked 

in, one typically encounters a human server, whose service time is often modeled via the 

triangular distribution.  In manufacturing systems, the inter-arrival time for a job is often 

gamma distributed while the service time often has the normal distribution (in case of law 

variability) or the gamma distribution (in case of higher variability).  Finally, the research 

shows that the exponential distribution is a special case of the gamma distribution and thus 

using the exponential distribution for the inter-arrival time makes the G/G/k queue an 

M/G/k queue. Nonetheless, the findings in this work are not applicable for the 
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exponentially distributed inter-arrival time, but rather for the case where the distribution 

for the inter-arrival time shows the classical hump seen in the typical gamma distribution. 

As alluded to above, for the M/G/k queue, a significant body of literature already exists.  

Contributions of this paper: The focus in this paper is on (i) G/G/k queues, rather 

than M/G/k queues, (ii) medium traffic, where heavy traffic approximations do not perform 

well, (iii) gamma-distributed inter-arrival times and (iv) service times with one of the 

following distributions: triangular, normal or gamma.  For a large number of systems, 

including airport and manufacturing settings, the conditions described above frequently 

apply.   
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3. METHODOLOGY AND MATHEMATICAL MODEL 
 

In this section, the researcher will describe some basic queuing notation, the 

existing conventional models (and their attributes), and afterwards, the researcher will 

introduce MAGGIE, the queuing model that is the main contribution of this research. 

 

3.1. BASIC QUEUING THEORY NOTATION 

To ensure consistent communication through this paper, let us begin with some 

notation: 

𝑘𝑘: Number of servers in the queue 

λ: Mean rate of arrival =  1
E(inter−arrival time)

   

µ: Mean service rate   = 1
E(service time)

 

 𝜌𝜌: Utilization of the servers =  λ𝑘𝑘µ 

𝐿𝐿𝑞𝑞
𝐺𝐺/𝐺𝐺/𝑘𝑘  : Mean number of entities in the multi-server queue 

𝐿𝐿𝐺𝐺/𝐺𝐺/𝑘𝑘: Mean number of customers in the multi-server system 

𝑊𝑊𝑞𝑞
𝐺𝐺/𝐺𝐺/𝑘𝑘: Mean wait time in the multi-server queue 

𝑊𝑊𝐺𝐺/𝐺𝐺/𝑘𝑘: Mean wait time in the multi-server system 

σ𝑎𝑎2 : Variance of the inter-arrival process 

σ𝑠𝑠2: Variance of the service process 

Ca2 = 𝜎𝜎𝑎𝑎2

�1λ�
2 : Squared coefficient of variation for the inter-arrival time  
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Cs2 = 𝜎𝜎𝑠𝑠2

�1𝜇𝜇�
2: Squared coefficient of variation for the service time 

From Little’s rule and queuing basics, see the following formulas:  

𝐿𝐿 = λW 

𝐿𝐿𝑞𝑞 = λWq 

𝑊𝑊 = 𝑊𝑊𝑞𝑞 + 1
𝜇𝜇
   

3.2. MARCHAL APPROXIMATION 

The classical approximation developed by Marchal (1976) for generally distributed 

inter-arrival times and service times, for a single queue (G/G/1) is shown below:  

𝐿𝐿𝑞𝑞
𝐺𝐺/𝐺𝐺/1  ≅  ρ2 (1 + Cs2)(Ca2 + ρ2Cs2)

2 (1 – ρ)(1 + ρ2Cs2)
         (1) 

He then used the existing M/M/k approximation developed by Lee and Haughton 

(1959): 

𝑃𝑃0 =  ∑ kρ
m!

m
 𝑘𝑘−1

𝑚𝑚=0          (2) 

𝐿𝐿𝑞𝑞
𝑀𝑀/𝑀𝑀/𝑘𝑘 =  

𝑃𝑃0�
𝜆𝜆
𝜇𝜇�

𝑘𝑘
𝜌𝜌

𝑘𝑘! (1−𝜌𝜌)2            (3) 

Marchal (1985) developed a scaling factor that exploits his own G/G/1 

approximation (Marchal, 1976), which, when used with M/M/k approximation, serves as a 

formula for the G/G/k queue: The scaling factor, 𝑆𝑆𝑆𝑆, is defined as follows:  

𝑆𝑆𝑆𝑆 =  
�1+𝐶𝐶𝑠𝑠2��𝐶𝐶𝑠𝑠2+�ρ2𝐶𝐶𝑠𝑠2��

2�ρ2𝐶𝐶𝑠𝑠2�
             (4) 

Combining Equations 3 and 4 results in the following formula for the G/G/k queue: 

𝐿𝐿𝑞𝑞
𝐺𝐺/𝐺𝐺/𝑘𝑘 =  𝑆𝑆𝑆𝑆. 𝐿𝐿𝑞𝑞

𝑀𝑀/𝑀𝑀/𝑘𝑘  =  
𝑃𝑃0�

λ
µ�

𝑘𝑘
ρ

𝑘𝑘! (1−ρ)2  
�1+𝐶𝐶𝑠𝑠2��𝐶𝐶𝑠𝑠2+�ρ2𝐶𝐶𝑠𝑠2��

2�ρ2𝐶𝐶𝑠𝑠2�
      (5) 
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3.3. KRAEMER AND LANGENBACK-BELZ (K-L) 

In the same year that Marchal developed his approximation, Kraemer and 

Langenbach-Belz (1976) developed a different approximation for the G/G/1 queue: 

 𝐿𝐿𝑞𝑞
𝐺𝐺/𝐺𝐺/1 ≅  ρ

2 (Ca2 + Cs2) g
2(1 – ρ)

          (6) 

where  𝑔𝑔 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−2 (1 – ρ) (1 + Cs2)2
3 ρ (Ca2 + Cs2)

� when Ca
2 < 1;     (7) 

and  𝑔𝑔 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−1 (1 – ρ) (Ca2−1)
3 ρ (Ca2 + Cs2)

�  when Ca
2 > 1.     (8) 

Similarly, they developed a multi-server approximation that uses the M/M/c 

approximation and their single-server approximation. In this case, the scaling factor K-L 

developed was: 

𝑆𝑆𝑆𝑆 =  𝑔𝑔(𝑐𝑐𝑎𝑎2+𝐶𝐶𝑠𝑠2)
2

          (9) 

where g is as defined in Equations 7 and 8.  

Finally, the K-L approximation for a multi-server system for a general distribution 

service and inter-arrival time (G/G/k) is derived by combining Equations 3 and 9 

𝐿𝐿𝑞𝑞 =  
𝑃𝑃0�

λ
μ�
𝑘𝑘

ρ

𝑘𝑘! (1−ρ)2  𝑔𝑔(𝑐𝑐𝑎𝑎2+𝐶𝐶𝑠𝑠2)
2

         (10) 

where g is as defined in Equations 7 and 8. 

3.4. MAGGIE (MULTIPLE-SERVER AGGREGATION INDEX FOR EXPECTED 
VALUES) 

 

MAGGIE is a new approximation technique that was developed in this research for 

estimating values of the key performance metrics of a queue, namely, the mean length of 

the queue (𝐿𝐿𝑞𝑞) and the mean waiting time in queue (𝑊𝑊𝑞𝑞). The underlying principle of 

MAGGIE is to aggregate a multi-server queue into a single server queue and then use 
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existing approximations for G/G/1 queues to estimate the performance metrics. Now, here 

is a detailed description of the MAGGIE in detail. 

The standard coefficient of variation for the service time in a G/G/1 queue is 

calculated as follows: 

   𝐶𝐶𝑠𝑠2 =  σ𝑠𝑠

�1μ�
2                   (11) 

An aggregation procedure will be adopted to compute an adjusted squared 

coefficient of variation for a multi-server queue in order for it to be treated as a single-

server queue. The aggregation procedure will modify/adjust the coefficient of variation of 

the service time of each server in the multi-server queue and can be done in one of three 

ways, depending on the variability in the inter-arrival time:  

     

a. Aggregating the means when the variability in the inter-arrival time 

is high:  

𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2 =  σ𝑠𝑠

� 1
k μ�

2                                                        (12) 

b. Aggregating the variance when the variability in the inter-arrival 

time is medium:  

𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2 =  k σ𝑠𝑠

�1μ�
2                                                                                                   (13) 

c. Scaling the coefficient when the variability in the inter-arrival time 

is low:  

𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2 =  σ𝑠𝑠

(𝑘𝑘 �1μ�)2
                                                                   (14) 
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The main steps underlying MAGGIE are described next: 

Step 1: The hypothetical aggregated server will be a single server whose parameters 

(mean and variance of the service time) will be computed using one of the three approaches 

discussed via Equations 12 through 14.  

Step 2: The expected length of this aggregated queue will be computed using either 

MAR or the K-L approach for the G/G/1 queue. See Figure 3.1. below for a visual 

representation of the aggregation principle.  

Step 3: The expected value of the queue length (or waiting time) of this hypothetical 

G/G/1 queue will be divided by k in order to obtain the same value for the original G/G/k 

system.  

 
Figure 3.1.  Representation of the Aggregation Principle 

 

In what follows, details of the MAGGIE model are provided.  The areas below were 

derived empirically after obtaining results from numerous experiments.  Different 
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combinations of single-server approximation and different approaches for computing the 

adjusted squared coefficient of variation of the service time were tried.  The following rules 

provide the best results for the gamma distributed inter-arrival times and the double-

tapering service times. The research found that there are 14 different cases, where each 

case represents an area in the quadrant where the x-axis is 𝐶𝐶𝑎𝑎2 and the y-axis is 𝐶𝐶𝑠𝑠2.   

For the case, 𝐶𝐶𝑠𝑠2 > 0.25 , i.e.,  σ𝑠𝑠2 > 0.25/µ2 , it is not possible to find appropriate 

values for the parameters of the normal or the triangular distribution. For instance, if µ =

1
10

, then one must have that σ𝑠𝑠2 > 25. But in order to have such a high value of variance, 

the smallest value in the distribution will be forced to be negative, but the inter-arrival time 

cannot be negative.  Hence, the research model is designed for the range 0 < 𝐶𝐶𝑠𝑠2  ≤ 0.25  

and 0 < 𝐶𝐶𝑎𝑎2  ≤ 1.  Note that for other distributions, values of 𝐶𝐶𝑠𝑠2 > 0.25 cannot be ruled 

out, but those distributions are beyond the scope of this study.  

Area 1: 𝐶𝐶𝑎𝑎2 < 0.30: 

• 𝑘𝑘 < 5 

• 𝐶𝐶𝑠𝑠2  ≤ 0.15 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   computed using Equation 14  

• Marchal’s approximation for the hypothetical aggregated server via 

Equation 1 in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 𝐶𝐶𝑠𝑠2 and ρ is computed as λ

𝑘𝑘µ
 

Area 2: 0.3 ≤ 𝐶𝐶𝑎𝑎2 < 0.60: 

• 𝑘𝑘 < 5 

• 𝐶𝐶𝑠𝑠2  ≤ 0.15 
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• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   computed using Equation 13  

• Marchal’s approximation for the hypothetical aggregated server via 

Equation 1 in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 𝐶𝐶𝑠𝑠2 and ρ is computed as λ

𝑘𝑘µ
 

Area 3: 0.60 ≤  𝐶𝐶𝑎𝑎2 < 0.75: 

• 𝑘𝑘 < 5 

• 𝐶𝐶𝑠𝑠2  ≤ 0.15 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   computed using Equation 13  

• K-L approximation for the hypothetical aggregated server via 

Equation 6, using the g-value in Equation 8, in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 

𝐶𝐶𝑠𝑠2 and ρ is computed as λ
𝑘𝑘µ

 

Area 4: 0.75 ≤  𝐶𝐶𝑎𝑎2 ≤ 1.00: 

• 𝑘𝑘 < 5 

• 𝐶𝐶𝑠𝑠2  ≤ 0.15 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  Computed using Equation 12 

• K-L approximation for the hypothetical aggregated server via 

Equation 6, using the g-value in Equation 8, in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 

𝐶𝐶𝑠𝑠2 and ρ is computed as λ
𝑘𝑘µ

 

Area 5: 𝐶𝐶𝑎𝑎2 < 0.30 

• 𝑘𝑘 < 5 
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• 0.15 < 𝐶𝐶𝑠𝑠2 ≤ 0.25 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  Computed using Equation 14 

• K-L approximation for the hypothetical aggregated server via 

Equation 6, using the g-value in Equation 8, in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 

𝐶𝐶𝑠𝑠2 and ρ is computed as λ
𝑘𝑘µ

 

Area 6: 0.30 ≤  𝐶𝐶𝑎𝑎2 < 0.60: 

• 𝑘𝑘 < 5 

• 0.15 < 𝐶𝐶𝑠𝑠2 ≤ 0.25 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  Computed using Equation 13 

• Marchal’s approximation for the hypothetical aggregated server via 

Equation 1 in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 𝐶𝐶𝑠𝑠2 and ρ is computed as λ

𝑘𝑘µ
 

Area 7: 0.60 ≤  𝐶𝐶𝑎𝑎2 < 0.75: 

• 𝑘𝑘 < 5 

• 0.15 < 𝐶𝐶𝑠𝑠2 ≤ 0.25 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  Computed using Equation 13 

• K-L approximation for the hypothetical aggregated server via 

Equation 6, using the g-value in Equation 8, in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 

𝐶𝐶𝑠𝑠2 and ρ is computed as λ
𝑘𝑘µ

 

Area 8: 0.75 ≤  𝐶𝐶𝑎𝑎2 ≤ 1.00: 
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• 𝑘𝑘 < 5 

• 0.15 < 𝐶𝐶𝑠𝑠2 ≤ 0.25 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  computed using Equation 13 

• K-L approximation for the hypothetical aggregated server via 

Equation 6, using the g-value in Equation 8, in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 

𝐶𝐶𝑠𝑠2 and ρ is computed as λ
𝑘𝑘µ

. This produces the first aggregated performance 

measure (𝐿𝐿𝑞𝑞,𝐾𝐾−𝐿𝐿
𝐺𝐺/𝐺𝐺/𝑘𝑘) 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  Computed using Equation 12 

• Marchal’s approximation for the hypothetical aggregated server via 

Equation 1 in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 𝐶𝐶𝑠𝑠2 and ρ is computed as λ

𝑘𝑘µ
. This 

produces the second aggregated performance measure (𝐿𝐿𝑞𝑞,𝑀𝑀𝑀𝑀𝑀𝑀
𝐺𝐺/𝐺𝐺/𝑘𝑘 ) 

• Finally, compute the arithmetic mean of the two performance 

measures as follows:  𝐿𝐿𝑞𝑞
𝐺𝐺/𝐺𝐺/𝑘𝑘 =

𝐿𝐿𝑞𝑞,𝐾𝐾−𝐿𝐿
𝐺𝐺/𝐺𝐺/𝑘𝑘 + 𝐿𝐿𝑞𝑞,𝑀𝑀𝑀𝑀𝑀𝑀

𝐺𝐺/𝐺𝐺/𝑘𝑘

2
 

Area 9: 𝐶𝐶𝑎𝑎2 < 0.40: 

• 5 ≤ 𝑘𝑘 < 10 

• 𝐶𝐶𝑠𝑠2  ≤ 0.15 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   computed using Equation 14  

• Marchal’s approximation for the hypothetical aggregated server via 

Equation 1 in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 𝐶𝐶𝑠𝑠2 and ρ is computed as λ

𝑘𝑘µ
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Area 10: 0.40 ≤  𝐶𝐶𝑎𝑎2 < 0.75: 

• 5 ≤ 𝑘𝑘 < 10 

• 𝐶𝐶𝑠𝑠2  ≤ 0.15 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   computed using Equation 13  

• Marchal’s approximation for the hypothetical aggregated server via 

Equation 1 in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 𝐶𝐶𝑠𝑠2 and ρ is computed as λ

𝑘𝑘µ
 

Area 11: 0.75 ≤  𝐶𝐶𝑎𝑎2 < 1.00: 

• 5 ≤ 𝑘𝑘 < 10 

• 𝐶𝐶𝑠𝑠2  ≤ 0.15 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  is not used; rather, the conventional 𝐶𝐶𝑠𝑠2 is used 

• The conventional K-L model for the multi-server queues is to be 

used for Equation 10 

Area 12: 𝐶𝐶𝑎𝑎2 < 0.40:  

• 5 ≤ 𝑘𝑘 < 10 

• 0.15 < 𝐶𝐶𝑠𝑠2 ≤ 0.25 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  computed using Equation 14 

• K-L approximation for the hypothetical aggregated server via 

Equation 6, using the g-value in Equation 8, in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 

𝐶𝐶𝑠𝑠2 and ρ is computed as λ
𝑘𝑘µ

 

Area 13: 0.40 ≤  𝐶𝐶𝑎𝑎2 < 0.75: 
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• 5 ≤ 𝑘𝑘 < 10 

• 0.15 < 𝐶𝐶𝑠𝑠2 ≤ 0.25 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  computed using Equation 13 

• Marchal’s approximation for the hypothetical aggregated server via 

Equation 1 in which  𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2   is used instead of 𝐶𝐶𝑠𝑠2 and ρ is computed as λ

𝑘𝑘µ
 

Area 14: 0.75 ≤  𝐶𝐶𝑎𝑎2 < 1.00: 

• 5 ≤ 𝑘𝑘 < 10 

• 𝐶𝐶𝑠𝑠2  ≤ 0.15 

• 𝐶𝐶𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
2  is not used; rather, the conventional 𝐶𝐶𝑠𝑠2 is used 

• The conventional K-L model for the multi-server queues is to be 

used for Equation 10 

In the case that 𝐶𝐶𝑠𝑠2 > 0.25 , i.e.,  σ𝑠𝑠2 > 0.25/µ2 , it is not possible to find 

appropriate values for the parameters of the normal or the triangular distribution. For 

instance, if µ = 1
10

, then one must have that σ𝑠𝑠2 > 25. But in order to have such a high 

value of variance, the smallest value in the distribution will be forced to be negative, but 

the inter-arrival time cannot be negative.  For this reason, the model is designed for the 

range 0 < 𝐶𝐶𝑠𝑠2  ≤ 0.25  and 0 < 𝐶𝐶𝑎𝑎2  ≤ 1.  Note that for other distributions, values of 𝐶𝐶𝑠𝑠2 >

0.25 cannot be ruled out, but those distributions are beyond the scope of this study.  

The logic for the queuing model presented in this paper were summarized in the 

previous section and the section below presents the summary of those results. Figures 3.2 

and 3.3 represent the results of the model. 
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Figure 3.2.  Model for k < 5 Servers 

 

 
Figure 3.3.  Model for 5 ≤ k < 10 Servers 

 

The numerical results of the model are presented in the next section. 
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3.5. NUMERICAL RESULTS 

The results of the computational study are provided in this section.  Thousands of 

scenarios were tested for each of the “areas” discussed above. The results from MAGGIE 

are shown via Tables 3.1 through 3.28, with two tables per area; the top table shows the 

inputs used in simulation and model trials and the bottom table shows the results of the 

models with its respective percent-error.  The waiting time in the queue as estimated by a 

given model is denoted by 𝑊𝑊𝑞𝑞, and the error percentage in MAGGIE, K-L and MAR 

models using simulation as a benchmark was calculated as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 % =  
|𝑊𝑊𝑞𝑞 −𝑊𝑊𝑞𝑞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|

𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑋𝑋 100 

Area 1 

Table 3.1.  Input data for Area 1 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.15.  

Case Number of 
Servers (k) 

𝐶𝐶𝑎𝑎2 Service Time 
Distribution 

𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

1 2 0.10 Triangular 0.11 0.212229 
2 2 0.15 Triangular 0.11 0.320377 
3 2 0.20 Triangular 0.11 0.436271 
4 2 0.25 Triangular 0.11 0.563239 
5 2 0.10 Normal 0.10 0.19811 
6 2 0.15 Normal 0.10 0.31108 
7 2 0.20 Normal 0.10 0.423196 
8 2 0.25 Normal 0.10 0.552683 
9 2 0.10 Normal 0.15 0.276078 
10 2 0.15 Normal 0.15 0.389045 
11 2 0.20 Normal 0.15 0.517875 
12 2 0.25 Normal 0.15 0.646325 

 

 

 



25 

 

Table 3.2.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
1 0.2121 0.06% 0.4153 95.68% 0.1492 29.70% 
2 0.2979 7.02% 0.5562 73.61% 0.2678 16.41% 
3 0.3836 12.07% 0.6971 59.79% 0.4079 6.50% 
4 0.4694 16.66% 0.8380 48.78% 0.5623 0.17% 
5 0.2092 5.60% 0.4057 104.79% 0.1383 30.19% 
6 0.2948 5.23% 0.5461 75.55% 0.2544 18.22% 
7 0.3804 10.11% 0.6865 62.22% 0.3929 7.16% 
8 0.4660 15.68% 0.8269 49.62% 0.5462 1.17% 
9 0.2312 16.26% 0.4792 73.57% 0.2264 17.99% 
10 0.3179 18.29% 0.6229 60.11% 0.3585 7.85% 
11 0.4046 21.87% 0.7667 48.05% 0.5074 2.02% 
12 0.4913 23.99% 0.9104 40.86% 0.6675 3.28% 

 

In the first area, one can see the difference in performance between MAGGIE and 

MAR, where MAR does not perform well in the selected interval. When comparing 

MAGGIE and K-L models, one can see that they perform comparatively well. MAGGIE 

performs better on the lower bounds and K-L performs better on the upper bounds of the 

defined region. But after comparing overall performance, MAGGIE becomes the 

appropriate model to use. 

 

 

 

 

 

 

 

 



26 

 

Area 2 

Table 3.3.  Input data for Area 2 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.10 (if k = 3) µ = 0.075 (if k = 4).  G=Gamma and T = 

Triangular 
Case Number of 

Servers (k) 
𝐶𝐶𝑎𝑎2 Service Time 

Distribution 
𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

13 2 0.35 G 0.15 0.72345 
14 2 0.40 G 0.15 0.867227 
15 2 0.45 G 0.15 0.983115 
16 2 0.50 G 0.15 1.12032 
17 2 0.55 G 0.15 1.27526 
18 2 0.30 T 0.11 0.422073 
19 2 0.35 T 0.11 0.51454 
20 2 0.40 T 0.11 0.612067 
21 2 0.45 T 0.11 0.733225 
22 2 0.50 T 0.11 0.833472 
23 2 0.55 T 0.11 1.001011 

 

Table 3.4.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
13 0.7384 2.07% 0.9983 37.99% 0.8384 15.89% 
14 0.8056 7.11% 1.1181 28.93% 0.9826 13.30% 
15 0.8727 11.23% 1.2378 25.91% 1.1271 14.65% 
16 0.9398 16.11% 1.3576 21.18% 1.2706 13.41% 
17 1.0069 21.04% 1.4774 15.85% 1.4126 10.77% 
18 0.4893 15.93% 0.6945 64.54% 0.5149 21.99% 
19 0.5393 4.81% 0.7945 54.41% 0.6347 23.35% 
20 0.5892 3.74% 0.8944 46.13% 0.7565 23.60% 
21 0.6392 12.82% 0.9944 35.62% 0.8787 19.84% 
22 0.6892 17.31% 1.0943 31.29% 1.0005 20.04% 
23 0.7391 26.16% 1.1943 19.31% 1.1211 12.00% 

 

Similarly to Area 1, it is clear that MAGGIE is the superior model when its 

performance is compared to MAR, although MAR’s error percentage is starting to trend 

down. When comparing the error percentage of MAGGIE to K-L, there is a similar trend 

as that of Area 1 and the overall performance is better for MAGGIE. 
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Area 3 

Table 3.5.  Input data for Area 3 in which the inter-arrival time has the gamma 
distribution,λ = 1

5
;  µ = 0.15 (if k = 3) µ = 0.10 (if k = 3) µ = 0.075 (if k = 4).  

Case Number of 
Servers (k) 

𝐶𝐶𝑎𝑎2 Service Time 
Distribution 

𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

24 2 0.60 Normal 0.05 1.4424 
25 2 0.65 Normal 0.05 1.6156 
26 2 0.70 Normal 0.05 1.9426 
27 2 0.60 Normal 0.10 1.6149 
28 2 0.65 Normal 0.10 1.7789 
29 2 0.70 Normal 0.10 2.0797 
30 2 0.60 Normal 0.15 1.6937 
31 2 0.65 Normal 0.15 1.9307 
32 3 0.60 Triangular 0.11 1.2923 
33 3 0.60 Gamma 0.15 1.3678 
34 3 0.65 Gamma 0.15 1.5598 
35 3 0.70 Gamma 0.15 1.7692 
36 4 0.60 Triangular 0.11 1.0769 
37 4 0.65 Triangular 0.11 1.2286 

 

Table 3.6.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
24 1.3783 4.45% 1.7043 18.16% 1.5968 10.70% 
25 1.4339 11.24% 1.8413 13.97% 1.7609 9.00% 
26 1.4900 23.30% 1.9783 1.84% 1.9216 1.08% 
27 1.5235 5.66% 1.8099 12.07% 1.7297 7.11% 
28 1.5831 11.01% 1.9504 9.64% 1.8940 6.47% 
29 1.6428 21.01% 2.0908 0.54% 2.0548 1.20% 
30 1.6763 1.02% 1.9167 13.17% 1.8627 9.98% 
31 1.7382 9.97% 2.0604 6.72% 2.0272 5.00% 
32 1.1641 9.92% 1.5201 17.63% 1.4563 12.69% 
33 1.3038 4.68% 1.5972 16.77% 1.5523 13.49% 
34 1.3418 13.98% 1.7170 10.08% 1.6893 8.30% 
35 1.3799 22.00% 1.8368 3.82% 1.8234 3.06% 
36 0.9741 9.55% 1.2942 20.17% 1.2398 15.12% 
37 0.9999 18.61% 1.3942 13.48% 1.3564 10.40% 

 

The data in Area 3 shows a significant improvement in the MAR model 

performance and greater competition among the three models. 
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Area 4 

Table 3.7.  Input data for Area 4 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.15 (if k = 3) µ = 0.10 (if k = 3) µ = 0.075 (if k = 4).  

Case Number of 
Servers (k) 

𝐶𝐶𝑎𝑎2 Service Time 
Distribution 

𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

38 2 0.80 Normal 0.15 2.4871 
39 2 0.85 Normal 0.15 2.7473 
40 2 0.90 Normal 0.15 2.8023 
41 2 0.95 Normal 0.15 3.0979 
42 2 1.00 Normal 0.15 3.1409 
43 3 0.80 Triangular 0.11 2.0398 
44 3 0.85 Triangular 0.11 2.1553 
45 3 0.90 Triangular 0.11 2.2597 
46 3 0.90 Gamma 0.15 2.3909 
47 3 0.95 Gamma 0.15 2.5544 
48 3 1.00 Gamma 0.15 2.6709 

 

Table 3.8.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
38 2.4471 1.61% 2.4917 0.19% 2.4980 0.44% 
39 2.5014 8.95% 2.6354 4.07% 2.6467 3.66% 
40 2.5562 8.78% 2.7792 0.82% 2.7911 0.40% 
41 2.6113 15.71% 2.9229 5.65% 2.9311 5.39% 
42 2.6667 15.10% 3.0667 2.36% 3.0667 2.36% 
43 2.0651 1.24% 1.9897 2.46% 1.9855 2.66% 
44 2.0918 2.95% 2.1071 2.24% 2.1094 2.13% 
45 2.1196 6.20% 2.2245 1.56% 2.2297 1.33% 
46 2.5562 6.91% 2.3160 3.13% 2.3259 2.72% 
47 2.5832 1.13% 2.4358 4.64% 2.4426 4.38% 
48 2.6111 2.24% 2.5556 4.32% 2.5556 4.32% 

 

In this area, all three models perform well and are interchangeable. Still, due to the 

computational advantages of MAGGIE, the research suggests to use MAGGIE 
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Area 5 

Table 3.9.  Input data for Area 5 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.15 (if k = 3) µ = 0.10 (if k = 3) µ = 0.075 (if k = 4).  

Case Number of 
Servers (k) 

𝐶𝐶𝑎𝑎2 Service Time 
Distribution 

𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

49 3 0.10 Gamma 0.20 0.2878 
50 3 0.15 Gamma 0.20 0.3741 
51 3 0.20 Gamma 0.20 0.4726 
52 3 0.25 Gamma 0.20 0.5723 
53 4 0.10 Normal 0.20 0.1858 
54 4 0.15 Normal 0.20 0.2674 
55 4 0.20 Normal 0.20 0.3517 

 

Table 3.10.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
49 0.2584 10.20% 0.4626 60.76% 0.2710 5.82% 
50 0.3244 13.29% 0.5850 56.37% 0.3909 4.49% 
51 0.3868 18.15% 0.7075 49.71% 0.5215 10.35% 
52 0.4464 22.00% 0.8299 45.01% 0.6592 15.19% 
53 0.1745 6.09% 0.3939 111.98% 0.2308 24.21% 
54 0.2246 16.02% 0.4981 86.24% 0.3328 24.43% 
55 0.2720 22.67% 0.6024 71.27% 0.4440 26.23% 

 

This area behaves similarly to Area 1, where MAR performs poorly and MAGGIE 

outperforms K-L, but K-L is still acceptable in some areas. In this area, the results show 

that MAGGIE’s error percentage is below 25%. 
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Area 6 

Table 3.11.  Input data for Area 6 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.15 (if k = 3) µ = 0.10 (if k = 3) µ = 0.075 (if k = 4).  

Case Number of 
Servers (k) 

𝐶𝐶𝑎𝑎2 Service Time 
Distribution 

𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

56 3 0.30 Normal 0.25 0.7710 
57 3 0.35 Normal 0.25 0.8983 
58 3 0.40 Normal 0.25 1.0368 
59 3 0.45 Normal 0.25 1.1721 
60 3 0.50 Normal 0.25 1.3400 
61 3 0.55 Normal 0.25 1.4760 
62 3 0.60 Normal 0.25 1.6127 
63 3 0.30 Gamma 0.20 0.7097 
64 3 0.35 Gamma 0.20 0.8143 
65 3 0.40 Gamma 0.20 0.9456 
66 3 0.45 Gamma 0.20 1.0877 
67 3 0.50 Gamma 0.20 1.2331 
68 3 0.55 Gamma 0.20 1.3490 
69 3 0.60 Gamma 0.20 1.4591 
70 3 0.30 Gamma 0.25 0.7826 
71 3 0.35 Gamma 0.25 0.9029 
72 3 0.40 Gamma 0.25 1.0420 

 
Table 3.12.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 

 MAGGIE MAGGIE MAR MAR K-L K-L 
Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
56 0.9236 19.80% 1.0278 33.31% 0.9082 17.80% 
57 0.9965 10.93% 1.1528 28.33% 1.0544 17.37% 
58 1.0694 3.15% 1.2778 23.25% 1.2009 15.83% 
59 1.1424 2.54% 1.4028 19.68% 1.3469 14.91% 
60 1.2153 9.31% 1.5278 14.01% 1.4914 11.30% 
61 1.2882 12.73% 1.6528 11.98% 1.6339 10.69% 
62 1.3611 15.60% 1.7778 10.24% 1.7740 10.00% 
63 0.7953 12.06% 0.9524 34.20% 0.8015 12.94% 
64 0.8655 6.28% 1.0748 31.98% 0.9461 16.18% 
65 0.9357 1.05% 1.1973 26.61% 1.0916 15.44% 
66 1.0058 7.53% 1.3197 21.32% 1.2369 13.71% 
67 1.0760 12.74% 1.4422 16.96% 1.3810 12.00% 
68 1.1462 15.03% 1.5646 15.98% 1.5232 12.91% 
69 1.2164 16.63% 1.6871 15.63% 1.6631 13.98% 
70 0.9236 18.02% 1.0278 31.33% 0.9082 16.05% 
71 0.9965 10.36% 1.1528 27.68% 1.0544 16.78% 
72 1.0694 2.63% 1.2778 22.63% 1.2009 15.25% 
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This area follows a similar pattern as that of Area 2. The MAR model improves, 

and though K-L and MAGGIE are comparable, yet MAGGIE performs better. 

Area 7 

Table 3.13.  Input data for Area 7 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.15 (if k = 3) µ = 0.10 (if k = 3) µ = 0.075 (if k = 4).  

Case Number of 
Servers (k) 

𝐶𝐶𝑎𝑎2 Service Time 
Distribution 

𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

73 3 0.60 Triangular 0.22 1.5200 
74 3 0.65 Triangular 0.22 1.7133 
75 3 0.70 Triangular 0.22 1.8972 
76 3 0.60 Normal 0.20 1.4599 
77 3 0.65 Normal 0.20 1.6051 
78 3 0.70 Normal 0.20 1.9256 
79 3 0.60 Normal 0.25 1.6127 
80 3 0.65 Normal 0.25 1.7852 
81 3 0.70 Normal 0.25 2.0817 
82 3 0.60 Gamma 0.20 1.4591 
83 3 0.65 Gamma 0.20 1.6832 
84 3 0.70 Gamma 0.20 1.8421 
85 3 0.60 Gamma 0.25 1.6379 
86 3 0.65 Gamma 0.25 1.7366 
87 3 0.70 Gamma 0.25 1.9918 
88 4 0.60 Triangular 0.22 1.2496 
89 4 0.65 Triangular 0.22 1.3855 
90 4 0.70 Triangular 0.22 1.5961 
91 4 0.60 Normal 0.20 1.2745 
92 4 0.65 Normal 0.20 1.3831 
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Table 3.14.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
73 1.5146 0.35% 1.7137 12.74% 1.6957 11.56% 
74 1.5535 9.33% 1.8369 7.21% 1.8329 6.98% 
75 1.5924 16.06% 1.9601 3.32% 1.9671 3.69% 
76 1.4666 0.46% 1.6871 15.57% 1.6631 13.92% 
77 1.5053 6.22% 1.8095 12.73% 1.8003 12.16% 
78 1.5440 19.82% 1.9320 0.33% 1.9344 0.45% 
79 1.6304 1.10% 1.7778 10.24% 1.7740 10.00% 
80 1.6695 6.48% 1.9028 6.59% 1.9113 7.06% 
81 1.7087 17.92% 2.0278 2.59% 2.0455 1.74% 
82 1.4666 0.51% 1.6871 15.63% 1.6631 13.98% 
83 1.5053 10.57% 1.8095 7.50% 1.8003 6.96% 
84 1.5440 16.18% 1.9320 4.88% 1.9344 5.01% 
85 1.6304 0.46% 1.7778 8.54% 1.7740 8.31% 
86 1.6695 3.86% 1.9028 9.57% 1.9113 10.06% 
87 1.7087 14.21% 2.0278 1.81% 2.0455 2.70% 
88 1.3330 6.67% 1.4595 16.80% 1.4444 15.59% 
89 1.3594 1.89% 1.5644 12.91% 1.5612 12.68% 
90 1.3860 13.16% 1.6694 4.59% 1.6754 4.97% 
91 1.2832 0.68% 1.4364 12.70% 1.4161 11.11% 
92 1.3096 5.32% 1.5407 11.39% 1.5328 10.82% 

 

In this area, all three models are acceptable and competitive with one another. The 

difference between the models shows MAGGIE slightly outperforming MAR and K-L 

thereby providing a slight advantage to MAGGIE. 
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Area 8 

Table 3.15.  Input data for Area 8 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.15 (if k = 3) µ = 0.10 (if k = 3) µ = 0.075 (if k = 4).  

Case Number of 
Servers (k) 

𝐶𝐶𝑎𝑎2 Service Time 
Distribution 

𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

93 2 0.80 Normal 0.25 2.8357 
94 2 0.85 Normal 0.25 2.9558 
95 2 0.90 Normal 0.25 3.1088 
96 2 0.95 Normal 0.25 3.3247 
97 2 1.00 Normal 0.25 3.5314 
98 3 0.80 Triangular 0.22 2.3044 
99 3 0.85 Triangular 0.22 2.3711 
100 3 0.90 Triangular 0.22 2.6670 
101 3 0.95 Triangular 0.22 2.6792 
102 3 1.00 Triangular 0.22 2.8203 
103 3 0.80 Gamma 0.20 2.2170 
104 3 0.85 Gamma 0.20 2.3400 
105 3 0.90 Gamma 0.20 2.4866 
106 3 0.95 Gamma 0.20 2.6018 

 

Table 3.16.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
93 2.5082 11.55% 2.7333 3.61% 2.7647 2.50% 
94 2.6123 11.62% 2.8833 2.45% 2.9134 1.43% 
95 2.7152 12.66% 3.0333 2.43% 3.0578 1.64% 
96 2.8166 15.28% 3.1833 4.25% 3.1978 3.82% 
97 2.9167 17.41% 3.3333 5.61% 3.3333 5.61% 
98 2.2487 2.42% 2.2065 4.25% 2.2255 3.42% 
99 2.3235 2.01% 2.3297 1.75% 2.3494 0.92% 
100 2.3974 10.11% 2.4529 8.03% 2.4697 7.40% 
101 2.4704 7.79% 2.5761 3.85% 2.5864 3.46% 
102 2.5424 9.85% 2.6993 4.29% 2.6993 4.29% 
103 2.1531 2.88% 2.1769 1.81% 2.1928 1.09% 
104 2.2273 4.82% 2.2993 1.74% 2.3167 1.00% 
105 2.3006 7.48% 2.4218 2.61% 2.4370 1.99% 
106 2.3730 8.79% 2.5442 2.21% 2.5537 1.85% 

 

In Area 8, all three models perform acceptably, with K-L and MAR performing 

slightly better in some areas. Still the computational advantage of MAGGIE and the 
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acceptable performance and consistency with the other areas leads the research to continue 

with MAGGIE as the preferred method. 

Area 9 

Table 3.17.  Input data for Area 9 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.06 (if k = 5) µ = 0.05 (if k = 6) µ = 0.043 (if k = 7) µ =

0.038 (if k = 8) µ = 0.03 (if k = 9).  
Case Number of 

Servers (k) 
𝐶𝐶𝑎𝑎2 Service Time 

Distribution 
𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

107 5 0.05 Triangular 0.11 0.0380 
108 5 0.10 Triangular 0.11 0.0777 
109 5 0.15 Triangular 0.11 0.1263 
110 5 0.20 Normal 0.05 0.1318 
111 5 0.25 Normal 0.05 0.1867 
112 5 0.30 Normal 0.05 0.2552 
113 5 0.05 Normal 0.10 0.0360 
114 5 0.10 Normal 0.10 0.0702 
115 5 0.15 Normal 0.10 0.1217 
116 5 0.20 Normal 0.10 0.1759 
117 5 0.25 Normal 0.10 0.2397 
118 6 0.20 Gamma 0.05 0.0979 
119 6 0.25 Gamma 0.05 0.1497 
120 6 0.30 Gamma 0.05 0.2133 
121 6 0.35 Gamma 0.05 0.2638 
122 9 0.20 Triangular 0.11 0.0691 
123 9 0.25 Triangular 0.11 0.0993 
124 9 0.30 Triangular 0.11 0.1374 
125 9 0.35 Triangular 0.11 0.1824 
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Table 3.18.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
107 0.0401 5.42% 0.1681 341.93% 0.0375 1.41% 
108 0.0738 4.97% 0.2544 227.59% 0.0914 17.69% 
109 0.1076 14.77% 0.3407 169.86% 0.1640 29.90% 
110 0.1371 3.99% 0.3728 182.78% 0.1739 31.91% 
111 0.1706 8.63% 0.4567 144.60% 0.2623 40.48% 
112 0.2041 20.04% 0.5406 111.80% 0.3585 40.46% 
113 0.0397 10.27% 0.1625 351.38% 0.0330 8.34% 
114 0.0734 4.53% 0.2485 253.90% 0.0847 20.62% 
115 0.1071 11.97% 0.3345 174.93% 0.1558 28.05% 
116 0.1408 19.95% 0.4205 139.08% 0.2406 36.79% 
117 0.1745 27.19% 0.5065 111.32% 0.3346 39.60% 
118 0.1137 16.14% 0.3250 231.96% 0.1516 54.85% 
119 0.1416 5.40% 0.3981 165.97% 0.2286 52.72% 
120 0.1695 20.54% 0.4712 120.91% 0.3125 46.51% 
121 0.1974 25.18% 0.5444 106.35% 0.4005 51.81% 
122 0.0765 10.66% 0.2562 270.60% 0.1499 116.83% 
123 0.0952 4.13% 0.3079 210.06% 0.2066 108.05% 
124 0.1138 17.19% 0.3597 161.76% 0.2667 94.08% 
125 0.1324 27.42% 0.4115 125.58% 0.3287 80.19% 

 

This area shows a significant advantage for MAGGIE over the conventional 

models, MAR and K-L. Particularly, MAR performs poorly and K-L has a large error 

percentage in some cases. MAGGIE has a few cases where the error percentage exceeds 

25%, but the error percentage is still significantly less than that of MAR or K-L. 
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Area 10 

Table 3.19.  Input data for Area 10 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.06 (if k = 5) µ = 0.05 (if k = 6) µ = 0.043 (if k = 7) µ =

0.038 (if k = 8) µ = 0.03 (if k = 9).  
Case Number of 

Servers (k) 
𝐶𝐶𝑎𝑎2 Service Time 

Distribution 
𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

126 5 0.40 Normal 0.10 0.5015 
127 5 0.45 Normal 0.10 0.5899 
128 5 0.50 Normal 0.10 0.7074 
129 5 0.55 Normal 0.10 0.7877 
130 7 0.45 Triangular 0.11 0.4224 
131 7 0.50 Triangular 0.11 0.4969 
132 7 0.55 Triangular 0.11 0.5720 
133 7 0.60 Triangular 0.11 0.6793 
134 7 0.65 Triangular 0.11 0.7631 
135 8 0.50 Normal 0.10 0.4243 
136 8 0.55 Normal 0.10 0.4976 
137 8 0.60 Normal 0.10 0.5852 
138 8 0.65 Normal 0.10 0.6427 
139 9 0.40 Gamma 0.05 0.1949 
140 9 0.45 Gamma 0.05 0.2542 
141 9 0.50 Gamma 0.05 0.3068 
142 9 0.55 Gamma 0.05 0.3700 
143 9 0.60 Gamma 0.05 0.4639 
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Table 3.20.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
126 0.5091 1.51% 0.7645 52.44% 0.6424 28.09% 
127 0.5500 6.77% 0.8506 44.18% 0.7479 26.77% 
128 0.5909 16.47% 0.9366 32.40% 0.8529 20.57% 
129 0.6318 19.79% 1.0226 29.82% 0.9570 21.50% 
130 0.4883 15.61% 0.6571 55.57% 0.5807 37.48% 
131 0.5195 4.54% 0.7231 45.52% 0.6612 33.06% 
132 0.5507 3.73% 0.7892 37.96% 0.7408 29.50% 
133 0.5819 14.34% 0.8552 25.90% 0.8193 20.61% 
134 0.6132 19.65% 0.9213 20.72% 0.8964 17.46% 
135 0.4734 11.56% 0.6332 49.22% 0.5767 35.91% 
136 0.5011 0.70% 0.6914 38.95% 0.6470 30.02% 
137 0.5287 9.66% 0.7495 28.07% 0.7163 22.40% 
138 0.5564 13.43% 0.8077 25.67% 0.7843 22.02% 
139 0.2685 37.73% 0.4250 118.01% 0.3377 73.23% 
140 0.2909 14.44% 0.4753 86.98% 0.4005 57.55% 
141 0.3133 2.13% 0.5256 71.33% 0.4632 50.99% 
142 0.3356 9.30% 0.5760 55.68% 0.5254 42.00% 
143 0.3580 22.83% 0.6263 35.00% 0.5868 26.49% 

 

Similar to Area 9, the conventional models of MAR and K-L perform beyond an 

acceptable level of error percentage, although not as badly as in Area 9. Meanwhile, 

MAGGIE performs well in this area; again, a few data points show error that is higher than 

desired, but it remains overall in acceptable levels. 
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Area 12 

Table 3.21.  Input data for Area 12 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.06 (if k = 5) µ = 0.05 (if k = 6) µ = 0.043 (if k = 7) µ =

0.038 (if k = 8) µ = 0.03 (if k = 9).  
Case Number of 

Servers (k) 
𝐶𝐶𝑎𝑎2 Service Time 

Distribution 
𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 

144 5 0.05 Normal 0.20 0.0894 
145 5 0.10 Normal 0.20 0.1445 
146 5 0.15 Normal 0.20 0.2056 
147 5 0.20 Normal 0.20 0.2832 
148 6 0.05 Gamma 0.20 0.0766 
149 6 0.10 Gamma 0.20 0.1169 
150 6 0.15 Gamma 0.20 0.1698 
151 6 0.20 Gamma 0.20 0.2212 
152 6 0.25 Gamma 0.20 0.2830 
153 8 0.05 Triangular 0.22 0.0485 
154 8 0.10 Triangular 0.22 0.0750 
155 8 0.15 Triangular 0.22 0.1128 
156 8 0.20 Triangular 0.22 0.1508 
157 8 0.25 Triangular 0.22 0.1988 
158 8 0.30 Triangular 0.22 0.2575 

 

Table 3.22.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
144 0.0871 2.60% 0.2500 179.57% 0.1226 37.10% 
145 0.1303 9.85% 0.3400 135.24% 0.1992 37.82% 
146 0.1707 16.99% 0.4300 109.11% 0.2873 39.72% 
147 0.2089 26.24% 0.5200 83.61% 0.3833 35.34% 
148 0.0672 12.29% 0.2179 184.39% 0.1069 39.52% 
149 0.1034 11.51% 0.2964 153.65% 0.1737 48.65% 
150 0.1372 19.19% 0.3748 120.75% 0.2504 47.48% 
151 0.1692 23.50% 0.4533 104.96% 0.3341 51.06% 
152 0.1997 29.42% 0.5317 87.91% 0.4224 49.28% 
153 0.0454 6.38% 0.1783 267.68% 0.0940 93.84% 
154 0.0723 3.60% 0.2395 219.33% 0.1476 96.80% 
155 0.0976 13.51% 0.3007 166.48% 0.2084 84.68% 
156 0.1216 19.35% 0.3620 140.10% 0.2741 81.80% 
157 0.1445 27.30% 0.4232 112.92% 0.3431 72.62% 
158 0.1665 35.34% 0.4844 88.13% 0.4141 60.82% 
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In this area, there is a significant error percentage in MAR and a high error 

percentage in K-L. MAGGIE does contain a few high-error data points, but still 

outperforms the conventional models and is therefore the best choice in this area. 

Area 13 

Table 3.23.  Input data for Area 13 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.06 (if k = 5) µ = 0.05 (if k = 6) µ = 0.043 (if k = 7) µ =

0.038 (if k = 8) µ = 0.03 (if k = 9).  
Case Number of 

Servers (k) 
𝐶𝐶𝑎𝑎2 Service Time 

Distribution 
𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

159 5 0.45 Triangular 0.22 0.7681 
160 5 0.50 Triangular 0.22 0.8723 
161 5 0.55 Triangular 0.22 0.9622 
162 5 0.60 Triangular 0.22 1.0854 
163 5 0.65 Triangular 0.22 1.2382 
164 6 0.45 Gamma 0.20 0.5872 
165 6 0.50 Gamma 0.20 0.7102 
166 6 0.55 Gamma 0.20 0.7821 
167 6 0.60 Gamma 0.20 0.8913 
168 6 0.65 Gamma 0.20 1.0130 
169 7 0.60 Triangular 0.22 0.7884 
170 7 0.65 Triangular 0.22 0.8534 
171 7 0.70 Triangular 0.22 0.9990 
172 8 0.60 Normal 0.20 0.6848 
173 8 0.65 Normal 0.20 0.7520 
174 8 0.70 Normal 0.20 0.9046 
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Table 3.24.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
159 0.8685 13.07% 0.9882 28.66% 0.9334 21.52% 
160 0.9153 4.93% 1.0788 23.68% 1.0394 19.16% 
161 0.9621 0.01% 1.1694 21.53% 1.1440 18.89% 
162 1.0089 7.05% 1.2599 16.08% 1.2469 14.88% 
163 1.0557 14.74% 1.3505 9.07% 1.3477 8.85% 
164 0.7838 33.49% 0.8456 44.02% 0.7925 34.97% 
165 0.8237 15.98% 0.9240 30.10% 0.8848 24.58% 
166 0.8635 10.40% 1.0025 28.17% 0.9759 24.77% 
167 0.9034 1.36% 1.0809 21.27% 1.0656 19.56% 
168 0.9432 6.89% 1.1594 14.45% 1.1535 13.86% 
169 0.9070 15.05% 0.9645 22.34% 0.9544 21.06% 
170 0.9427 10.46% 1.0338 21.13% 1.0316 20.88% 
171 0.9784 2.06% 1.1031 10.42% 1.1071 10.82% 
172 0.8302 21.23% 0.8384 22.43% 0.8265 20.69% 
173 0.8618 14.60% 0.8992 19.57% 0.8946 18.96% 
174 0.8935 1.22% 0.9601 6.14% 0.9613 6.27% 

 

This area provides shows a substantial improvement on the conventional models, 

MAR and K-L, when compared to previous areas but is still beyond acceptable levels. 

MAGGIE has a few high-error data points, but still outperforms MAR and K-L. 

Special Areas 

As discussed in the previous section, two regions, Areas 11 and 14, do not use the 

MAGGIE queuing model due to the better performance from the conventional models. 

This difference in performance is found as the number of servers increase (greater than 

five) and as the squared coefficient of variation for the service time increases (greater than 

0.75); the results are summarized in the tables below. 

In the cases shown below, the data shows that the K-L and MAR models 

outperformed the MAGGIE model, with K-L having the slight edge over MAR. While 

MAGGIE does perform comparably, even better in some sub-regions, it fails to 
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consistently perform well enough to make it the model of choice. Therefore, in these cases, 

the research strongly suggests using the K-L model.   

Area 11 

Table 3.25.  Input data for Area 11 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.06 (if k = 5) µ = 0.05 (if k = 6) µ = 0.043 (if k = 7) µ =

0.038 (if k = 8) µ = 0.03 (if k = 9).  
Case Number of 

Servers (k) 
𝐶𝐶𝑎𝑎2 Service Time 

Distribution 
𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

175 5 0.90 Triangular 0.11 1.6689 
176 5 0.95 Triangular 0.11 1.8533 
177 5 1.00 Triangular 0.11 1.9310 
178 5 0.75 Normal 0.05 1.2840 
179 5 0.80 Normal 0.05 1.3967 
180 5 0.85 Normal 0.05 1.6240 
181 5 0.75 Normal 0.15 1.4276 
182 5 0.80 Normal 0.15 1.5777 
183 5 0.85 Normal 0.15 1.7123 
184 5 0.90 Normal 0.15 1.8181 
185 5 0.95 Normal 0.15 1.8557 
186 5 1.00 Normal 0.15 2.0881 
187 6 0.75 Triangular 0.11 1.2314 
188 6 0.80 Triangular 0.11 1.3244 
189 6 0.85 Triangular 0.11 1.4304 
190 6 0.90 Triangular 0.11 1.5065 
191 6 0.95 Triangular 0.11 1.5953 
192 6 1.00 Triangular 0.11 1.7946 
193 9 0.75 Gamma 0.10 0.8444 
194 9 0.80 Gamma 0.10 0.8558 
195 9 0.85 Gamma 0.10 0.9666 
196 9 0.90 Gamma 0.10 1.0481 
197 9 0.95 Gamma 0.10 1.1746 
198 9 1.00 Gamma 0.10 1.2403 
199 9 0.75 Gamma 0.15 0.8398 
200 9 0.80 Gamma 0.15 0.9137 
201 9 0.85 Gamma 0.15 1.0522 
202 9 0.90 Gamma 0.15 1.0935 
203 9 0.95 Gamma 0.15 1.2343 
204 9 1.00 Gamma 0.15 1.2689 
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Table 3.26.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 

Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
175 1.6430 1.55% 1.6350 2.03% 1.6388 1.80% 
176 1.6884 8.90% 1.7213 7.12% 1.7245 6.95% 
177 1.7333 10.24% 1.8076 6.39% 1.8076 6.39% 
178 1.2589 1.96% 1.2956 0.90% 1.2731 0.85% 
179 1.3578 2.79% 1.3795 1.23% 1.3667 2.15% 
180 1.4683 9.59% 1.4634 9.89% 1.4578 10.23% 
181 1.0637 25.49% 1.4381 0.74% 1.4364 0.62% 
182 1.9768 25.30% 1.5262 3.26% 1.5301 3.01% 
183 2.0251 18.27% 1.6142 5.73% 1.6211 5.33% 
184 2.0728 14.01% 1.7023 6.37% 1.7096 5.97% 
185 2.1200 14.24% 1.7903 3.52% 1.7953 3.25% 
186 2.1667 3.76% 1.8783 10.05% 1.8783 10.05% 
187 1.6006 29.99% 1.1996 2.58% 1.1904 3.33% 
188 1.6414 23.94% 1.2748 3.74% 1.2721 3.95% 
189 1.6818 17.57% 1.3500 5.62% 1.3515 5.52% 
190 1.7216 14.28% 1.4252 5.39% 1.4286 5.17% 
191 1.7611 10.39% 1.5005 5.94% 1.5033 5.77% 
192 1.8000 0.30% 1.5757 12.20% 1.5757 12.20% 
193 0.6570 22.19% 0.8199 2.90% 0.8128 3.74% 
194 0.6656 22.23% 0.8715 1.83% 0.8689 1.53% 
195 0.6746 30.21% 0.9231 4.50% 0.9236 4.45% 
196 0.6840 34.74% 0.9747 7.00% 0.9766 6.82% 
197 0.6937 40.94% 1.0263 12.63% 1.0281 12.47% 
198 0.7037 43.26% 1.0779 13.09% 1.0779 13.09% 
199 0.8273 1.49% 0.8628 2.74% 0.8617 2.61% 
200 0.8351 8.60% 0.9156 0.21% 0.9179 0.46% 
201 0.8434 19.85% 0.9684 7.97% 0.9726 7.57% 
202 0.8521 22.08% 1.0212 6.61% 1.0256 6.21% 
203 0.8611 30.23% 1.0741 12.98% 1.0771 12.73% 
204 0.8704 31.40% 1.1269 11.19% 1.1269 11.19% 
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Area 14 

Table 3.27.  Input data for Area 14 in which the inter-arrival time has the gamma 
distribution, λ = 1

5
;  µ = 0.06 (if k = 5) µ = 0.05 (if k = 6) µ = 0.043 (if k = 7) µ =

0.038 (if k = 8) µ = 0.03 (if k = 9).  
Case Number of 

Servers (k) 
𝐶𝐶𝑎𝑎2 Service Time 

Distribution 
𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

205 5 0.80 Triangular 0.22 1.6383 
206 5 0.85 Triangular 0.22 1.7878 
207 5 0.90 Triangular 0.22 1.9530 
208 5 0.95 Triangular 0.22 2.1008 
209 5 1.00 Triangular 0.22 2.1481 
210 7 0.80 Triangular 0.22 1.2467 
211 7 0.85 Triangular 0.22 1.3959 
212 7 0.90 Triangular 0.22 1.4735 
213 7 0.95 Triangular 0.22 1.5865 
214 7 1.00 Triangular 0.22 1.6418 

 

Table 3.28.  Results of MAGGIE, MAR, and K-L, and their errors from simulation 
 MAGGIE MAGGIE MAR MAR K-L K-L 
Case 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 𝑊𝑊𝑞𝑞 Error 
205 1.3012 20.58% 1.6222 0.98% 1.6362 0.13% 
206 1.3214 26.09% 1.7128 4.19% 1.7273 3.38% 
207 1.3418 31.29% 1.8034 7.66% 1.8157 7.03% 
208 2.7684 31.78% 1.8939 9.85% 1.9015 9.49% 
209 2.8167 31.13% 1.9845 7.61% 1.9845 7.61% 
210 1.1426 8.35% 1.2418 0.39% 1.2525 0.46% 
211 1.1547 17.28% 1.3111 6.07% 1.3222 5.28% 
212 1.1671 20.79% 1.3804 6.32% 1.3899 5.67% 
213 1.1799 25.63% 1.4498 8.62% 1.4556 8.25% 
214 1.9290 27.34% 1.5191 7.47% 1.5191 7.47% 

 

In both of these areas, one can see that MAR and K-L show acceptable results on 

all data points in the area. Meanwhile, MAGGIE shows unacceptable results in some 

areas. Due to the consistently positive results in the conventional models, the research 

suggests to continue to use K-L (or MAR) in this area. 
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4. CONCLUSIONS 
 

While current research presents accurate approximations for multiple server 

queues, MAGGIE provides a model that is computationally easy and accurate. It has the 

advantage over some of the more complex models and simulation in that it is a closed-

form, two-moment approximation which only requires knowledge of the mean and 

variance. This characteristic saves significant time in the data-gathering process. This is 

especially significant when compared to simulations, where one would need to know the 

distributions for the random variables before running the model. Depending on the 

application, gathering enough data to have statistically significant distributions to apply in 

the simulation model can take weeks and months. There is also a time-saving benefit from 

running the models: MAGGIE is a simple equation which takes less than a second to run, 

whereas a simulation model can take a few minutes to hours depending on computing 

power, simulation software, number of runs and replications and other parameters. 

MAGGIE also presents a cost savings over simulation in that it is an equation, therefore it 

can plugged in excel, programmed in an open-source code or any other platform virtually 

free. In contrast, simulation packages con cost thousands of dollars for licensing fees. 

Finally, MAGGIE provides an advantage in accuracy over conventional theoretical 

models (MAR and K-L) in many of the studied cases. The evidence in the Numerical 

Results section above shows that MAGGIE consistently performs under 25% error, which 

according to the literature is an acceptable error percentage for the studied applications of 

airport queues, manufacturing cell and other service queues. In contrast, the conventional 

models show high error percentage; which is a finding in itself. Finally, MAGGIE does not 

require computation of the steady-state probabilities of an M/M/k queue, which is required 
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with the G/G/k approximations of MAR and K-L and is therefore easier to compute than 

the existing models. 

Therefore, MAGGIE is the recommended model for the applicable areas delineated 

in this paper due to its simplicity, accuracy and costs savings over the conventional 

methods and approximations used today. 

Proposed Future Work: 

• Development of a queueing network based on approximations in Buzacott 

and Shanthikumar (1993) – Paper 2 

• Application of the closed-form model via MAGGIE and other models in an 

airport system 

• Testing of MAR and K-L on G/G/1 queues 

• Computational work with the airport system 
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II: A MATHEMATICAL MODEL FOR APPROXIMATING AN AIRPORT 
QUEUING NETWORK 

 

ABSTRACT 
 

Queuing networks (QNs) arise in airports during passenger checking-in.  For 

studying such systems, much of the literature either suggests the use of discrete-event 

simulation models, which are unfortunately harder to optimize, or the use of models based 

on the exponential distribution for inter-arrival and/or service times. Mathematical models 

that work for any given distribution, which are more generally applicable and are easier to 

optimize, are less frequently studied in the literature. The researcher presents a 

mathematical approximation procedure, rooted in existing QN approximations, but 

applicable for any given distribution, to study waiting times and queue lengths in a 

typical/generic airport QN. The latter usually consists of two queues: the first queue, which 

is multi-server (G/G/k), is for the ID check, and the second queue, which is single-server 

(G/G/1), is for the body/X-ray scanner. The main contribution lies in developing an 

approximation for the squared coefficient of variation for the inter-departure time in a 

multi-server queue, which is necessary to compute the same for the inter-arrival time to the 

second queue. Numerical results from the research model show that it approximates results 

from discrete-event simulation well.  The model can be handily incorporated into an 

optimization framework to determine the optimal number of servers. 
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1. INTRODUCTION 
 

The literature shows a need for predictive models in queuing systems as there is a 

significant amount of interest amongst engineers in developing closed-form 

approximations for queuing systems, because one can plug in values into closed-form 

formulas to obtain estimates for the performance metrics of interest. In this paper, the 

research will expand the model from single, multiple server queues to include a network 

of queues. 

Currently, simulation is the main tool used to estimate performance measures from 

queuing networks (QNs). In fact, the literature review section in this paper will cover some 

of the best studies as they apply to airports, manufacturing systems and other service 

queues. While there has been an increase in computer processing power, which reduces the 

time needed for running simulation models, two problems remain with simulation: (i) the 

cost of simulation packages and (ii) the time needed to get enough data to determine 

distributions for inter-arrival and service times for the different servers is still very long. A 

closed form approximation that evaluates QNs would still be a preferred method due to its 

simplicity and time savings. After all, due to the dynamic environment, requirements 

change fast and decision makers need adaptable tools that can help them respond to 

demands in a feasible manner. These demands can take many forms, from regulators to the 

passengers who “make a variety of different demands on the capacity offered by an airport, 

which in turn generate a varied range of different revenues” (Humphreys and Francis, 

2002). 
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2. LITERATURE REVIEW 
 

The paper by Guizzi et al (2009) is a clear baseline for the performance that can be 

extracted from simulation modeling. It describes an access interface, process area and flight 

interface for an airport area that can be simulated through Discrete Event Simulation to 

obtain the performance measures within the airport. This review also covers important case 

studies for airport terminal applications conducted by Nagoya University, Buffalo 

International Airport, and the Department of Civil Engineering of Surayabe in Indonesia. 

Ray and Claramunt (2003) develops a predictive model based on modeling and 

simulation principles, a distributed computer environment, and recreating a real-world 

system, an airport terminal. This is an interesting approach to acquire performance 

measures and yields benefits of “flexibility and scalability to the system” (Ray and 

Claramunt, 2003). This is one of the objectives of this paper, but the difference lies in the 

area of data collection, which is still needed for simulation. 

The two models proposed by Brunetta, et. al, (1999) and Brunetta and Jacur (1999) 

are called SLAM and AIRLAB, respectively. SLAM presents an operations research 

approach that determines airport capacity; this is a powerful tool, but still relies on 

simulation. AIRLAB focusses on Levels of Service (LOS), or performance measures. This 

model is more aligned with the research model in that is tries to evaluate acceptable levels 

of performance, but again, it relies on simulation which is time consuming and expensive. 

The model by Manataki and Zografos (2009) is a detailed decision-making tool that 

can help airport managers through mesoscopic analysis “that strikes a balance between 

flexibility and realistic results, adopting a system dynamics approach.” This is a very 

complete model and provides a holistic approach to the problems an airport will face. 



52 

 

However, the complexity of the model and the data needed to apply the model renders it 

too narrow in perspective; in contrast, the research model would give a quick solution to 

the server problem as it relates to performance measures. However, a marriage of both 

models would be a very interesting topic for future study. 

Closed-form mathematical queuing theory, on the other hand, seeks to operate in 

terms of quick and accurate approximations. However, in the literature on mathematical 

queueing theory, the research had found that for much of the work, there are limitations – 

either in terms of its scope or the right level of complexity to address the particular problem 

of queuing networks. Bertsimas, et al. (1999) seeks to estimate the performance of queuing 

networks. However, this work is tied to specific distributions. 

The dynamic model by Lee and Jacobson (2011) shows a revamp to the “entire 

screening system paradigm to provide a solution that balances the trade-off between 

maximizing security and minimizing the expected time it takes to screen passengers” (Lee 

and Jacobson, 2011). This is also a detailed piece of work, but the complexity in the 

computation, since it uses steady-state probabilities and the limiting factor that is assumes 

Poisson processes, makes the research model, in contrast, more powerful in its simplicity 

and the use of general distributions.  

Elyasi and Salmasi (2013) also present a dynamic model, which shows great 

improvement over established models and evaluates the need for additional servers. Like 

Lee and Jacobson (2011), it relies on the use of probabilities and assumes the normal 

distribution for the service time. 

In summary, while simulation studies cited above are important contributions to the 

literature, there are many more that provide insights into performance measures, e.g., see 
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Gatersleben and Van Der Weij (1999), Gillen and Lall (1997), Leone and Liu (2011), and 

Ovidiu (2012). However, they all run into similar issues that simulation models run into 

for optimization. As discussed above, closed-form QN models make assumptions about 

distributions that are best to avoid. The research model offers simplicity and accuracy of a 

two-moment closed form approximation, works with general distributions, and has the 

benefit of limited input data required.  

Contributions of this paper: this paper seeks to obtain performance measures from 

a two-stage QN with generally distributed inter-arrival and service times. In particular, this 

research will study a multiple-server queue followed by multiple single-server queues in 

parallel. Using the principles in this model, one can potentially perform a complete study 

of any set of QNs in which some queues are single-server and some are multiple-server. 
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3. MATHEMATICAL MODEL 
 

The underlying problem here can be modeled as a 2-stage open QN (Ross, 1997), 

where one has the data for the inter-arrival time to the first queue and knowledge of the 

following: (i) the number of servers in each stage, (ii) the probability of an entity leaving 

the first stage to join a queue in the second, and (iii) data for the service times in each queue 

in the system (as well as the queueing disciplines).  

In the above, by “data,” it is meant either the distributions of the underlying random 

variable (i.e., for inter-arrival times and the service times) or the values of the first two 

moments of the underlying random variables. Further, the assumption is that each queue 

works on a first in first out (FIFO) discipline. Another assumption is that the travel time 

from exiting the first stage to joining the queue in the second stage is negligibly small. 

Usually, for simulation models, the underlying distributions are required, but this 

mathematical approximation will rest on knowledge of the first two moments.  

Figure 3.1 represents the proposed QN model. Customers arrive to the first queue 

(the ID Check Queue, where identification documents are checked) in Figure 3.1, which is 

the first stage in the security processing. This queue is a multiple-server, single channel 

queue with generally distributed inter-arrival times and service times (G/G/k to use 

standard queueing notation).  When customers complete their ID check, they are sent to 

one of the several parallel queues in the second stage (the Body Scanner/Carryon-Luggage 

Scanner Queue), shown in Figure 3.1. Each queue in the second stage is a single-server 

queue with generally distributed inter-arrival times and service times (G/G/1 to us standard 

queueing notation). The inputs to the research model model are: (i) the first two moments 

of the inter-arrival time and service time to the first queue (first stage), (ii) the number of 
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servers in the first stage, (iii) the number of queues in the second stage, and (iv) the first 

two moments of the service time for each queue in the second stage. The outputs from the 

model will be the mean waiting time and number in each queue in the system. Since it is a 

mathematical model, a computer program will generate the result instantaneously, and 

hence can be used to optimize the number of servers in the first stage and the number of 

queues in the second stage.  

The basic methodology adopted applies (i) Marchal’s approximation of a G/G/k 

queue (Marchal 1985) to obtain the performance measures from the first queue in the 

network, (ii) classical queuing calculus principles (Buzacott and Shanthikumar, 1993) to 

obtain the first two moments of the inter-arrival time to each queue in the second stage and 

(iii) Marchal’s approximation of a G/G/1 queue (Marchal, 1976) to obtain the performance 

measures in the second queue in the network.   

 

Figure 3.1.  A QN in an Airport Security Line with 2 servers in the first stage and 4 
queues in the second 

 

First Stage

Second 
Stage

= Customer
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3.1. BASIC QUEUING THEORY NOTATION 

To ensure consistent communication through this paper, let us begin with some 

notation: 

𝑘𝑘: Number of servers in the multi-server queue in the first stage 

𝜆𝜆: Mean rate of arrival=  1
E(inter−arrival time)

    to the queue in the first stage 

µ: Mean service rate = 1
E(service time)

 of the queue in the first stage 

𝜌𝜌: Utilization in the first stage =  λ
𝑘𝑘µ

  

𝑊𝑊𝑞𝑞
𝐺𝐺/𝐺𝐺/𝑘𝑘: Mean wait time in the multi-server queue in the first stage 

𝑊𝑊𝑞𝑞,𝑖𝑖
𝐺𝐺/𝐺𝐺/1: Mean wait time in the ith queue in the second stage 

σ𝑎𝑎2 : Variance of the inter-arrival time to the first queue 

σ𝑠𝑠2: Variance of the service time of one server in the first queue 

Ca2 : Squared coefficient of variation for the inter-arrival time = 𝜎𝜎𝑎𝑎
2

�1λ�
2

 

Cs2: Squared coefficient of variation for the service time of one server in the first stage  

Cd2: Squared coefficient of variation for the time between successive departures from the 

first stage 

Ca,i
2 : Squared coefficient of variation for the inter-arrival time in the ith queue in the second 

stage 

3.2. MODEL 

Currently in the literature, the approximation developed in Marchal (1976) for a 

generally distributed inter-arrival times and service times, for a single queue (G/G/1) is the 

accepted and conventional methodology for measuring queue performance. The 

computation is shown in the equation below:  



57 

 

𝐿𝐿𝑞𝑞
𝐺𝐺/𝐺𝐺/1  ≅  ρ2 (1 + Cs2)(Ca2 + ρ2Cs2)

2 (1 – ρ)(1 + ρ2Cs2)
         (1) 

However, that approximation is for a G/G/1 queue. A few years later, Marchal 

(1985) sought to exploit the existing M/M/k formula (exact), developed by Lee and 

Haughton (1959) and shown in Equation (2) below, in his own work: 

𝑃𝑃0 =  ∑ kρ
m!

m
 𝑘𝑘−1

𝑚𝑚=0          (2) 

𝐿𝐿𝑞𝑞
𝑀𝑀/𝑀𝑀/𝑘𝑘 =  

𝑃𝑃0�
𝜆𝜆
𝜇𝜇�

𝑘𝑘
𝜌𝜌

𝑘𝑘! (1−𝜌𝜌)2            (3) 

In particular, Marchal (1985) developed a scaling factor that exploits his own G/G/1 

approximation in Marchal (1976), which, when used with M/M/k approximation from 

Equation (2) above, generates an approximation for the G/G/k queue: The scaling factor, 

𝑆𝑆𝑆𝑆, is defined in Equation (4) below:  

𝑆𝑆𝑆𝑆 =  
�1+𝐶𝐶𝑠𝑠2��𝐶𝐶𝑠𝑠2+�ρ2𝐶𝐶𝑠𝑠2��

2�ρ2𝐶𝐶𝑠𝑠2�
             (4) 

Combining Equations (3) and (4) results in the following approximate formula for 

the G/G/k queue (Marchal, 1985): 

𝐿𝐿𝑞𝑞
𝐺𝐺/𝐺𝐺/𝑘𝑘 =  𝑆𝑆𝑆𝑆. 𝐿𝐿𝑞𝑞

𝑀𝑀/𝑀𝑀/𝑘𝑘  =  
𝑃𝑃0�

λ
µ�

𝑘𝑘
ρ

𝑘𝑘! (1−ρ)2  
�1+𝐶𝐶𝑠𝑠2��𝐶𝐶𝑠𝑠2+�ρ2𝐶𝐶𝑠𝑠2��

2�ρ2𝐶𝐶𝑠𝑠2�
      (5) 

 For this paper, the researcher uses the above (i.e., Marchal’s G/G/k 

approximation) for the first queue in the network and Marchal’s G/G/1 approximation for 

the queues in the second stage in the network. 

3.3. QUEUING COMPUTATION 

A key element of this research is the computation of the mean rate of arrival into 

the subsequent queues. The principle used in this paper is to use the inter-arrival rate from 
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the first queue, λ, and multiplying it by the probability that the entity will go to one of the 

following parallel, single server queues i.  

λ2 = Piλ1          (6) 

The next step is to calculate the squared coefficient of variation of the time between 

successive departures from the first queue, Cd2, as shown in Equation (7) below: 

Cd2  =  ρ2Cs2  +  (1 − ρ2)Ca2        (7) 

And Ca2 for the second queue in the network is calculated using the squared 

coefficient of variation of the departure time and the probability that the entity will go to 

the single-server queue, i, through the following equation:  

Ca2  =  1 − Pi + (Pi ∗ Cd2)         (8) 

3.4. NUMERICAL RESULTS 

The researcher tested the mathematical model on 10 representative cases that vary 

in terms of: (i) squared coefficients of inter-arrival time in the system, (ii) squared 

coefficient of variation of service time for the first and second queue in the network, (iii) 

the number of servers, and (iv) the service time distributions. This research uses 

simulations in ARENA to benchmark the performance of the model. The error is computed 

against results from simulations. The error in the mean wait in the queue is calculated as 

 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 % =  |𝑾𝑾𝒒𝒒
𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴−𝑾𝑾𝒒𝒒

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺|
𝑾𝑾𝒒𝒒
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺  𝑿𝑿 𝟏𝟏𝟏𝟏𝟏𝟏. 

Numerical results from all the experiments are presented in Tables 3.1 and 3.2 

below. The computer programs were written in MATLAB, and run on an Intel Pentium 

Processor with a speed of 2.66 GHz on a 64-bit operating system. The computer programs 

for the mathematical model took about 10 milliseconds; however, the simulation programs 

took longer (about 1 minute per case), since they involve multiple replications.  
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Usually, queuing approximations can result in errors of about 25% (see [13-14]). 

Therefore, the numerical results are quite encouraging: on the low end, the error computed 

was 0% and on the high-end the error was 26.5%. 

Table 3.1.  Results for first queue in the network: T (min, mode, max) denotes the 
triangular distribution, N(mean, variance) denotes the normal distribution, and Gm 

(mean, variance) denotes the gamma distribution. The inter-arrival time has a gamma 
distribution whose mean is 5 for each case and whose Ca2 value is specified for each case 

in the table 
 

Case k 𝐶𝐶𝑎𝑎2 Service Dist. 
First Stage 

µ 
 

𝐶𝐶𝑠𝑠2 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑞𝑞

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  % Error 

1 2 0.45 T(1.33, 3.33, 
15.33) 

0.15 0.215 
1.3952 1.6134 15.64 

2 2 0.50 T(1.33, 3.33, 
15.33) 

0.15 0.215 
1.4617 1.7613 20.50 

3 3 0.60 N(10,5) 0.10 0.05 1.1643 1.4203 21.99 
4 3 0.65 N(10,5) 0.10 0.05 1.2134 1.5344 26.45 
5 4 0.75 N(10,5) 0.075 0.05 1.4112 1.5008 6.35 
6 4 0.95 N(10,5) 0.075 0.15 2.1968 2.0739 5.59 
7 6 0.65 Gm(20,60) 0.05 0.15 0.89842 1.1001 22.45 
8 6 0.70 Gm(20,60) 0.05 0.15 1.1029 1.1769 6.71 
9 7 0.65 T(4.67,11.87,

53.67) 
0.043 0.215 

0.9466 1.0338 9.21 
10 7 0.70 T(4.67,11.87, 

53.67) 
0.043 0.215 

1.1915 1.1031 7.42 
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Table 3.2.  Results of the second queue in the network which consists of five single-
server queues in parallel where service times are normally-distributed. The first four 

servers have a mean service rate of 1/20 and the same for fifth server is 1/23. Also, Pi = 
1/5 for all values of i. 

 i= 1:5 Servers 1 - 4 Server 5 
Case 𝐶𝐶𝑠𝑠,𝑖𝑖

2  𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑞𝑞

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  % Error 𝑊𝑊𝑞𝑞
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑞𝑞

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  % Error 
1 0.10 37.84375 38.5873 1.96 138.59 127.9198 7.70 
2 0.15 40.73775 40.7397 0.00 141.08 135.1733 4.19 
3 0.10 39.60825 38.67 2.37 156.17 128.1881 17.92 
4 0.15 39.635 40.8236 3.00 141.05 135.4432 3.98 
5 0.10 45.796 39.3593 14.06 119.73 130.4235 8.93 
6 0.15 44.05875 42.5957 3.32 186.78 141.1413 24.43 
7 0.10 38.36725 39.2673 2.35 141.95 130.1254 8.33 
8 0.15 51.751 41.4298 19.94 186.94 137.3925 26.50 
9 0.10 38.0355 39.5063 3.87 117.52 130.9 11.39 
10 0.15 48.90425 41.6723 14.79 186.09 138.1723 25.75 
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4. CONCLUSION 
 

Queuing approximations such as the G/G/1 approximation presented above are now 

widely used in manufacturing systems for measuring lead times (Askin and Goldberg, 

2002). Queueing network (QN) approximations, which are more complex than 

approximating a single queue, have also been used extensively in modeling production 

lines (Papadopolous, et al, 1993). In this paper, the research presented a new mathematical 

model for approximating a (mixed) 2-stage QN in which in one stage there is a G/G/k 

queue and in another there is a set of parallel queues, each belonging to the G/G/1 family. 

The contribution is in formulating a novel way to compute the squared coefficient of 

variation for the time between successive departures from the first queue. The research 

obtained successful numerical results with the approximation procedure.  

There are multiple avenues for future research based on this work. First, the 

research approximating procedure can be used to optimize the number of servers. Another 

potential line for further research would measure the variance of the waiting time in each 

queue using the third moment 
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SECTION 

 

2. DISSERTATION CONCLUSION 

 

This research presents a study of queuing theory, its applications and a solution for 

two important gaps in the literature: an approximation for a multiple server queue with 

generally distribute inter-arrival and service times in medium traffic, and a methodology 

for solving queuing networks with multiple servers in series with generally distributed 

inter-arrival and service times. 

The history of queuing theory is indeed rich. This research evaluated the existing 

models since the inception of the field of queuing theory to the latest research and 

considered that the approaches by Marchal and Kraemer and Langenbach-Belz were the 

most appropriate to use as a baseline in developing a solution for an accurate, yet simple 

closed-form, two-moment approximation for the multiple server queue with generally 

distributed inter-arrival and service times in medium traffic. The outcome of the first paper 

in this dissertation is MAGGIE, an approximation which showed an improved performance 

over the existing models within the boundary conditions define in the paper. 

In the case of queuing networks, the existing literature considers series of single 

server queues for closed-form approximations and mostly simulation for multiple server 

queues. This research presented a close-form, two moment approximation approach for 

multiple server queues in a network. This approach, which rests on calculating the squared 

coefficient of variation for the departure times and then using server transition 
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probabilities, can be easily augmented into as many servers as needed. This augmentation 

provides a significant advantage over existing models and simulation. 

The results from both of these contributions show a significant performance 

improvement on the benchmarked models and a time and cost savings when compared to 

simulation, where it is required to know the specific distributions for the system the 

research wishes to study. The applications for the models developed in this research are 

wide: airports, manufacturing and service systems, telecommunication, computing and 

many more. This work is the beginning of what can revolutionize decision models in 

systems with queues. 
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