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Abstract—Fast-pick areas are commonly used in order picking
warehouses to improve labor efficiency by concentrating picking
activities within a compact area, thus minimizing the distance
traveled by the pickers. One problem that must be solved
when a fast-pick area is to be implemented is the so-called
assignment-allocation problem. This deals with deciding which
products should be assigned to the fast-pick area, and how much
space should be allocated to these products. This research was
motivated by the picking operation of a cosmetics distribution
center where several fast-pick areas are in place. A mixed
integer linear programming formulation is proposed for solving
the variant of the assignment-allocation problem found in this
company. Our computational experiments show that the proposed
model is efficient for solving small yet realistic instances of the
problem.

I. INTRODUCTION

As the picking operation is probably the most labor intensive
activity in many order-picking warehouses, the idea of concen-
trating the picking activities in a relatively compact area in
order to reduce the distance traveled by the pickers has drawn
the attention of researchers and practitioners in recent years.
Simply put, the approach consists of dividing the warehouse
into two areas: the fast-pick or forward area, where the picking
activities take place, and the reserve or storage area, from
which the fast-pick area is replenished. The research problem
that arises when designing such system is twofold. Firstly, the
size of the fast-pick area needs to be defined; and secondly, the
allotted space needs to be distributed among the SKUs in the
warehouse. Solving these two problems is challenging as two
conflicting objectives arise: the smaller the fast-pick area, the
less distance traveled by the pickers, but more replenishment
trips are needed between the reserve and the fast-pick area.

This research was motivated by the picking operation that
takes place at the warehouse of a company that produces
cosmetics and personal care products. The warehouse is di-
vided into a reserve area and several fast-pick areas, each
one dedicated to one product family. Figure 1 presents one
of the fast-pick areas in the warehouse. The picking process
is performed manually by a group of operators, each of whom
processes one customer order at a time as depicted in Figure
2. To complete one customer order, the picker starts from
point I located at one side of the aisle, travels down the aisle
picking the items that are stored on that side until reaching
the SKU that is stored furthest. At this point the picker
crosses the aisle and returns to point O, picking the SKUs
stored on the other side of the aisle on the way back. As

Fig. 1. A fast-pick area in a cosmetics warehouse

a consequence of the configuration of the fast-pick area, the
picker always performs a U-shaped trip, with the depth of the
trip being determined by the SKU stored furthest in the fast-
pick area (see Figure 2). As these fast-pick areas are already
designed and operational, the problem is not to choose on
the size or the layout of the fast-pick area, but how many
and which storage positions (i.e., bins) should be assigned to
each SKU. Because the demand of these products changes
over time depending primarily on fashion trends (makeup, for
instance), the company is interested in a formal approach that
allows decision-makers to solve both the assignment and space
allocation problems several times during the year. If this is
not addressed properly, the efficiency of the picking operation
decreases, adversely affecting both the cost and the service
level.

The aim of this work is to develop a mixed integer linear
formulation for solving the product assignment and space allo-
cation problem within the fast-pick area currently in operation.
The remainder of this paper is organized as follows. A review
of the literature is presented in section II. A formal description
of the problem addressed in this work is presented in section
III, along with a mixed integer linear formulation for solving



Fig. 2. The picking process

it. The results of a computational experiment carried out on a
set of randomly generated instances is summarized in section
IV, whereas some conclusions and future work opportunities
are presented in section V.

II. LITERATURE REVIEW

The problem of designing a fast-pick area has been ad-
dressed by several authors. The fluid models of Hackman, et
al. [1] and Bartholdi and Hackman [2] were the first works
that addressed the problem of deciding the amount of space
that should be allocated to each SKU with the objective of
minimizing the cost of replenishment. Recently, Subramanian
[3] built upon these works and introduced a powers-of-two
heuristic scheme for a single fast-pick area, and a near-optimal
ranking heuristic for the case of multiple fast-pick areas. As
all of these approaches assume that the fast-pick area can be
continuously partitioned among the SKUs, some drawbacks
appear when implemented in a realistic setting where the
SKUs need to be assigned to discrete bins or storage positions.
To address this issue Walter, et al. [4] considered and solved
the so-called discrete forward–reserve problem. The works of
Walter, et al. [4], Frazelle, et. al. [5], and Gu [6] extended
the problem to include determining the optimal size of the
fast-pick area. Comprehensive reviews of the literature can be
found in [3] and [4].

The problem in the cosmetics company is similar to one
of the problems addressed in [4], except that the authors of
[4] assume that the fast-pick area is very small and, thus,
that the travel time spent by the picker within the fast-pick
area is negligible. In particular, the authors state that “due to
the compact size of the forward area the locations of SKUs
are assumed to not affect picking efficiency”. Following this
common assumption, the aim of this and similar solution
approaches found in the literature is to minimize the number
of replenishments needed to maintain the fast-pick area; this
is the number of times that product needs to be transported
from the reserve to the fast-pick area in a given time window.
However, in the cosmetics company that motivated this work,
the fast-pick area is approximately 60 meters deep (i.e., 196
feet), and therefore the travel time the pickers spend preparing
customer orders is definitely not negligible and depends on the
actual bin positions assigned to the SKUs (see Figure 1).

III. PROBLEM DESCRIPTION

Formally, we are given the set O of the customer orders
that need to be prepared (i.e., picked) manually by a group
of pickers assigned to the fast-pick area, and the set S of
the SKUs (i.e., products) that are held by the warehouse.
We let Qk ⊂ S be the subset of SKUs in customer order
k ∈ O . In order to complete customer order k ∈ O , the
picker must visit all storage locations where the SKUs in Qk

are stored. Finally, we define the fast-pick area as a set of
storage locations L. Each storage location i ∈ L is in turn
comprised of ni storage bins, all identical in size, each of
which can hold one SKU. As an example, a single storage
location comprised of 20 storage bins is depicted in Figure
3. The objective is to assign the products in S to the storage
locations in L to minimize the labor cost represented by the
total distance traveled by the workers while performing both
the picking and replenishment activities. The following is a list
of the most important assumptions used to model this problem:

– A single SKU is restocked during a replenishment trip.
– At each replenishment trip all of the bins assigned to

the SKU being restocked are filled to their maximum
capacity.

– The picker processes only one customer order at a time.
– The actual picking time is not considered as it is assumed

to be independent of the slotting decisions.
– All SKUs must be assigned to at least one storage bin in

the fast-pick area as it is not practical to pick a product
directly from the reserve.

– In the current formulation of the problem, the objective
is to minimize the sum of the distance traveled by
the pickers, and the distance traveled to replenish the
fast-pick area. The underlying assumption behind this
objective is that the cost on a per-meter basis is the same
for both activities.

– The distance between the reserve and the fast-pick areas
is fixed (i.e., r) and independent of the slotting decisions
in both areas.

Fig. 3. A single storage location



To solve the above described problem a mixed integer
linear programming formulation follows.

Sets

O Customer orders
S SKUs
Qk SKUs in customer order k ∈ O (i.e., Qk ⊂ S )
L Storage locations

Parameters

hi Distance to storage location i ∈ L
r Distance between the fast-pick and reserve areas
qs Units of SKU s ∈ S that can be stored in one bin
ds Demand of SKU s ∈ S in customer orders in O
ni Number of bins at location i ∈ L
fist Distance traveled to replenish SKU s ∈ S if

assigned to t bins at location i ∈ L

Decision variables

yist Binary variable. yist = 1 if SKU s ∈ S is assigned
to t bins at location i ∈ L, and yist = 0 otherwise

zk Distance traveled to prepare customer order k ∈ O

Objective function

Minimize
∑
k∈O

zk +
∑
i∈L

∑
s∈S

ni∑
t=1

fist · yist (1)

Constraints

∑
i∈L

ni∑
t=1

yist = 1 ∀s ∈ S (2)

∑
s∈S

ni∑
t=1

t · yist ≤ ni ∀i ∈ L (3)

zk ≥
ni∑
t=1

2 · hi · yist ∀i ∈ L, k ∈ O, s ∈ Qk (4)

yist ∈ {0, 1} ∀s ∈ S, i ∈ L, 1 ≤ t ≤ ni (5)

In the formulation above, expression 1 represents the objec-
tive of minimizing the total distance traveled by the workers
due to picking and replenishment activities. The first term in
the expression is the total distance traveled by the pickers,
whereas the second term accounts for the total distance
traveled to replenish the fast-pick area. Note that the latter
distance is a non-linear function of the number of bins assigned
to a given SKU: the more bins are assigned to it, the fewer
times the SKU needs to be replenished. In order to be able
to model the objective as a linear function on the decision
variables, we firstly enumerated all possible values of the
distance traveled to replenish each SKU as a function of the

number of bins assigned to it, from 1 to the maximum number
of bins per location (i.e., see the definition of parameter fist),
as in expression 6. By doing so, and by defining the binary
variable yist in a similar fashion, we were able to model the
problem as a mixed integer linear program.

fist = 2 · r ·
⌈
ds
t · qs

⌉
∀i ∈ L, s ∈ S, 1 ≤ t ≤ ni (6)

Each SKU can only occupy part or all of a single location.
An SKU cannot be spread among more than one location.
Constraints in expression 2 assure this. Expression 3 ensures
that the number of bins assigned to an SKU do not exceed the
number of bins available at that storage location. Expression 4
defines the distance traveled by the picker to prepare customer
order k, defined as twice the distance to the location of the
SKU in customer order k that is stored furthest. The aisle
width was not included in expression 5 as it would just add a
constant to the objective value. Finally, expression 5 defines
the domain of the binary decision variables.

IV. COMPUTATIONAL EXPERIENCE

To evaluate the performance of the formulation proposed
when implemented on a commercial solver, a set of test
instances were generated randomly, resembling the real setting
of the fast-pick areas in the warehouse that motivated this
research. To mimic the real setting of a given fast-pick
area, three parameters were considered to generate the test
instances: (1) the number of SKUs, (2) the size of the fast-pick
area, and (3) the number of customer orders to include in the
instance. As the number of SKUs that the real fast-pick areas
hold vary from 100 in the smallest to 1500 in the largest, in
this experiment we considered three values for this parameter,
namely 50, 100 and 200. As the problem that motivated this
work requires that all the SKUs are assigned to at least one bin
in the fast-pick area, we defined the parameter λ as the ratio
between the total number of available bins and the number of
SKUs in the instance. We used three values of λ, namely 2.0,
3.2, and 4.0. The number of customer orders was fixed to 3600
to reflect the operation of an average month. The composition
of each customer order was generated as follows. Each SKU
appears in a customer order with probability p = (s + 1)−1,
where s is the index of the SKU, to reflect a realistic setting
where a few SKUs account for a high percentage of the
total demand. For those SKUs in a given customer order, the
amount requested (i.e., ds) was sampled from discrete uniform
distribution between 1 and 10. Finally, the number of units
that can be stored in a single bin (i.e., qs) was sampled from a
discrete uniform distribution between 10 and 100, the distance
between consecutive storage locations was set to 2 meters, and
the distance between the fast-pick and reserve areas to 100
meters for all cases. Five independent instances were generated
for each combination of the number of SKUs and the value of
λ, for a total of 45 instances. Table I summarizes the values
of the parameters used to generate the set of test instances.



TABLE I
TEST INSTANCES

SKUs λ Storage locations Bins per storage location

50
2.0 10 10
3.2 16 10
4.0 20 10

100
2.0 10 20
3.2 16 20
4.0 20 20

200
2.0 20 20
3.2 32 20
4.0 40 20

The formulation was coded in Xpress Mosel Version 4.8.2,
and each instance was solved using Gurobi 8.0 as the com-
mercial solver. The solver was allowed to run for a maximum
of one hour on a machine with 64 GB of memory and 12
Intel Xeon processors running at 3.5 GHz under Windows 7
Enterprise at 64 bits. If the solver could not find the optimal
solution whithin this time, the best integer solution and the best
lower bound were kept for further analysis. For each instance
e, the optimality gap (i.e., Ge) was computed as a percentage,
as in equation 7, where BISe and LBe are respectively, the
best integer solution and the best lower bound found by the
solver for problem instance e after one hour of computational
time.

Ge =
BISe − LBi

LBe
× 100% (7)

After completing the computational experiments the solver
was able to find at least one feasible integer solution in all
cases, but none of the instances was solved to optimality within
the allocated time. The optimality gap for all the test instances
is presented in Table II.

TABLE II
OPTIMALITY GAP AFTER ONE HOUR

SKUs λ
Instance Average

1 2 3 4 5

50
2.0 22.6 22.1 21.0 21.7 20.0 21.48
3.2 39.6 41.0 40.4 41.8 35.6 39.68
4.0 48.3 52.8 41.3 49.6 56.9 49.90

100
2.0 21.6 23.9 22.3 22.8 22.5 22.62
3.2 39.1 39.0 40.3 40.1 39.6 39.62
4.0 50.9 48.8 48.9 100 100 69.72

200
2.0 69.2 100.0 61.6 62.3 100 78.62
3.2 100 100 100 100 100 100.00
4.0 100 100 100 100 100 100.00

As seen in Table II, the optimality gap ranged from 20% to
24% for the instances with 50 and 100 SKUs, and λ = 2.0. In
the case of the instances with 200 SKUs, the average optimal-
ity gap was roughly between 60% and 100%, suggesting that
only small-sized instances can be solved using the formulation

proposed above. A chart with the average optimality gap by
the number of SKUs and the λ ratio is presented in Figure 4.

Fig. 4. Average optimality gap

In a second set of experiments we allowed the solver to run
for a maximum of three hours on the set of instances with
50 SKUs and λ = 2.0. In this case, even though none of the
instances was solved to optimality, the gap was below 5% in
all cases. A summary of the results for this set of experiments
is presented in Table III. Finally, we allowed the solver to run
for 12 hours on the first instance in the latter set. The solver
did not converge to the optimal solution after that time either,
showing a very slow convergence rate. The optimality gap at
the end of this final experiment was 3.01%.

TABLE III
OPTIMALITY GAP AFTER THREE HOURS

Instance 1 2 3 4 5
Optimality gap 3.91 4.26 3.40 2.51 2.73

V. CONCLUSIONS

Fast-pick areas are commonly used in labor intensive order
picking warehouses. In this work we considered a relatively
large fast-pick area where the distance traveled by the pickers
should not be neglected. We addressed the problem of deciding
where in the fast-pick area the SKUs should be placed, and
the number of storage bins that should be assigned to each
SKU. A mixed integer linear programming formulation was
proposed and implemented on a commercial solver with the
objective of minimizing the summation of the pick costs (that
is, time or distance) and the cost (that is, labor cost) of
replenishment. As such, this is a substantially different version
of previous approaches for designing a fast-pick area. It is also
a practical variant of the forward pick area design problem
that is applicable to distribution centers with relatively large
quick pick areas. Our computational experience showed that
although we were able to find several feasible solutions in
all the cases, to find the optimal solution for realistic sized
instances is challenging. As per future research opportunities,
the following are some natural extensions to the problem:

– Develop an approximation solution approach (i.e., a
heuristic) to solve larger instances of the problem, as



the computational cost of solving these instances using
an exact approach like the one proposed in this work is
apparently too high.

– Relax the constraint in the current model that requires
that all SKUs need to be assigned to the fast-pick area.
In a more general setting, it would be possible to pick an
SKU directly from the reserve area, if such SKU is not
assigned to the fast-pick area.

– The current model restricts the number of storage bins
assigned to a given SKU to include only those in a single
storage location. This assumption makes it simpler to
calculate the distance travelled by the picker to prepare
a single customer order, but it may also lead to a sub-
optimal solution.

– The model addresses the problem that arises in the fast-
pick area of the cosmetics company described before;
that is, one with a single aisle, and where all the trips
performed by the picker have the same U-shaped pattern.
The model could be extended so that a more general
layout can be investigated.

– The set O of customer orders used to develop the pro-
posed solution approach provides a useful way to model
the workload of the picking process, but it also conveys an
important drawback. In a realistic setting the set O is not
known in advance, but the assignment–allocation problem
needs to be solved prior to the arrival of the orders in a
given period of time. Thus, the assumption behind this
modeling framework is that the set of future orders will
present identical behavior to those in the past. This is a
difficult issue that could be addressed in the future.

– Another assumption that could be relaxed to make the
problem more general is that of the slotting of the reserve
area being already defined and fixed.

– To consider order batching so that several customer
orders are picked within a single trip.
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