
Georgia Southern University
Digital Commons@Georgia Southern
15th IMHRC Proceedings (Savannah, Georgia.
USA – 2018) Progress in Material Handling Research

2018

Dynamic Batching for Order Picking in
Warehouses
Jelmer Pier van der Gaast
University of Groningen, j.p.van.der.gaast@rug.nl

Bolor Jargalsaikhan
University of Groningen, b.jargalsaikhan@rug.nl

Kees Jan Roodbergen
University of Groningen, k.j.roodbergen@rug.nl

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/pmhr_2018

Part of the Industrial Engineering Commons, Operational Research Commons, and the
Operations and Supply Chain Management Commons

This research paper is brought to you for free and open access by the Progress in Material Handling Research at Digital Commons@Georgia Southern.
It has been accepted for inclusion in 15th IMHRC Proceedings (Savannah, Georgia. USA – 2018) by an authorized administrator of Digital
Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

Recommended Citation
van der Gaast, Jelmer Pier; Jargalsaikhan, Bolor; and Roodbergen, Kees Jan, "Dynamic Batching for Order Picking in Warehouses"
(2018). 15th IMHRC Proceedings (Savannah, Georgia. USA – 2018). 20.
https://digitalcommons.georgiasouthern.edu/pmhr_2018/20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229126308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.georgiasouthern.edu?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2018?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2018?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2018?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2018/20?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

Dynamic batching for order picking in warehouses
J.P. van der Gaast

Faculty of Economics and Business
University of Groningen
j.p.van.der.gaast@rug.nl

B. Jargalsaikhan
Faculty of Economics and Business

University of Groningen
b.jargalsaikhan@rug.nl

K.J. Roodbergen
Faculty of Economics and Business

University of Groningen
k.j.roodbergen@rug.nl

Abstract—Dynamic batch picking is characterized by combin-
ing product demand from multiple customer orders into one pick
tour where new orders are continuously received. Using modern
order-picking aids, updated picking instructions can be included
in the current pick tours which allows pickers to be re-routed to
pick for new orders even when they already started a pick tour.
We develop a mathematical model for dynamic batch picking
that minimizes the order throughput time of incoming customer
orders. In case of new order arrivals, we can quickly re-optimize
the model and determine new updated pick tours. This allows
for short order throughput times and ensures that warehouse
companies can set their order cut-off times as late as possible
while still guaranteeing that orders can be delivered next day or
in some cases even the same day.

I. INTRODUCTION

E-commerce fulfillment competition evolves around cheap,
speedy, and time-definite delivery. This puts a greater emphasis
on the most critical operation in a warehouse, order picking.
Order picking, the process of retrieving customer orders from
their storage locations, needs to be robustly designed and
optimally controlled in order for a warehouse to operate
efficiently [15]. Any under performance in order picking can
lead to unsatisfactory service and high operational cost for the
warehouse, and consequently for the whole supply chain [15].
Therefore, many warehouses invest heavily in state-of-the-art
order picking solutions to increase productivity and reduce any
variability associated with order picking, e.g., in order arrivals,
and in picking times.

A common way to organize the picking process where daily
a large number of customer orders needs to be picked is batch
picking. Batch picking is a picker-to-parts order picking method
in which the demand from multiple orders is used to form
pick batches. Pick tours are constructed for each pick batch to
minimize the total travel time of the order picker or any other
performance objective. A drawback of this approach is that
batch formation takes time, and, as customers demand shorter
lead times, more efficient ways to organize the order picking
process exist.

In this paper we study dynamic batch picking. We consider
an online setting where new customer orders are received
continuously. In order to shorten batch formation, dynamic
batch picking allows arriving customer orders to be directly
included or swapped with current picks in one of the current
pick tours, while taking into account potential other future
customer order arrivals (Figure 1). In addition, disruptions
occurring from the arrival of an urgent order or by noticing

Depot

Order Picker

Pick tour

Pick location

(a) Static batch picking

Depot

Rerouting

New pick location

(b) Dynamic batch picking

Figure 1: The difference between static and dynamic batch
picking, denotes a storage location, denotes a picking
location for the current pick tour and denotes a picking
location for an incoming customer order that can be picked in
the current pick tour in case of dynamic batch picking.

inaccuracies between products requested and products actually
picked can easily be dealt with using dynamic order picking [12].
Using modern order-picking aids like pick-by-voice techniques
or by a handheld terminal, updated picking instructions can
be included in the current pick tours. Different from regular
(static) batch picking where a new customer order will always
be picked in a subsequent future pick tour [4, 6, 11], pickers
can be re-routed to pick for new customer orders even when
they already started a picking tour. This makes dynamic batch
picking particularly suitable for warehouses of e-commerce
companies that often experience high order arrival rates, smaller
order sizes, larger order variety, and a demand for fast order
deliveries.

The objective of this paper is to study dynamic batch picking.
Currently, in the literature only simple heuristics for this
problem are known [12, 1] or assume a fixed pick tour [9,
15]. We develop a mathematical model that minimizes the
order throughput time of a customer order. Using column
generation allows us to quickly re-optimize the model in case
of a new order arrival and determine the new updated pick
tours. The model allows us to study the performance gains of
dynamic batch picking compared to static batch picking. In

addition, we study the effect of different routing methods and
arrival distributions in the case of dynamic batch picking.

The organization of this paper is as follows. In Section II
an overview of existing literature for batch picking systems is
presented with a focus on online and dynamic batch picking
models. In Section III, the model for dynamic batch picking is
discussed and the corresponding notation used in this paper is
given. In Section IV a detailed description of our optimization
methods is provided. We extensively analyze the results
of our model and optimization framework in Section V via
computational experiments for a range of parameters. Finally,
in Section VI we conclude and suggest some extensions of the
model and further research topics.

II. LITERATURE REVIEW

In this section we will first discuss literature on static batch
picking which has been particular well studied over the past
decades. Next, we focus on online batch picking, as well as,
the related literature on dynamic batch picking.

As mentioned in Section I, in batch picking a set of customer
orders are grouped in pick batches, each of which can be picked
by a single picking tour. For each of these picking tours the
picking locations are sequenced in such a way to ensure a good
route through the warehouse [2]. One of the first to consider
order picker routing in a warehouse and to also present an
optimal polynomial-time algorithm to minimize order picker
travel distance are Ratliff and Rosenthal [14]. They consider a
warehouse with a single-block parallel-aisle layout with narrow
aisles and each pick tour starts and ends at the central depot.
Their algorithm is extended for multiple different warehouse
layouts, e.g., De Koster and Van der Poort [3] consider the case
that picked customer orders can be deposited at the head of
every aisle. However, these optimal algorithms for order picker
routing are hardly used in practice [10]. A reason for this is
that order pickers find these routes confusing which can cause
unsafe situations in the warehouse. Therefore, order picker
routing is often done using heuristics, e.g., S-shape routing or
Largest-Gap routing.

The literature on static batch picking is quite varied on the
assumptions and warehouse layout considered. De Koster et al.
[4] study two groups of heuristic algorithms; seed algorithms
and time savings algorithms. They test their algorithms for
a single-block parallel-aisle layout and consider two different
routing strategies; S-shape and Largest-Gap. Seed algorithms
are best in conjunction with S-shape and large pick batch sizes,
whereas time savings algorithms perform best in conjunction
with Largest-Gap and small pick batch sizes. Hong et al. [11]
develop an integrated batching and sequencing procedure in
order to minimize the total retrieval time (the sum of travel
time, pick time and congestion delays). This allows, compared
to traditional batching formulations, to determine the position
of each batch in the batch release sequence. Matusiak et
al. [13] consider a picker-to-parts warehouse where there are
precedence constraints while picking a customer order. They
consider a joint order batching and picker routing method which
takes the precedence-constraints into account. Their method

consists of two parts: an optimal A∗-algorithm for the routing;
and a simulated annealing algorithm for the batching which
estimates the savings gained from batching more than two
customer orders to avoid unnecessary routing. Gademann et al.
[7] study static order batching in a parallel-aisle warehouse,
where the objective is to minimize the maximum lead time
of any of the batches. This is a common objective in parallel
(or zoned) wave order picking operations. Gademann and Van
de Velde [6] develop a branch-and-price optimization algorithm
to minimize order picker travel distance. They model the
problem as a generalized set partitioning problem and applied
a column generation algorithm to solve its linear programming
relaxation. Due to speed and complexity of the algorithm, the
authors suggested for larger instances to use an iterated descent
approximation algorithm.

All of the above order batching algorithms assume that
demand is given at beginning of the planning period, i.e., the
number of orders and for each order the order lines that are
requested. However, for a lot of e-commerce companies this
assumption does not hold since customer orders might arrive
during the day that need to be processed by the end of the
day. Therefore, in online batch picking new pick batches are
created continuously during the day. Le-Duc and De Koster [5]
consider a 2-block rectangular warehouse with the assumptions
that orders arrive according to a Poisson process. Furthermore,
they assume that picker routing is done using the S-shape
heuristic. They determine the first and second moment of
the order picker’s travel time to pick a batch, which are used
to estimate the average throughput time of a random order.
Van Nieuwenhuyse and De Koster [16] study different online
batch picking methods; variable time window batching and
fixed time window batching. Their methods allow for arbitrary
distributions for customer order size, picking time, sorting time,
and setup times for picking or sorting a batch. For both methods
the optimal batch sizes for a given workforce allocation can
determined, or for the optimal allocation of workforce to the
picking and sorting processes. Finally, Henn [10] considers an
online batch picking in which the maximum completion time
of the customer orders arriving within a certain time period has
to be minimized. The author shows how heuristic approaches
for offline order batching can be modified in order to deal with
the online situation.

Finally, similar as for online batch picking, dynamic batch
picking considers the case that orders are received continuously
during the day. However, the difference is that dynamic batch
picking allows arriving customer orders to be directly included
or swapped with current picks in one of the current pick tours.
One of the first to study a dynamic batch picking was Gong
and De Koster [9]. They studied a single-block parallel-aisle
warehouse where each pick tour has the same route. Orders
arriving in real-time can be integrated in the current picking
tour which subsequently changes the stops on the order picker’s
picking route. Van der Gaast [15] extended the work of [9] by
studying the mean order throughput time of a random customer
order, i.e., the time between a customer order entering the
system until the whole order is delivered at the depot. Lu

Depot

B
lo

ck
1

B
lo

ck
2

B
lo

ck
3

B
lo

ck
4

Cross aisle

Cross aisle

Cross aisle

Cross aisle

Cross aisle

Pi
ck

ai
sl

e
1

Pi
ck

ai
sl

e
2

Pi
ck

ai
sl

e
7

Figure 2: Example of a rectangular multi-block parallel-aisle
warehouse layout with multiple cross aisles.

et al. [12] introduces an interventionist routing algorithm for
optimizing the dynamic order picking routes. The authors study
the case that batches are constructed on first-come-first-served
basis where if a new customer order arrives it will be checked
if it should be included in the current batch or not. Finally,
Chen et al. [1] develop a non-parametric heuristic method
named Green Area, which is independent of the parameters of
a warehouse layout and the characteristics of customer orders.
The heuristic checks if a new customer order can be picked
downstream, otherwise it will be picked in a future pick tour.

In conclusion, the current models in the literature for dynamic
batch picking either are heuristics [12, 1] or assume a fixed
pick tour [9, 15]. In this paper we assume that order pickers
can be rerouted in case of a new customer order arrival while
ensuring the customer orders are batched optimally.

III. WAREHOUSE DESCRIPTION

In Figure 2 the layout of the picker-to-parts warehouse
studied in this paper is shown. We assume a rectangular
multi-block parallel-aisle layout where storage locations are
located on both sides of the pick aisles. Within a pick aisle,
this allows for two-sided picking, i.e., simultaneous picking
from the right and left sides within an aisle. Different blocks
are separated by a cross aisle which is used to change between
blocks and allows for short-cutting parts of the warehouse.

In Figure 3 the different steps in dynamic order picking are
presented. The order picking procedure can be described as
follows. Initially, all order pickers start at the depot, i.e., the
location where completed orders can be prepared for shipment.
Eventually, new customer orders require to be picked and an
order picker is assigned a pick tour, which determines the
sequence in which storage locations are visited in order to pick
the required products. The corresponding route is determined

New order
arrival

Pickers
idle?

Add order
to backlog

Pickers
idling

Determine
new tours Walk Pick

Depot

Waiting
orders?

Optimize
pick tours

Not done

Done

Figure 3: Flow diagram of the dynamic order picking system.

by a typical routing strategy, i.e., S-shape or Largest Gap, while
considering the picking capacity of the order picker. Pick tours
are constructed such that the mean order throughput time for
all orders in the system is minimized for that given moment
of time. We define the order throughput time of order i as the
time between its arrival, ATi, and the time the order is fully
picked and delivered at the depot. Next, the order picker starts
walking to the first location in its pick tour. Then, after a pick
all the pick tours of all order pickers are re-optimized while
taking into account any order arrival from the moment the pick
tours were determined last. The pick tours of the picker can
be modified; either by adding, removing, or swapping picks.
Any unassigned pick is added to the backlog. We assume that
picks for orders the order picker already picked for or any
picks associated with the next picking location on the pick list
cannot be modified. In addition, if no new orders entered the
system after the last re-optimization, the order pickers continue
with their current tours. This process repeats until the picker
is instructed to return to the depot. Here the picker will drop
off the collected orders such that they can be shipped to the
customers. Afterwards, the order picker waits until to start a
next pick tour or stops working at the end of his/her shift.

IV. METHODOLOGY

In the following section we describe the model, as well as,
the solution method for analyzing dynamic batch picking. First,
in Subsection IV-A the mathematical program of the problem
is provided. Next, in Subsection IV-B the various cost factors
in the model are described in order to calculate the mean order
throughput time of an order. Then in Subsection IV-C a column
generation algorithm is presented that solves the relaxation of
the model described in Subsection IV-A and it is also describes
how new columns (a tour) for the column generation algorithm
are being generated. Finally, Subsection IV-D summarizes our
complete solution method.

A. Model

In order to analyze dynamic batch picking we formulate
the problem as a set partitioning problem. For any particular
time t during daily operations, a customer order i ∈ M is

either assigned to the current pick batch of an order picker
(current batches) or to the backlog of orders for which an initial
batching is made (future batches). Orders in the backlog will
eventually be assigned to a current batch such that an order
picker will pick them.

Let Ωj be the set of all feasible batches for order picker j ∈ J
given its location lj in the warehouse. A feasible batch rk ∈ Ωj
for order picker j is characterized by a zero-one vector ajrk =
(a1jk, . . . , amjk), where aijk = 1 if and only if order i ∈M
is included in batch rk. Note that batch rk is feasible only if∑
i∈M aijk ≤ qj , where qj is the remaining picking capacity

of order picker j ∈ J . Furthermore, let Ψ be the set of all
feasible future batches. Similar, a feasible batch rt ∈ Ψ is
characterized by a zero-one vector brt = (b1t, . . . , bmt), where
bit = 1 if and only if order i ∈ M is included in batch rt.
Batch rt is feasible only if

∑
i∈M bit ≤ q, where q is the

picking capacity of an order picker. Let cjk be the cost to pick
the orders in batch rk ∈ Ωj for order picker j ∈ J and c̄t be
the total cost to pick the orders in batch rt ∈ Ψ for a future
batch, where the costs will be described more elaborately in
Subsection IV-B. Furthermore, let θjk and δk be a zero-one
variable such that:

θjk =

1 if batch k is selected as the current tour of

picker j,
0 otherwise,

and

δk =

{
1 if batch k is selected as a future tour,
0 otherwise.

Then, the model can be formulated as follows:

min
∑
j∈J

∑
rk∈Ωj

cjkθjk +
∑
rt∈Ψ

c̄tδt (1a)

s.t.
∑
j∈J

∑
rk∈Ωj

aijkθjk +
∑
rt∈Ψ

bitδt = 1 i ∈M, (1b)

∑
j∈J

∑
rk∈Ωj

θjk = 1 j ∈ J, (1c)

θjk, δt ∈ {0, 1} (1d)

The objective of the model (1a) to determine values of θjk
and δk in order to minimize the total cost. Constraints (1b)
ensure that every order i ∈M is assigned to either a current
batch or to a future batch. Constraints (1c) define that each
order picker j ∈ J has a current batch. Finally, Constraints (1d)
are the integrality constraints. In the next section, a description
of how to calculate costs cjk and c̄t is provided.

B. Cost of pick tour

As explained in Section III, new pick tours are constructed
every time a picker completes a pick. This requires optimizing
Model (1) with updated picking information. Assume that at
time t order picker j ∈ J finishes a pick. Then, a updated
batch rk ∈ Ωj is determined for the picker, which consists of

the orders that are already picked or still need to be picked, as
well as, the remaining orders which can potentially consist of
orders that just arrived. The cost of batch rk ∈ Ωj is defined
as the mean order throughput time of the orders included in
the batch:

cjk =
1

|rk|
∑
i∈rk

∆lj
rk

+ E (τ) + t−ATi, (2)

where ∆
lj
rk is the remaining time starting at location lj to return

to the depot while simultaneously picking all outstanding orders
in batch rk ∈ Ωj Note that ∆

lj
rk can be determined by a routing

heuristic, e.g., S-shape or Largest Gap. In addition, E (τ) is
the additional time due to replanning, since new orders can
be assigned to the current pick tour which would increase
the time before the picker returns to the depot. Due to the
constant changing behavior of the system because of new
arriving customer orders, we roughly estimate the additional
replanning time per batch as follows;

E (τ) = max (E (σ)− |rk| , 0)E ($) ,

where E (σ) is the average number of picks per tour and E ($)
is the average contribution of one order to the tour duration. We
estimate both averages by the actual realizations from orders
picked in previous batches during the day.

Next, if an order is not assigned to an order picker, it is added
to the backlog for which initial batches are constructed. The
cost of batch rt ∈ Ψ is defined as the mean order throughput
time of the orders included in the batch

c̄t =
1

|rt|
∑
i∈rt

∆d
rl

+ E (τ) + E (φ) + t−ATi, (3)

where ∆d
rt is the tour duration starting and returning to the

depot while picking all the required products in batch rt ∈ Ψ .
The additional time due to replanning E (τ) is defined similar
as before, while E (φ) is defined as the average waiting time
to start a future tour. We define this waiting time as follows:

E (φ) = E (ξ)OT/q,

where E (ξ) is the average tour length, OT is the number of
outstanding orders at time t and q is the order picker capacity.
Again, we estimate E (φ) and E (ξ) by the actual realizations
from orders picked in previous batches during the day.

C. Column generation

In order to optimize Model (1) we apply column genera-
tion. We initially solve the linear programming relaxation of
Model (1) on a subset of current and future batches (master
problem). We verify the global optimality of the relaxation
using a pricing algorithm by checking if there are new current
or future batches with negative reduced cost that can be added,
since they might improve the solution value of the model.
This procedure is repeated until no more batches with negative
reduced cost can be found anymore. If the solution is integral,
then we have also found an optimal solution for the original
integer linear programming problem. If it is not, then a branch-
and-bound algorithm is required to find an optimal solution.

Since we consider a minimization problem, we know from
the theory of linear programming that a solution to the linear
programming relaxation is optimal if the reduced cost of each
variable, that is, batch, is non-negative. Therefore, the reduced
cost of a current batch rk ∈ Ωj , for picker j ∈ J is given by:

djk = ∆j
rt −

∑
i∈M

aijkλi − µj , (4)

where λi, i ∈M are the given values of the dual variables cor-
responding to the conditions of constraint (1b) and µ1, . . . , µJ
are the given values of the dual variables corresponding to the
conditions of constraint (1c). On the other hand, the reduced
cost of a future batch rt ∈ Ψ is given by:

d̄t = ∆d
rl
−

∑
i∈M

bitλi. (5)

To find out whether the current solution is optimal, we need
to determine whether there exists a batch rk ∈ Ωj , j ∈ J or
rt ∈ Ψ with a negative reduced cost. In order to find a batch
with negative reduced cost we need to solve the pricing problem.
In the next subsections we will describe two strategies how
generate these batches for the pricing problem.

1) Tabu search: The first method we use to rapidly generate
batches with negative reduced cost is Tabu search [8]. Tabu
search is a local search algorithm that has been applied
successfully in the past to solve difficult problems in many
fields. The algorithm starts with an initial solution and by
simple operators different parts of the search space will be
explored every iteration. Out of the neighborhood of the current
solution, feasible solutions reached by a single operator, the
best neighbor in terms of objective is chosen and is set as
the current solution. Tabu search allows for non-improving
solution when a local minima is encountered and cycling back
to previous solution is avoided using a Tabu list that forbids
certain moves for a couple of iterations. Then after a fixed
number of iterations, Imax, the best batch is returned. An
important aspect of Tabu search is to diversify the search such
that different parts of the search space are explored.

The Tabu search that we propose for dynamic batch picking
tries to find batches with negative reduced cost to include in the
set of feasible batches Ωj for order picker j ∈ J or for the set
of feasible batches Ψ for the future tours. Note that we run the
Tabu search |J |+ 1 different times, each time for the different
set of batches. Starting from an initial solution, every iteration
we apply two different operators. The first operator inserts
a customer order at every possible position into the current
solution, whereas the second deletes a customer order from the
current solution. For each neighbor we check its feasibility in
terms of the picking capacity and whether the operator to reach
the neighbor is not in the Tabu list. In addition, we assume
that the search space only consists of feasible solutions.

In order to diversify the search we restart the Tabu search
multiple times with different starting solutions. The set of
starting solution are given by the batches associated with the
basic variables of the current restricted master problem solution.
All these batches are good initial candidates because they have a

Initialize cost and
update previous batches

Solve master problem

Find new current
and future batches

Solve MIP on the
optimal LP columns

Implement new tours
and store all batches

Yes

No

N
ew

order
arrivals

Figure 4: Algorithm for dynamic order picking.

zero reduced cost. In a column generation context, all negative
reduced cost best neighbors are retained to be added to the
restricted master problem. Also, the algorithm is halted either
when all initial solutions have been used or when a maximum
number Cmax of negative reduced cost batches have been
found.

2) Branch-and-bound pricing: In case the Tabu search did
not found any batches with negative reduced cost, we will resort
to an exact method to find remaining batches with negative
reduced cost. If no batches are found, then the current solution
of linear relaxation of the master problem is optimal. Otherwise
we add the new batches to the master problem and optimize
the master problem again. The branch-and-bound algorithm
we use to find batches with negative reduced cost either for
Ωj for order picker j ∈ J or for the set of feasible batches Ψ
is the similar to the one used in Gademann and Van de Velde
[6]. For further information about the algorithm the reader is
referred to this paper.

D. Complete algorithm

Finally, we summarize the complete algorithm to analyze
dynamic batch picking (Figure 4). After an order picker
completes a pick and new customer orders have arrived in
the system, new pick tours are constructed by optimizing
Model (1) with the updated picking information. The first
step is to initialize rk ∈ Ωj , j ∈ J and rt ∈ Ψ and calculate
the associated cost cjk and c̄t or update old batches from the
previous optimization round. Afterwards, we optimize the
master problem (linear programming relaxation of Model (1)).
Then, we check via the Tabu search of Subsection IV-C1 and the
Branch-and-bound algorithm of Subsection IV-C2 if there exists
batches with negative reduced cost. If so we solve the master
problem again with the updated sets of batches. If no batches
are found with negative reduced cost, we optimize Model (1)
again, but now with the integrality constraints enforced. We
do not apply a branch-and-bound algorithm to find the best

Table I: Parameters of the system instances test set.

Value

Dimensions 5 pick aisles, 5 blocks, 5 pick location per block
Number of pickers 1, 2, 3
Arrival rate, λ 1/60, 1/55, . . . , 1/20
Routing method NN, S, LG
Planning method Static, Dynamic
Capacity picker, q 3

solution for Model (1) as the additional time spent finding this
solution does not outweigh the improvement in solution quality
based on our initial computational experiments. Finally, all
the batches are saved for the next time Model (1) needs to be
optimized and the new pick tours are implemented.

V. RESULTS

In order to test the performance of dynamic batch picking
we carry out a small initial numerical study on toy data. The
data used in this experiment is shown in Table I. We assume
a small multi-block parallel-aisle layout with 5 pick aisles, 5
blocks, and 5 pick locations on each side per block. The travel
times between pick locations is 1 second, picking at a pick
location takes 1 second on average and the depot is located
in the bottom left corner of the warehouse. Next, we vary the
number of order pickers between 1, 2, and 3. We assume that
new customer orders arrive according to a Poisson process with
rate λ, whereas the rate varies between 1/60, 1/55, . . . , 1/20.
The routing strategy for the order pickers is assumed to be
Nearest Neighbor, S-shape, or Largest Gap. Finally, the picking
capacity of the order picker is assumed to be 3 customer orders.

In order to test the performance of dynamic batch picking,
we assume two cases. The first case, Static, assumes that
when an order picker starts a pick tour, the tour cannot be
replanned anymore. Its pick batches are constructed on a first-
come-first-serve basis. The second case, Dynamic, allows for
replanning and is determined using the algorithm described in
Subsection IV-D. In total we have 162 different instances and
each instance is ran 5 times for a daily operation of 8 hours.

In Table II the results for the toy data is presented. First, in
Table IIa we study the effect of higher arrival rates. For both
Static (S) and Dynamic (D) it can be seen that as the arrival
rate increases the order throughput time sharply increases, and
the differences become bigger whereas dynamic batch picking
performs significantly better when the arrival rate is 1/20.
Similar the number of orders in the backlog increases when the
arrival rates increases. On average half of the dynamic batch
picking routes are replanned once and the utilization of the
pickers is lower compares to Static. This also results in less
total walking distance for the order pickers. In Table IIb we
can see the results for varying the number of pickers. When
the amount of pickers is equal to three the results for Dynamic
and Static are more or less the same, but when there is only
one order picker dynamic batch picking performs way better
compared to Static. Finally, in table IIc we can see the results
of varying the routing method. All three routing heuristics,

Nearest Neighbor (NN), S-shape (S), and Largest Gap (LG)
perform almost identical to each other both in case of Static
and Dynamic.

VI. CONCLUSION AND FURTHER RESEARCH

In this paper we studied dynamic batch picking. We
developed a mathematical model that minimizes the order
throughput time of a customer order. Using column generation
allowed us to quickly re-optimize the model in case of a new
order arrival and determine the new updated pick tours. The
model allowed us to study the performance gains of dynamic
batch picking compared to static batch picking.

Further research topics include robust route planning. In
this case pick routes should be planned to take into future
customer arrivals, i.e., if a new customer order arrives it can
easily be included without too much rerouting. Secondly, the
effect of product allocation on dynamic batch picking is worth
investigating.

REFERENCES

[1] F. Chen, Y. Wei, and H. Wang. “A heuristic based
batching and assigning method for online customer
orders”. In: Flexible Services and Manufacturing
Journal (2017), pp. 1–46.

[2] M. B. M. De Koster, T. Le-Duc, and K. J. Roodbergen.
“Design and control of warehouse order picking: A
literature review”. In: European Journal of Operational
Research 182.2 (2007), pp. 481–501.

[3] M. B. M. De Koster and E. S. Van der Poort. “Routing
orderpickers in a warehouse: a comparison between
optimal and heuristic solutions”. In: IIE Transactions
30.5 (1998), pp. 469–480.

[4] M. B. M. De Koster, E. S. Van der Poort, and M. Wolters.
“Efficient order batching methods in warehouses”. In: In-
ternational Journal of Production Research 37.7 (1999),
pp. 1479–1504.

[5] T. Le-Duc and M. B. M. De Koster. “Travel time
estimation and order batching in a 2-block warehouse”.
In: European Journal of Operational Research 176.1
(2007), pp. 374–388.

[6] A. J. R. M. Gademann and S. L. Van de Velde. “Order
batching to minimize total travel time in a parallel-aisle
warehouse”. In: IIE Transactions 37.1 (2005), pp. 63–
75.

[7] A. J. R. M. Gademann, J. P. Van den Berg, and H. H. Van
der Hoff. “An order batching algorithm for wave picking
in a parallel-aisle warehouse”. In: IIE Transactions 33.5
(2001), pp. 385–398.

[8] F. Glover and M. Laguna. “Tabu Search”. In: Handbook
of combinatorial optimization. Springer, 2013, pp. 3261–
3362.

[9] Y. Gong and M. B. M. De Koster. “A polling-based
dynamic order picking system for online retailers”. In:
IIE Transactions 40.11 (2008), pp. 1070–1082.

Table II: The results for the toy data.

(a) The effect of varying arrival rates on different performance statistics

Arrivals Plan

Order
throughput

time (s)
orders in

backlog
Tour

duration (s)

orders
picked per

tour
replanned

per tour
Picker

utilization
Picker walking

dist (m)

1/60 D 43.67 (0.86) 0.05 (0.01) 41.03 (0.77) 1.18 (0.02) 0.14 (0.02) 0.34 (0.01) 9155.38 (345.62)
S 47.04 (1.16) 0.09 (0.01) 40.23 (0.72) 1.08 (0.01) 0.00 (0.00) 0.37 (0.02) 9838.71 (412.30)

1/55 D 44.23 (0.91) 0.05 (0.01) 41.27 (0.87) 1.20 (0.02) 0.15 (0.02) 0.37 (0.01) 9857.57 (310.93)
S 47.76 (1.14) 0.11 (0.01) 40.28 (0.66) 1.10 (0.02) 0.00 (0.00) 0.39 (0.02) 10 502.03 (441.66)

1/50 D 45.08 (1.20) 0.07 (0.01) 41.55 (0.90) 1.22 (0.03) 0.17 (0.02) 0.40 (0.01) 10 638.44 (370.43)
S 49.58 (1.57) 0.15 (0.02) 40.71 (0.78) 1.12 (0.02) 0.00 (0.00) 0.43 (0.02) 11 556.49 (488.21)

1/45 D 46.29 (1.21) 0.09 (0.02) 42.24 (0.73) 1.28 (0.02) 0.20 (0.02) 0.44 (0.01) 11 660.84 (343.78)
S 50.70 (1.36) 0.18 (0.02) 40.93 (0.70) 1.15 (0.02) 0.00 (0.00) 0.47 (0.02) 12 589.77 (448.03)

1/40 D 47.38 (1.28) 0.12 (0.02) 42.63 (0.87) 1.31 (0.03) 0.22 (0.02) 0.48 (0.02) 12 829.42 (416.09)
S 53.37 (1.80) 0.24 (0.03) 41.67 (0.82) 1.19 (0.02) 0.00 (0.00) 0.52 (0.02) 13 816.80 (421.51)

1/35 D 49.55 (1.35) 0.18 (0.02) 43.34 (0.88) 1.38 (0.03) 0.26 (0.02) 0.53 (0.01) 14 174.80 (389.76)
S 56.65 (1.86) 0.33 (0.04) 42.56 (0.72) 1.26 (0.02) 0.00 (0.00) 0.57 (0.01) 15 113.51 (383.14)

1/30 D 52.89 (1.33) 0.29 (0.03) 44.38 (0.65) 1.49 (0.02) 0.32 (0.02) 0.59 (0.01) 15 778.49 (361.78)
S 61.14 (2.02) 0.50 (0.05) 43.52 (0.72) 1.35 (0.03) 0.00 (0.00) 0.64 (0.01) 16 928.51 (354.02)

1/25 D 60.86 (3.95) 0.60 (0.15) 45.99 (0.69) 1.64 (0.03) 0.41 (0.02) 0.67 (0.01) 17 764.83 (387.50)
S 76.48 (6.16) 1.11 (0.24) 45.93 (0.87) 1.54 (0.05) 0.00 (0.00) 0.71 (0.01) 19 004.79 (300.23)

1/20 D 103.91 (20.14) 2.84 (1.05) 47.30 (0.53) 1.87 (0.03) 0.59 (0.04) 0.76 (0.01) 20 008.30 (242.16)
S 346.57 (157.90) 14.60 (7.99) 49.25 (0.74) 1.82 (0.03) 0.00 (0.00) 0.79 (0.01) 21 112.89 (344.06)

(b) The effect of varying number of pickers on different performance statistics

Pickers Plan

Order
throughput

time (s)
orders in

backlog
Tour

duration (s)

orders
picked per

tour
replanned

per tour
Picker

utilization
Picker walking

dist (m)

1 D 80.86 (9.43) 1.34 (0.43) 49.13 (1.09) 1.90 (0.05) 0.56 (0.04) 0.72 (0.02) 18 968.79 (442.11)
S 174.28 (56.49) 5.56 (2.78) 48.08 (1.03) 1.71 (0.05) 0.00 (0.00) 0.78 (0.02) 20 692.13 (463.34)

2 D 43.66 (0.77) 0.07 (0.01) 41.32 (0.67) 1.22 (0.02) 0.20 (0.02) 0.47 (0.01) 12 461.85 (353.87)
S 47.65 (1.12) 0.17 (0.02) 40.83 (0.66) 1.13 (0.01) 0.00 (0.00) 0.50 (0.01) 13 318.34 (383.76)

3 D 40.10 (0.54) 0.02 (0.00) 39.46 (0.53) 1.07 (0.01) 0.07 (0.01) 0.35 (0.01) 9192.05 (260.04)
S 41.17 (0.72) 0.04 (0.01) 39.46 (0.55) 1.03 (0.01) 0.00 (0.00) 0.36 (0.01) 9477.36 (350.63)

(c) The effect of varying routing methods on different performance statistics

Routing Plan

Order
throughput

time (s)
orders in

backlog
Tour

duration (s)

orders
picked per

tour
replanned

per tour
Picker

utilization
Picker walking

dist (m)

LG D 55.57 (3.79) 0.51 (0.15) 43.38 (0.72) 1.40 (0.03) 0.28 (0.02) 0.51 (0.01) 13 554.37 (314.59)
S 85.06 (21.50) 1.77 (1.00) 42.77 (0.82) 1.29 (0.03) 0.00 (0.00) 0.54 (0.02) 14 495.81 (410.06)

NN D 53.86 (3.69) 0.45 (0.15) 43.03 (0.80) 1.39 (0.02) 0.27 (0.02) 0.51 (0.01) 13 506.91 (361.12)
S 91.45 (18.81) 2.15 (0.90) 42.53 (0.63) 1.28 (0.02) 0.00 (0.00) 0.54 (0.02) 14 477.99 (403.84)

S D 55.20 (3.26) 0.47 (0.13) 43.50 (0.77) 1.40 (0.03) 0.28 (0.02) 0.51 (0.01) 13 561.40 (380.30)
S 86.59 (18.02) 1.85 (0.90) 43.07 (0.79) 1.30 (0.03) 0.00 (0.00) 0.55 (0.01) 14 514.04 (383.83)

[10] S. Henn. “Algorithms for on-line order batching in an
order picking warehouse”. In: Computers & Operations
Research 39.11 (2012), pp. 2549–2563.

[11] S. Hong, A. L. Johnson, and B. A. Peters. “Batch
picking in narrow-aisle order picking systems with con-
sideration for picker blocking”. In: European Journal
of Operational Research 221.3 (2012), pp. 557–570.

[12] W. Lu, D. McFarlane, V. Giannikas, and Q. Zhang.
“An algorithm for dynamic order-picking in warehouse
operations”. In: European Journal of Operational
Research 248.1 (2016), pp. 107–122.

[13] M. Matusiak, M. B. M. De Koster, L. Kroon, and
J. Saarinen. “A fast simulated annealing method for
batching precedence-constrained customer orders in a

warehouse”. In: European Journal of Operational
Research 236.3 (2014), pp. 968–977.

[14] H. D. Ratliff and A. S. Rosenthal. “Order-picking in a
rectangular warehouse: a solvable case of the traveling
salesman problem”. In: Operations Research 31.3
(1983), pp. 507–521.

[15] J. P. Van der Gaast. Stochastic models for order picking
systems. EPS-2016-398-LIS. ERIM, 2016.

[16] I. Van Nieuwenhuyse and M. B. M. De Koster. “Evalu-
ating order throughput time in 2-block warehouses with
time window batching”. In: International Journal of
Production Economics 121.2 (2009), pp. 654–664.

	Georgia Southern University
	Digital Commons@Georgia Southern
	2018

	Dynamic Batching for Order Picking in Warehouses
	Jelmer Pier van der Gaast
	Bolor Jargalsaikhan
	Kees Jan Roodbergen
	Recommended Citation

	Introduction
	Literature review
	Warehouse description
	Methodology
	Model
	Cost of pick tour
	Column generation
	Tabu search
	Branch-and-bound pricing

	Complete algorithm

	Results
	Conclusion and further research

