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Abstract—In this research, transportation mode and load 

route selection problems are integrated with the hub location 

problem in a single mathematical formulation to find the optimal 

design of intermodal transportation networks. Economies of scale 

are modeled utilizing a stepwise function that relates the per 

container transportation cost to the amount of flow between two 

nodes. A heuristic method combining a genetic algorithm and the 

shortest path algorithm was developed to solve this integrated 

planning problem. Computational experiments were completed 

to evaluate the performance of the proposed heuristic for 

different problem instances. At the end, conclusions are 

presented and future research directions are discussed.  
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I. INTRODUCTION 

Intermodal freight transportation is a valid alternative to 
long-haul over the road transportation that can reduce costs, 
congestion, and the negative environmental effects that are 
usually observed with the most predominant transportation 
mode. Intermodal freight transportation is defined as using at 
least two different transportation modes to move freight that is 
in the same transportation unit (e.g., a shipping container) from 
origin to destination without actually handling the goods when 
changing transportation modes [1]. 

One key strategic planning decision in intermodal freight 
transportation is the design of its logistics network. Different 
network topologies including point to point, corridor, hub and 
spoke, connected hubs, static routes and dynamic routes have 
been used to handle intermodal transportation service [2]. In 
this research, a hybrid network topology that combines 
connected hubs with point to point is considered for intermodal 
transportation. Therefore, loads can be shipped directly from 
their origin to destination or they can be moved from their 
origins to a hub or terminal. At the hub, all needed transfers are 
handled and loads are consolidated to be transported to another 
hub or to their destinations. In this configuration, the larger 
flows between hubs reduce total transportation costs due to 
economies of scale resulting from the consolidation of loads. 
By considering this hybrid network topology, this research is 
not addressing the traditional hub-and-spoke network design 
problem anymore. 

Several strategic, tactical and operational decisions and 
constraints need to be considered when designing an 
intermodal network. For example, hub locations are determined 
in the strategic phase and affect the selection of resource levels 
at terminals and transportation modes to be used which are 
established at the tactical level. Similarly, the previous 
decisions affect the selection of specific routes for loads which 
are determined during the operational phase. These decisions 
are not independent and should be handled together to optimize 
the intermodal transportation system performance. However, in 
most previous research studies, these decisions have been made 
separately in a multi-stage approach in which decisions made 
at one level are used as input for the next level. In this research, 
hub locations, transportation mode selection, and load routing 
for each load are all considered in a single integrated 
mathematical model to find the optimal design for an 
intermodal network. 

In practice, the per container transportation cost depends on 
the degree of consolidation at terminals due to economies of 
scale (i.e., transportation cost per container will decrease more 
as more containers are consolidated at terminals). However, 
most previous research considers a constant discount factor for 
all inter-hub transportation movements regardless of the 
amount of containers that is shipped between two nodes [3]. 
While we are able to obtain valuable insights by using a 
constant discount factor, there is a need for a more accurate 
cost function to make the mathematical formulation more 
applicable in real world instances. The mathematical model 
presented in this research considers a stepwise cost function 
that determines the per container transportation cost as a 
function of the amount of containers that are shipped between 
node pairs. Using this stepwise cost function, we can model 
real world cost functions accurately. However, considering this 
stepwise cost function makes the Integrated Intermodal 
Logistics Network Design (IILND) problem significantly 
harder to solve. This is because with this stepwise cost 
function, the transportation mode and route selection problems 
become NP-hard problems regardless of the hub locations [4]. 
In order to solve the IILND problem, a heuristic method 
combining a genetic algorithm (GA) and the shortest path 
algorithm (SPA) was developed. 

A particular contribution of this research is that the 
transportation mode of each shipment leg can be explicitly 
determined with this new mathematical model in comparison 
to previous models that only determine the inter-hub shipment 



transportation mode and assume that all other shipments are 
handled by truck. Also, previous research studies restrict the 
number of hubs that each load can visit in its movement from 
origin to destination (i.e., usually to two hubs). This 
assumption may be valid in small logistics networks, however 
in larger networks especially for long-haul or international 
transportation, a load may pass through several hubs in order to 
be consolidated with other loads or be transferred to a different 
transportation mode to reduce transportation costs. As such, 
this assumption is relaxed in the current study and loads are 
allowed to visit as many hubs as needed between origin and 
destination to reduce the total network cost. 

II. LITERATURE REVIEW 

As the market for intermodal freight transportation grows 
within the transportation industry, a growing number of 
research studies have been completed in this area. Reference 
[5] classified these studies according to two criteria: ‘type of 
operator’ and ‘time horizon of the operations problem.’ Several 
research studies have been completed in each of these 
categories. More closely related to the current research, [6], 
[7], [8], [9], [10], [11], [12], [13], and [14] have recently 
developed models and solution approaches for network 
operator planning problems. Intermodal logistics network 
design is one of the most important strategic planning problems 
that affect the performance of the intermodal transportation 
system. In this area, hub-and-spoke networks have been 
studied the most as they are the fundamental network 
configuration for intermodal freight transportation. Several 
studies related to the design of hub networks can be found in 
the literature in many applications related to transportation and 
telecommunications. References [3], [15] and [16] provide 
recent comprehensive reviews of various research studies in 
this area. However, as a particular application area, intermodal 
freight transportation has its own characteristics and constraints 
that should be explicitly considered when designing a logistics 
network using a hybrid hub-based configuration. In particular, 
most of the hub location literature assumes that no direct 
shipment between spokes is allowed and that the flow of cargo 
is limited to visit at most two hubs. These are not realistic 
assumptions in practice in the context of intermodal freight 
transportation. Also, most existing work in this area only 
considers the hub location or hub network design aspect of this 
problem and ignores the integration of the hub location-
allocation decisions with tactical decisions such as 
transportation mode selection and resource allocation. 

Operations research techniques have been consistently used 
for designing intermodal logistics networks. However, given 
the complexity and scale of this planning problem, many 
researchers have mostly relied on heuristic and metaheuristic 
approaches to obtain near optimal solutions for large problem 
instances. Mathematical models for intermodal hub network 
design applications were initially presented by [17], [18] and 
[19]. Reference [20] proposed an approach for the design and 
operation of integrated intermodal transportation networks for 
express package delivery. Reference [21] developed a mixed 
integer programming model to find the optimal number and 
location of inland ports for an intermodal transportation 
network that minimizes total transportation and facility costs. 

Reference [22] developed an iterative procedure to estimate the 
potential locations for terminals assuming that each node can 
be allocated to only one hub in the network. Then, the authors 
used a mixed integer programming model to determine the 
optimal locations among those potential locations. 

Later, [6] considered the assumptions that each load has 
service time requirements and can be shipped through at most 
two hubs. Still, transportation times between two hubs were 
multiplied by a constant factor to capture the transitioning time 
at terminals. In a related study, [7] modeled the hub operations 
as a G/G/1 queuing system to estimate the transitioning time at 
terminals more accurately. In both of these last two research 
studies, a tabu search metaheuristic was implemented to find 
near optimal location-allocations of hubs that minimize the 
total transportation and fixed hub facilities costs. 

Reference [8] developed a couple of two-stage 
metaheuristic methods for the mixed integer programming 
model first developed by [18] which allows direct 
transportation between nodes as well as visiting at most two 
hubs. The objective of this model was to determine the 
location-allocation of hubs such that the total transportation 
cost is minimized. Reference [12] improved the mathematical 
model of [8] by reducing constraints and variables in the 
formulation without any extra assumptions. The authors then 
developed two heuristics to find near optimal hub locations. 
Reference [9] modified the model of [8] to a bi-objective 
mixed integer programming model. The authors developed a 
problem-specific greedy randomized adaptive search procedure 
(GRASP) to approximate the optimal Pareto set. 

In another study, [23] proposed single allocation hub 
network design models including delivery due date constraints 
and allowing multiple transportation modes. They used valid 
inequalities and a heuristic based on Lagrangian decomposition 
and variable reduction to solve the proposed formulations. 
Reference [24] also solved a hierarchical hub median problem 
where shipment of all cargo is restricted to pre-specified time 
windows by developing a mixed integer programming 
formulation that is solved with the help of variable fixing rules 
and valid inequalities. In their model, they minimize the total 
transportation costs and installation costs per unit of time. 

More recently, [13] developed a mathematical model that 
integrates the load route and transportation mode selection 
problems within the hub location problem for the intermodal 
logistics network design problem. However, a constant 
discount factor is still considered to account for economies of 
scale for movements between hubs. The authors developed a 
decomposition approach to obtain exact solutions for several 
randomly generated instances. 

Finally, while most of the previous studies only consider 
transportation and fixed facility costs, a few recent studies have 
included other types of costs in the modeling of intermodal 
logistics networks. CO2 emissions have been recently 
considered in the design of intermodal hub networks by [11], 
[25], [26], and [27]. 

The reader is referred to comprehensive reviews of research 
studies in intermodal transportation planning including 
strategic network design by [5], [28], and [29]. Like most of 



the previous studies on strategic network design, the current 
research attempts to minimize the total transportation and fixed 
facility costs, however the modelling approach of this research 
integrates the transportation mode and load route selection 
problems within the hub location problem and relaxes some 
restrictive assumptions made in previous studies. 

III. METHODOLOGY 

A. Problem Definition 

There are N nodes representing origins and destinations of 
loads, and potential locations for hubs. Fixed hub installation 
costs at these nodes are considered. Containers in a load can be 
shipped between two nodes using one of the available 
transportation modes that connect the two nodes. Each 
transportation mode has a corresponding transportation cost per 
mile and per container. However, this transportation cost 
depends on the amount of containers that are transported on a 
particular mode between two nodes. As flow between hub 
nodes increases and consolidation occurs with modes that are 
able to handle more than one container in a single trip, the 
transportation cost per container decreases due to economies of 
scale resulting from the larger flows. Consequently, the per 
container transportation cost of moving freight between two 
hubs is less than the per container cost of transportation 
between a hub and a non-hub node or between two non-hub 
nodes. However, the transportation time between origin and 
destination also increases as more hubs are visited in a trip due 
to delays at the hubs for coordination and load handling. The 
IILND problem can be defined as determining the locations for 
hubs, the selection of transportation modes for each load 
shipment, and the assignment of routes to load shipments such 
that total hub installation and transportation costs are 
minimized subject to constraints. 

B. Mathematical Model Formulation 

A stepwise function that relates the per container 
transportation cost to the amount of flow between two nodes 
was used to model the effect of consolidation and economies of 
scale on the transportation cost for inter-hub movements (Fig. 
1). The number of steps in this cost function can be arbitrarily 
determined based on a particular transportation mode. As a 
result, the stepwise function can realistically model the 
transportation cost between two nodes with relatively high 
precision. This is a different approach than the one used in [30] 
and [31]. 

If we let i, j, k = 1, 2, …, N denote indices for nodes, t = 1, 
2, …, T be the index for transportation modes, and r = 1, 2, …, 
R be the index for steps in the transportation cost per container 

stepwise function, then  denotes the lower bound flow value 

of step r in the transportation cost per container stepwise 

function between nodes i and j via mode t, and  is the value 

of step r in the transportation cost per container stepwise 
function between nodes i and j via mode t. Additional notation 
for indices and parameters includes p, q = 1, 2, …, L as indices 
for load shipments, Fi is the fixed cost of installing a hub at 
node i, dp is the demand (i.e., number of containers) for load 
shipment p, H is the maximum number of hubs to open, M is a 

very large positive number, and Originp denotes the origin node 
for load p. 
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Fig. 1. Stepwise Function for Transportation Cost Per Container 

The binary decision variables are Yi which takes a value of 

1 if a hub at node i is open, 0 otherwise;  with a value of 1 

if load shipment p is moved from node i to node j via mode t, 0 

otherwise; and,  which takes a value of 1 if the number of 

containers for load shipment p moving from node i to node j 
via mode t is on the rth step of the transportation cost per 
container stepwise function, 0 otherwise. The mathematical 
formulation for IILND follows. 

 

 



Objective function (1) minimizes the total cost consisting 
of the fixed hub installation cost and the transportation cost for 
all flows in the network. Constraint (2) enforces flow balance 
at the nodes in the network. Constraint (3) requires that hubs 
should be used only if they are selected to be opened. The total 
number of hubs that can be opened is limited by constraint (4). 
The transportation cost per container stepwise function is 
linearized using constraints (5) – (7).  And finally, constraints 
(8) – (10) are the variable type constraints. Note that the value 
of M could be replaced by the summation of all flows in the 
network to provide a specific bound for constraints (3), (5) and 
(6). 

C. Solution Approach 

As different decisions (i.e., hub location, transportation 
mode and route selection) are integrated into a single 
mathematical model, the tractability of the IILND problem 
presented above is affected by the size of the instances solved. 
As a result, only small problem instances can be solved to 
optimality using a commercial solver. To overcome this 
challenge, a heuristic approach that takes advantage of both 
Genetic Algorithms (GA) and the Shortest Path Algorithm 
(SPA) was developed. The method starts by finding the 
optimal location for a single hub and evaluating the resulting 
total network cost during the first iteration. The method then 
moves to the next iteration by increasing the number of hubs to 
open until opening one more hub increases the total network 
cost of the solution obtained. During each iteration, the SPA is 
used to find optimal transportation modes and load routes for 
all freight loads for a given hub location solution. The resulting 
total network cost is used to evaluate the fitness of that 
particular hub location solution. Meanwhile, the GA leads the 
search for optimal hub locations through the feasible solution 
space. Therefore, the proposed solution approach starts each 
iteration with a set of initial hub location solutions, then 
evaluates them using the SPA, and moves to a new set of hub 
location solutions by applying GA operations until reaching a 
stopping criterion. 

In the proposed GA, chromosomes represent the allocation 
of hubs to nodes in the network (i.e., each gene corresponds to 
the index of a node where a hub is located). Since in the Kth 
iteration of the algorithm, the number of open hubs is equal to 
K, each chromosome in the population has K genes. For 
example, if N is equal to 20 and K is equal to 3, a chromosome 
associated with the solution in which hubs are allocated to 
nodes 4, 12 and 16 is represented by (4,12,16). The initial 
population for the GA is randomly generated at the beginning 
of each iteration of the solution approach (i.e., when the 
number of hubs is increased by one). 

To evaluate the hub solutions in each generation of the GA, 
the total cost for each solution has to be computed. Note that 
hub locations are fixed for each solution, so the fixed cost of 
installation is known. However, the transportation cost is not 
known until the transportation modes and load routes are 
determined for all loads. The SPA is used to select the 
transportation modes and load route that minimize the 
transportation cost for a given load. The SPA can only be 
applied to networks that have at most one link (i.e., arc) with a 
fixed cost between two nodes. However, in intermodal 

transportation networks, there can be multiple arcs between 
two nodes each representing a different mode of transportation. 
Also, the transportation costs vary as a function of the amount 
of containers (i.e., flow) that are shipped on an arc. To 
overcome these challenges, dummy nodes are defined at 
locations where multiple transportation modes are available. 
Each single-mode transportation network is modelled by a set 
of n dummy nodes and the cost of transitioning loads from a 
node to its corresponding dummy nodes (i.e., nodes in the same 
location for different transportation modes) is zero. 

At this stage of the proposed solution approach, an iterative 
procedure is implemented to overcome the non-linear 
transportation cost between nodes in the network. After the 
SPA is initially used to determine the transportation modes and 
load routes for all shipments, the transportation costs per 
container are recalculated based on the amount of flow 
between each pair of nodes according to the stepwise 
transportation cost per container function. Then, the SPA is 
applied again to the network with the new transportation costs. 
This iterative process continues until no changes in cost are 
observed. Note that a constant discount factor could be 
considered for inter-hub shipments in the initial step to 
generate solutions that incorporate the consolidation of flow. 
After all transportation mode and load route selection decisions 
are final, the total cost is calculated and used as the fitness 
value of each hub solution in the current GA population. 

A combination of elitism and rank selection is used to 
determine the solutions that are used as input for crossover and 
mutation operations of the GA. The offspring that result from 
the application of these GA operations form the population for 
the next generation of the GA. 

The entire process combining the GA with the SPA is 
repeated until a predetermined number of generations (i.e., the 
stopping criterion) are produced. 

After the GA stops at the end of each iteration, the total 
cost of the best solution in that iteration is compared to the total 
cost of the best solution in the previous iteration. If the total 
cost decreases compared to the previous iteration; the solution 
method moves to the next iteration by adding one more hub to 
the number of open hubs and continues to explore an additional 
reduction in total cost. Otherwise, the solution method stops. 

IV. COMPUTATIONAL EXPERIMENTS 

Both, randomly generated instances and the Civil 
Aeronautics Board (CAB) dataset were used to evaluate the 
performance of the proposed mathematical model and solution 
approach.  The following sub-sections present the experimental 
design and computational results for both datasets. 

A. Experimental Design for Randomly Generated Dataset 

Two sets of computational experiments (Set A and Set B) 
were completed on randomly generated datasets. Set A 
experiments were used to test the performance of the proposed 
heuristic when compared to exact solutions obtained for small 
network instances. Set B experiments were developed to obtain 
insights about the solutions obtained with the heuristic method 
for medium size instances. For all computational experiments, 



random instances of complete networks (i.e., networks where 
all pairs of nodes are connected to each other by an arc) were 
generated in which nodes were uniformly distributed in a 1.0 × 
0.5 rectangular area. For each problem configuration in Set A, 
10 random instances were generated, while five random 
instances were created for Set B. In all cases, L load shipments 
were randomly generated and their demand (i.e., number of 
containers) was assigned based on a random value uniformly 
distributed between 50 and 150 units. In Set A, the size of L 
was set to be equivalent to 5%, 10%, 15%, 20% and 25% of all 
possible O-D pairs in the complete network. In Set B, the size 
of L was set to be equivalent to 20% of all possible O-D pairs. 
In addition, limitations were established for the number of 
transportation modes considered in each problem instance. 
Half of the generated problem instances had only two 
transportation modes, while the other half considered three 
modes. 

Regarding cost parameters, the fixed cost of installing a 
hub at a node (amortized for the length of the planning 
horizon) was considered to be a random variable that is 
uniformly distributed between 100 and 150. Also, the 
transportation cost between nodes i and j was dependent on the 
transportation mode selected to connect two nodes. Values for 
the first step of the transportation cost per container stepwise 
function were calculated using (11), (12) and (13), according to 
the number of available transportation modes connecting nodes 
i and j. Based on our notation, a higher numbered 
transportation mode was assumed to provide a less expensive 
transportation cost per container for long haul shipments, while 
it was more expensive for short haul transportation. In (11) - 
(13), Random(0,1) refers to a uniformly distributed random 
variable between 0 and 1. Three steps were considered for the 
transportation cost per container stepwise function for each 
transportation mode. 

Mode 

(t) 

Maximum transportation cost per container 

between nodes i and j ( ) 

1 Distance (i,j) / 2 + Random(0,1) (11) 

2 Distance (i,j) / 3 + Random(0,1) + 0.05  (12) 

3 Distance (i,j) / 4 + Random(0,1) + 0.10 (13) 

All of the parameters and their respective values used to 
randomly generate problem instances for both sets A and B are 
shown in Table I. For the GA used in the proposed solution 
method, the stopping criterion was set at 50 generations, each 
containing 40 chromosomes (i.e., hub solutions). 

TABLE I.  PARAMETERS AND VALUES FOR SETS A AND B 

Parameter 

Randomly Generated Dataset 

Set A Set B 

# of Nodes 10 25, 50 

# of Loads 

5%, 10%, 15%, 20% 

and 25% of all possible 

O-D pairs 

20% of all possible O-D 

pairs 

# of Modes 2, 3 2, 3 

 

B. Computational Results for Randomly Generated Datasets 

The proposed mathematical model and solution approach 
for the IILND problem were implemented in MATLAB. All 
computational experiments were run on a 2.83 GHz Quad Core 
computer with 8 GB of RAM. 

Each instance in Set A was solved using the heuristic 
solution approach presented above, and the results were 
compared to optimal solutions obtained using CPLEX 12.2 to 
assess the performance of the proposed solution approach. The 
percentage differences between the average optimal solution 
value obtained with CPLEX and the average heuristic solution 
value for each problem instance were calculated and are 
presented in Table II. At the same time, a comparison of the 
selected hub nodes in both solutions was completed and the 
average percentage of hubs in the heuristic solution that are 
present in the optimal solution for each problem instance are 
also shown in Table II. 

As shown in Table II, the heuristic approach consistently 
obtained solutions that were very close to the optimal solution.  
Actually, the heuristic approach obtained the optimal solution 
for all instances with five loads. However, the average 
percentage cost difference increased with the size of the 
problem (i.e., as the number of loads increased), but never 
exceeded 4% with respect to the optimal solution obtained with 
CPLEX. Also, according to Table II, a relationship between 
instance size and average percentage of optimal hubs found by 
the heuristic method was observed. For example, in average 
70% of the hubs selected in the optimal solution were found by 
the heuristic method in instances with 23 loads and two modes. 
This means that even when the average percentage cost 
difference was about 3.5%, most of the hubs selected by the 
heuristic were part of the optimal set. Note that the selection of 
hubs by the heuristic method was the same as the optimal hub 
selection obtained with CPLEX in small instances with fewer 
loads. However, as instance size increased, the percentage of 
optimal hubs found by the heuristic approach decreased.   

TABLE II.  HEURISTIC RESULTS FOR SET A INSTANCES AS COMPARED 

TO OPTIMAL SOLUTIONS 

# of 

Loads 

# of Modes = 2 # of Modes = 3 

Avg. % Cost 

Diff. 

Avg. % Opt. 

Hubs 

Avg. % Cost 

Diff. 

Avg. % Opt. 

Hubs 

5 0.00 100 0.00 100 

9 0.50 100 0.54 100 

14 1.00 85 0.60 80 

18 3.62 75 1.57 80 

23 3.47 70 2.88 50 

 

In terms of computational performance, the average 
solution times for the heuristic and the exact approaches are 
reported in Table III. In the instances with fewer loads, the 
average solution time using CPLEX (i.e. the exact approach) is 
competitive when compared to the heuristic approach. 
However, as the size of the instances increased, the average 
solution time for the exact approach increased very fast while 
the increase in solution time for the heuristic method was not 
as significant. In larger instances with 23 loads and three 
modes, the heuristic approach was able to find a good solutions 



in less than two minutes, while it took about 2.3 hours to find 
the optimal solution using CPLEX. Note that in the exact 
approach, in addition to the solution time, there is a setup time 
in which the model is setup to be solved by CPLEX. The setup 
time depends on the number of constraints and decision 
variables in the mathematical formulation presented above.  
For networks with 10 nodes, five loads and two transportation 
modes, there were 6,096 constraints and the average setup time 
was 14 seconds. While networks with 10 nodes, 23 loads and 
three transportation modes had 41,838 constraints and an 
average setup time of 1,476 seconds. 

TABLE III.  AVERAGE SOLUTION TIMES FOR HEURISTIC AND EXACT 

APPROACHES FOR SET A INSTANCES 

# of 

Loads 

# of Modes = 2 # of Modes = 3 

Heuristic 

(secs) 

Exact 

(secs) 

Heuristic 

(secs) 

Exact 

(secs) 

5 10 1 17 2 

9 19 7 30 9 

14 30 49 44 156 

18 41 620 64 1,010 

23 67 5,024 87 8,500 

 

While the instances in Set B were not solved to optimality 
using CPLEX, solutions were obtained by applying the 
proposed heuristic method. Table IV shows the total network 
costs and the number of open hubs for the five instances in Set 
B. 

According to Table IV, as the number of transportation 
modes increases from T = 2 to T = 3 the total network cost 
reduces. A reason for this is that the networks with three modes 
consist of the exact same modes as the networks with two 
modes plus an additional set of dummy nodes associated with 
transportation mode 3 which provides less expensive long-haul 
transportation. In this way, the solution space of the route 
selection problem grows as the number of modes increases. 
This results in finding better solutions with lower 
transportation costs. On the other hand, the number of open 
hubs decreases when a third transportation mode is considered 
since a new hub is opened only if the amount of savings that 
result from the additional consolidation of loads is greater than 
the fixed cost of opening an additional hub. However, when a 
third transportation mode that provides less expensive long-
haul service is considered, the total transportation cost 
decreases and there is a reduced chance that opening a new hub 
would be economically feasible. Also, as the network size 
increases from 25 to 50 nodes, a greater than or equal number 
of hubs are required, although the increase is not really 
significant. 

Regarding the computational performance of the proposed 
heuristic method for these larger problem instances, Fig. 2 
shows the average solution times obtained for Set A (i.e., 10 
node networks) and Set B (i.e., 25 and 50 node networks) 
instances with load demand for 20% of all possible O-D pairs. 
According to Fig. 2, average solution times increased with the 
size of the instances (i.e., number of nodes and number of 
transportation modes). The proposed heuristic method was able 
to obtain solutions in a few minutes for 10 node networks with 

up to three transportation modes. However, it required more 
than 53 hours for networks with 50 nodes and three 
transportation modes. The average solution times for networks 
with three transportation modes were larger than the solution 
times for networks with two modes, especially for 50 node 
networks. Given that the number of dummy nodes and arcs in 
the network increases with the number of modes in the 
network, it takes longer for the SPA to find the optimal routes 
for loads in these instances. 

TABLE IV.  TOTAL COST AND NUMBER OF OPEN HUBS FOR SET B 

INSTANCES 

Instance Measure 
N = 25, P = 120 N = 50, P = 490 

T = 2 T = 3 T = 2 T = 3 

1 
Cost 4,503.9 3,991.6 13,277.9 12,973.0 

# of Hubs 4 4 5 5 

2 
Cost 4,792.4 4,390.4 13,987.8 13,023.4 

# of Hubs 5 4 5 4 

3 
Cost 4,900.1 4,394.4 14,230.4 13,430.0 

# of Hubs 5 3 5 5 

4 
Cost 4,797.9 4,136.2 14,180.6 12,696.2 

# of Hubs 5 4 5 5 

5 
Cost 4,862.4 4,367.8 14,183.2 12,755.6 

# of Hubs 5 3 5 5 

 

 

Fig. 2. Heuristic Method Average Solution Times for Set A and Set B 

Instances (20% of All Possible O-D Pairs) 

C. Experimental Design for CAB Dataset 

The CAB dataset is one of the most commonly used 
datasets for testing hub location formulations and solution 
methods. Even though the CAB dataset is not designed for 
intermodal transportation networks, it was modified for 
evaluating the performance of the developed mathematical 
formulation and solution approach in a realistic instance. The 
CAB dataset consists of the 25 largest cities in the United 
States in which all possible origin-destination pairs have a 
positive demand. In our experimentation, the container 
transportation cost between nodes i and j was determined based 
on the transportation mode selected to connect two nodes and 
the distance between these nodes. Values for the first step of 
the transportation cost per container stepwise function were 



calculated using (14)-(16), according to the number of 
available transportation modes connecting nodes i and j. The 
CAB dataset was solved considering both two and three 
transportation modes to evaluate the effect of integrating more 
transportation modes on the performance of the resulting 
intermodal logistics networks. Three steps were considered for 
the transportation cost per container stepwise function for each 
transportation mode. 

Mode 

(t) 

Maximum transportation cost per container 

between nodes i and j ( ) 

1 Distance (i,j) / 25,000 (14) 

2 Distance (i,j) / 40,000  (15) 

3 Distance (i,j) / 50,000 (16) 

In addition, regarding the fixed cost of installing a hub at a 
node, two different scenarios where considered. In Scenario I, 
all nodes had the same fixed hub installation cost. The CAB 
dataset was solved considering the fixed costs are 5,000, 
10,000, 25,000 and 50,000. In Scenario II, the fixed hub 
installation cost was not equal for all nodes and was 
proportional to the total amount of demand flow of each node. 
In Scenario II, the fixed hub installation cost for node i was 
calculated using (17). 

 Fi = Total demand flow of node i / θ 

Where θ represents a proportionality constant. The CAB 
dataset was solved considering four different values of θ = 10, 
20, 50 and 100.  

D. Computational Results for CAB Dataset 

Solutions for the CAB dataset were obtained by applying 
the proposed heuristic method. Table V shows the total 
network costs and the number of open hubs for different values 
of fixed hub installation cost and different number of 
transportation modes in the network for Scenario I. 

When the hub installation cost is large, the amount of 
savings that results from opening a new hub does not 
compensate the fixed cost of opening an additional hub. 
Therefore, according to Table V, the number of open hubs 
depends on the fixed hub installation cost at each node. 
Moreover, increasing the fixed installation cost from 5,000 to 
50,000 increases the percentage of fixed cost in the total 
network cost from about 7% to 26% when there are two 
transportation modes in the network. 

Even though integrating more transportation modes can 
increase planning costs as more stakeholders are involved that 
may have conflicting interests, it was shown to reduce the 
transportation cost. Planning costs of integrating more 
transportation modes into a single intermodal transportation 
logistics network are not considered in this research and are a 
potential area for future research. 

Similar to Scenario I, in Scenario II, the number of open 
hubs increases by decreasing the fixed hub installation cost, 

while the transportation cost decreases by increasing the 
number of transportation modes integrated in the intermodal 
network (Table VI). 

TABLE V.  TOTAL COST AND NUMBER OF OPEN HUBS FOR SCENARIO I 

Fixed 

Cost 

T = 2 T = 3 

Total 

Cost 

% Fixed 

Cost 

# of 

Hubs 

Total 

Cost 

% Fixed 

Cost 

# of 

Hubs 

5,000 135,344 7.39 2 110,275 9.07 2 

10,000 145,344 13.76 2 120,275 16.63 2 

25,000 162,949 15.34 1 135,359 18.47 1 

50,000 187,949 26.60 1 160,359 31.18 1 

TABLE VI.  TOTAL COST AND NUMBER OF OPEN HUBS FOR SCENARIO II 

θ 

T = 2 T = 3 

Total 

Cost 

% Fixed 

Cost 

# of 

Hubs 

Total 

Cost 

% Fixed 

Cost 

# of 

Hubs 

10 179,239 25.77 2 152,631 30.27 2 

20 126,591 31.67 3 102,074 39.28 3 

50 118,301 61.31 5 94,329 68.33 5 

100 117,512 27.42 5 93,903 38.12 5 

 

V. CONCLUSIONS AND FUTURE WORK 

Designing the intermodal logistics network is one of the 
critical strategic decisions in intermodal transportation 
planning. While integrating tactical and operational decisions 
such as transportation mode and load route selection, and 
explicitly considering more realistic assumptions when 
modelling this problem increase the potential applicability of 
the resulting logistics network design, the complexity of the 
integrated mathematical model is significantly affected. 
Consequently, obtaining high quality solutions in reasonable 
times is very valuable in this context. In this research, a 
heuristic approach combining a genetic algorithm and the 
shortest path algorithm was developed to solve this integrated 
planning problem. 

According to the experimental results, solutions obtained 
with the proposed heuristic approach are very close to the 
optimal solution for small problem instances with 10 nodes. 
However, the percentage cost difference between optimal and 
heuristic solutions increases with the size of the problem. More 
importantly, the average percentage of optimal hubs found by 
the heuristic solution approach is large even as instance sizes 
grow. In fact, the heuristic solution approach was able to obtain 
all optimal hubs for several small instances. In these cases, the 
difference between the total cost obtained using the heuristic 
method and the optimal solution was due to the selection of 
non-optimal routes and transportation modes by the heuristic 
method. Also, the proposed heuristic approach is able to solve 
instances with 25 nodes from the CAB dataset. The results 
indicate that when the hub installation cost is large, the amount 
of savings that results from opening a new hub does not 
compensate the fixed cost of opening an additional hub. 
Therefore, the number of open hubs depends on the fixed hub 
installation cost at each node. On the other hand, considering 
additional transportation modes reduces the total transportation 
cost. 



However, as observed in the computational 
experimentation, as more transportation modes are considered, 
the size of the IILND problem increases and the solution 
approach requires more time to find solutions. Consequently, 
improving the transportation mode and load route selection 
portion of the heuristic approach is a potential area for future 
research. 

Also, additional criteria such as transportation time can be 
incorporated into the mathematical model formulation. For 
example, in real world problems, each load has a time window 
constraint that is imposed to satisfy service level requirements. 
Each shipment would take a different amount of time to move 
between a given node pair depending on the mode of 
transportation that is selected. Load consolidation at terminals 
also takes some time depending on the resource levels at 
terminals and coordination capabilities of the network 
operators. Including congestion at terminals would be an 
interesting extension to the proposed formulation. 
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